

CPSC 213: Assignment 7

Due: Sunday, November 7, 2010 at 6:00pm.

Goal

In this assignment you investigate interrupts and asynchronous programming by reading and

modifying a program that uses signals to trigger asynchronous actions. This assignment is

closely modeled on the asynchronous disk read example discussed in the lecture and gives you a

chance to experience this sort of programming first hand, using a software environment that

mimics hardware interrupts.

Interrupts, Signals and Asynchronous Programming

Included with this assignment is a small C program called “async.c”. This program uses a Unix

OS feature called “signals” to mimic hardware interrupts. In the “boot” procedure, the program

registers “interruptServiceRoutine” as a signal handler for the SIGALRM signal and then tells

the OS to deliver this signal to the program once every second. The program includes a method

called “doAsync” that schedules an asynchronous event, sort of like a disk-read request. These

events complete in order, one at at time, each time the SIGALRM is delivered to the program.

The “doAsync” procedure enqueues events on a circular completion queue and

“interruptServiceRoutine” dequeues these completion events when SIGALRM’s arrive and

delivers the completion by calling the completion routine with two parameters, a pointer and an

int, whose meaning is determined by the completion routine. You will note the use of the type

“void*”. This type is called an “opaque pointer” and be used to store pointers of any type. The

program includes a small example of the use of this system to asynchronously print three strings.

I’d like you to pretend that what is actually happening is that the OS is an I/O controller that is

doing some real work for your program as a result of doAsync and that it uses SIGALRM to

signal that this work has completed. The fact that the OS isn’t really doing anything than

regularly delivering signals, exists because we are emulating complex behaviour with a simple

program.

You will note that this program ends with an infinite loop and so it will run forever unless you

(or someone else) kills it. Be sure to kill it when its done (e.g., by pressing Ctrl-C or typing ^C).

You have two tasks. First, read, compile and run the program to understand what it does. Insert

detailed comments in the program to carefully explain all of the data structures and procedures.

Do not add comments to individual lines of code, but ensure that your other comments are

detailed enough to fully explain what this code does. Use the “man” command as necessary to

get the documentation for Unix commands such as “signal” and “ualarm” etc.

Then, modify this program to use the doAsync procedure and this framework to implement a

program with the following asynchronous operations (each implemented by a procedure that is

never called directly but that is instead caused to run by doAsync).

1. add (struct Triple* xp, int n) that computes xp->result = xp->arg0 + xp->arg1.

2. sub (struct Triple* xp, int n) that computes xp->result = xp->arg0 - xp->arg1.

Write a program that uses only these three procedures and the doAsync procedure to compute the

value of the expression: “((1+2)-(3+4))+7” and store the result in a global variable. The program

should terminate by printing the value of this global variable.

Note that a key challenge here is that some of operations use results from previous operations

(e.g., you can’t do the subtraction until the add for (1+2) and (3+4) have completed). You will

thus need to synchronize your program to some extent. Do not synchronize any more than

necessary (e.g., (1+2) and (3+4) do not need to be synchronized with each other). Implement

this synchronization using a shared variable whose value indicates whether the computation can

continue and then “spin” on this variable until it has this value. For example the following code

waits until the variable “n” has the value “1”: “while (n!=1) {}”. This is an example of “polling”

a variable for a value and this particular strategy has a special name: “a spin lock”.

Requirements

Here are the requirements for this week’s assignment.

1. Carefully comment the async.c program to explain every procedure and data structure in

detail.

2. Compile async.c with the -g option and then type “gdb a.out” to run the program in the

debugger. Type “b printString” to set a breakpoint in the printString procedure and then

type “run” to start the program. When the program stops at the breakpoint, type

“backtrace” to have gdb display the current contents of the runtime stack. There is one

line for every activation frame on the stack, with the current frame on top. Carefully

explain what you see. Then modify async.c to call printString directly, repeat this process

and compare this stack trace to the original one. Carefully explain the difference between

the two stack traces.

3. Modify async.c as specified above and test your program.

Material Provided

The code for async.c in included in the file code.zip. Reference for gdb can be found on the

course website. Experiment with gdb as it is a very useful tool to learn.

What to Hand In

Use the handin program. The assignment directory is a7. Use one README.txt text file for all of

your written answers (keep the async.c file separate). Avoid PDF or DOC or other file formats.

Make sure you put down your student name and student number on the top, or marks will be

deducted.
1. Your commented and modified version of async.c.

2. Your detailed stack-trace descriptions.

3. A brief description of your testing of your modified async.c.

