
CPSC 213: Assignment 2
Due: Sunday, Sept 26, 2010 at 6:00pm

Goal
In this assignment you begin to implement the SM213 ISA that we are developing in class. You
will implement a substantial subset of the ISA in this assignment, though its actually only 5 of
instructions. The goal of this assignment is to build a processor that can execute C global scalars
and arrays (both static and dynamic). You will test your implementation using the code snippets
used in class and included with this assignment.

By implementing these instructions in the simulator you will see what is required to implement
them in hardware and you will deepen your understanding of what a global variable is, what
memory is, and the role that compiler and hardware play in implementing them. A key thing to
think about while doing this is: “what does the compiler know about these variables” and so what
can be hard-coded by the compiler in the machine code it generates. For global variables, recall
that the compiler knows their address. And so the address of a global variable is hardcoded in
the instructions that access it. But, the compiler does not know the address of a dynamic array
and so, even though it knows the address of the variable that stores the array reference, it must
generate code to read the array’s address from memory when the program runs.

The ISA to Implement
This week, you will implement the following instructions.

Instruction Assembly Format Semantics

load immediate ld $v, rd 0d-- vvvvvvvv r[rd] ← v

load base + offset ld 0x0(rs), rd 10sd r[rd] ← m[r[rs]]

load indexed ld (rs,ri,4), rd 2sid r[rd] ← m[r[rs]+r[ri]*4]

store base + offset st rs, 0x0(rd) 3s0d m[r[rd]] ← r[rs]

store indexed st rs, (rd,ri,4) 4sdi m[r[rd]+r[ri]*4] ← r[rs]

You will note that the load and store base + offset instructions are a bit different from the full
ISA description. At the moment, for the current set of code snippets, we only need an instruction
that loads/stores with memory address specified by a register. Next week we will look at
implementing instance variables and we will then decide to extend these two instructions (in a
simple and straightforward way). If you want, you can look ahead and implement the full

base+offset instruction (it is backward compatible with the simplified version you are doing this
time). But, all we need right now is the simpler instruction and so that is all you are required to
implement this week.

Code Snippets Used this Week
As explained in detail below, you will use the following code snippets this week. There are C,
Java and SM213 Assembly versions of each of these (except the C-pointer-math file, for which
there is no Java).

• S1-global-static
• S2-global-syn-array

Your Implementation
You are implementing a SM213 CPU by writing Java code for the SimpleMachine simulator.
You loaded this simulator into your local development environment (likely Eclipse or XCode) in
Assignment 1. In Assignment 1 you also implemented the MainMemory class. This class will
be used automatically in Assignment 2 and subsequently. And so, if you were unable to get
Assignment 1 completed, you may need some extra help this week. Get his help early.

You will implement two methods of the CPU class in the Arch.SM213.Machine.Student
package.

1. fetch () loads instructions from memory into the instruction register, determines their
length and adds this number to the pc register so that it points to the next instruction, and
then loads the various pieces of the instruction into the registers insOpCode, insOp0,
insOp1, insOp2 and insOpExt (for 6 byte instructions). The meaning of each of these
registers and a primmer on the Java syntax for accessing them was given in class and is
part of the online lecture slides and Companion notes. Note that there is another register,
insOpImm, that we are not using until next week.

2. execute () uses the register values stored by the fetch stage to execute the instructions,
transforming the register file (i.e,. reg) and main memory (i.e., mem) appropriately.

Using the Simulator to Test and Debug Your Code
The simulator displays the current value of the register file, main memory and the internal
registers such as the pc and instruction registers.

And so, the first thing you might do is to create a test assembly file with various forms of the five
instructions that you will implement (you can use the snippet files too, but you might want a bit
more control in the early stages of debugging). Load this file into the simulator. And then,
implement the first instruction’s fetch stage. Step the simulator so that it executes the instruction
and check to see that the instruction/pc registers have the expected value. Do this for the other
instructions. You can now be confident that you’ve correctly implemented the fetch stage.

Now implement the execute stage for the first instruction and start again, stepping the
simulator’s execution through the first instruction. This time check to see whether you see the
expected changes in the register file and main memory. Repeat this for the other instructions.

Be sure that this test file provides good test coverage. If it does and the tests pass, you can now
reasonably believe that your CPU implementation works.

Finally, run the snippet programs and observe what happens and answer the question listed
below about the C pointer math file.

You’ll get help using the simulator in the labs, but here are a few quick things that you will find
helpful.

1. You can edit instructions and data values directly in the simulator (including adding new
lines or deleting them).

2. The simulator allows you to place “labels” on code and data lines. This label can then be
used as a substitute for the address of those lines. For example, the variable’s a and b are
at addresses 0x1000 and 0x2000 respectively, but can just be referred to using the labels a
and b. Keep in mind, however, that this is just an simulator/assembly-code trick, the
machine instructions still have the address hardcoded in them. You can see the machine
code of each instruction to the left of the instructions in the memory image portion of the
instruction pane.

3. You can change the program counter (i.e., pc) value by double-clicking on an instruction.
And so, if you want to execute a particular instruction, double click it and then press the
“Step” button. The instruction pointed to by the pc is coloured green.

4. Memory locations and registers read by the execution of an instruction are coloured blue
and those written are coloured red. With each step of the machine the colours from
previous steps fade so that you can see locations read/written by the past few instructions
while distinguishing the cycle in which they were accessed.

Requirements
Here are the requirements for this week’s assignment.

1. Implement and test the five instructions listed above.
2. Write an assembly-code test file that provides good test coverage for these instructions.
3. Test your implementation using your test program.
4. Run snippets S1-global-static.s and S2-global-dyn-array.s through the simulator. Step

each instruction separately. Note what happens in each step.

Material Provided
The Simulator code was provided with Assignment 1. This assignment includes snippets 1-2 in
the file snippets-1-2.zip.

What to Hand In
Use the handin program. The assignment directory is a2.

1. CPU.java
2. Your test program
3. Your test description. Did all of the tests succeed? Does your implementation work?
4. A written description of the key things you noted about the machine execution while

running snippets S1 and S2.

	CPSC 213: Assignment 2
	Goal
	The ISA to Implement
	Semantics
	Format
	Assembly
	Instruction
	Code Snippets Used this Week
	Your Implementation
	Using the Simulator to Test and Debug Your Code
	Requirements
	Material Provided
	What to Hand In

