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News
■ CS dept announcements

■ Undergraduate Summer Research Award (USRA)
■ applications due Feb 26
■ see Guiliana for more details
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Department of Computer Science
Undergraduate Events

Events this week
Drop-in Resume/Cover Letter Editing
Date:                Tues., Jan 19
Time:               12:30 – 2 pm
Location:         Rm 255, ICICS/CS Bldg.

Interview Skills Workshop
Date:                Thurs., Jan 21
Time:               12:30 – 2 pm
Location:         DMP 201
Registration: Email

dianejoh@cs.ubc.ca

Project Management Workshop
Speaker:         David Hunter (ex-VP,

SAP)
Date:               Thurs., Jan 21
Time:               5:30 – 7 pm
Location:        DMP 110

CSSS Laser Tag
Date:                Sun., Jan 24
Time:               7 – 9 pm
Location:         Planet Laser
   @ 100 Braid St., New

Westminster

Event next week
Public Speaking 101
Date:                Mon., Jan 25
Time:               5 – 6 pm
Location:         DMP 101
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Resources
■ Demco Learning Center: drop by if you have any questions!

■ ICICS/CS x150
■ Normal schedule starts today

■ 10 am - 6 pm M-Th, 10 am - 4 pm F
■ Staffed by TAs from all 1st year courses, see schedule at

http://www.cs.ubc.ca/ugrad/current/resources/cslearning.shtml
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More Resources
■ WebCT discussion groups

■ Monitored by TAs/instructor, use to ask questions

■ don’t forget to check web page first/often!
■ lecture slides, handouts, schedule, links, ....
■  http://www.cs.ubc.ca/~tmm/courses/111-10
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Yet More Resources
■ reminder: my office hours Mondays 4-5pm, starting today

■ office location is X661 (tall wing of ICICS/CS bldg)

this elevator to X6 me!
Xwing entrances facing Dempster
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Followup
■ Q: identifiers - what about “.”?

■ System.out.println(“hey, what’s the story?”);

■ A: not allowed in simple identifiers
■ qualified identifiers: sequence of simple identifiers,

separated by “.”
■ stay tuned for more on scope, namespace and

packages
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Reading This Week
■ Rest of Chap 2

■ 2.3-4, 2.6-2.10
■ Rest of Chap 4

■ 4.3-4.7
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Recap: Declaration and Assignment
■ Variable declaration is instruction to compiler

■ reserve block of main memory large enough to store data type
specified in declaration

■ Variable name is specified by identifier
■ Syntax:

■ typeName variableName;
■ typeName variableName = value;

■ can declare and assign in one step

■ Java first computes value on right side
■ Then assigns value to variable given on left side
  x = 4 + 7;
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Recap: Assignment Statements

■ Here’s an occasional point of confusion:

■ Draw and fill in boxes for your variables at
each time step if you’re confused

 a = 7;         // what’s in a?
 b = a;         // what’s in b?
                // what’s in a now???
 System.out.println(“a is “ + a + “b is “ +b);
 a = 8;
 System.out.println(“a is “ + a + “b is “ +b);
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Recap: Expressions
■ expression is combination of

■ one or more operators and operands
■ operator examples: +, *, /, ...
■ operand examples: numbers, variables, ...

■ precedence: multiply/divide higher than
add/subtract
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Recap: Converting Between Types
■ Doubles can simply be assigned ints

■ double socks = 1;
■ ints are subset of doubles

■ Casting: convert from one type to another with information
loss

■ Converting from real to integer
■ int shoes = (int) 1.5;

■ Truncation: fractional part thrown away
■ int shoes = (int) 1.75;

■ Rounding: must be done explicitly
■ shoes = Math.round(1.99);
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Recap: Primitive Data Types: Numbers

■ Primary primitives are int and double
■ three other integer types
■ one other real type

approx 1.7E308
 (15 sig. digits)

approx -1.7E308
(15 sig. digits)

8 bytesdouble

approx 3.4E38 (7 sig.digits)approx -3.4E38 (7 sig.digits)4 bytesfloat

9,223,372,036,854,775,807-9,223,372,036,854,775,8088 byteslong

2,147,483,647-2,147,483,6484 bytesint

32,767-32,7682 bytesshort

127-1281 bytebyte

MaxMinSizeType
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Recap: Primitives: Non-numeric
■ Character type

■ named char
■ Java uses the Unicode character set so each char occupies 2

bytes of memory.
■ Boolean type

■ named boolean
■ variables of type boolean have only two valid values

■ true and false
■ often represents whether particular condition is true
■ more generally represents any data that has two states

■ yes/no, on/off
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Recap: Constants
■ Things that do not vary

■ unlike variables
■ will never change

■ Syntax:
■ final typeName variableName;
■ final typeName variableName = value;

■ Constant names in all upper case
■ Java convention, not compiler/syntax requirement
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Recap: Avoiding Magic Numbers
■ magic numbers: numeric constants directly in code

■ almost always bad idea!
■ hard to understand code
■ hard to make changes
■ typos possible

■ use constants instead
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Programming
■ Programming is all about specifiying

■ data that is to be manipulated or acted upon
■ operations that can act upon data
■ order in which operations are applied to data

■ So far: specify data using primitive data types
■ come with pre-defined operations like

+, -, *, and /
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Programming with Classes
■ What if data we want to work with is more complex

these few primitive data types?
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Programming with Classes
■ What if data we want to work with is more complex

these few primitive data types?

■ We can make our own data type: create a class
■ specifies nature of data we want to work with
■ operations that can be performed on that kind of data

■ Operations defined within a class called methods
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Programming with Classes
■ Can have multiple variables of primitive types (int, double)

■ each has different name
■ each can have a different value

int x = 5;
int y = 17;

■ Similar for classes: can have multiple instances of class
String
■ each has different name
■ each can have different value

String name = “Tamara Munzner”;
String computerName = “pangolin”;
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Programming with Objects
■ Object: specific instance of a class

■ Classes are templates for objects

■ programmers define classes
■ objects created from classes
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Object Example
public class StringTest
{
    public static void main (String[] args)
    {
        String firstname;
        String lastname;
        firstname = new String (“Kermit");
        lastname = new String (“theFrog");
        System.out.println("I am not " + firstname 
                           + " " + lastname);
    }
}
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Object Example

■ Declare two different String objects
■ one called firstname and one called lastname

public class StringTest
{
    public static void main (String[] args)
    {
        String firstname;
        String lastname;
        firstname = new String ("Kermit");
        lastname = new String (“theFrog");
        System.out.println("I am not " + firstname 
                           + " " + lastname);
    }
}
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Object Example

■ Variable declaration does not create objects!

public class StringTest
{
    public static void main (String[] args)
    {
        String firstname;
        String lastname;
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Object Example

■ Variable declaration does not create objects!
■ just tells compiler to set aside spaces in memory with these

names
■ Spaces will not actually hold the whole objects

■ will hold references: pointers to or addresses of objects
■ objects themselves will be somewhere else in memory

public class StringTest
{
    public static void main (String[] args)
    {
        String firstname;
        String lastname;
       

26

Object Example

■ So firstname and lastname will not contain String
objects
■ contain references to String objects

public class StringTest
{
    public static void main (String[] args)
    {
        String firstname;
        String lastname;
       

public class StringTest
{
    public static void main (String[] args)
    {
        String firstname;
        String lastname;
        firstname = new String ("Kermit");
        lastname = new String (“theFrog");
        System.out.println("I am not " + firstname 
                           + " " + lastname);
    }
}
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Constructors
■ Constructor: method with same name as class

■ always used with new
■ actually creates object
■ typically initializes with data

    firstname = new String (“Kermit");
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Object Example

■ Now create new instance of the String class
■ String object with data “Kermit”

■ Puts object somewhere in memory
■ puts address of the object’s location in firstname:
  firstname holds reference to String object with data “Kermit”

public class StringTest
{
    public static void main (String[] args)
    {
        String firstname;
        String lastname;
       

public class StringTest
{
    public static void main (String[] args)
    {
        String firstname;
        String lastname;
        firstname = new String (“Kermit");
        lastname = new String (“theFrog");
        System.out.println("I am not " + firstname 
                           + " " + lastname);
    }
}
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Object Example

■ New operator and String constructor method
instantiate (create) new instance of String class (a
new String object)

public class StringTest
{
    public static void main (String[] args)
    {
        String firstname;
        String lastname;
       

public class StringTest
{
    public static void main (String[] args)
    {
        String firstname;
        String lastname;
        firstname = new String (“Kermit");
        lastname = new String (“theFrog");
        System.out.println("I am not " + firstname 
                           + " " + lastname);
    }
}
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Object Example

firstname
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Object Example

firstname String object

“Kermit”

expression on right side
of assignment operator
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Object Example

firstname String object

“Kermit”

bind variable to
expression on right side
of assignment operator
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Object Example

■ And so on

public class StringTest
{
    public static void main (String[] args)
    {
        String firstname;
        String lastname;
       

public class StringTest
{
    public static void main (String[] args)
    {
        String firstname;
        String lastname;
        firstname = new String (“Kermit");
        lastname = new String (“theFrog");
        System.out.println("I am not " + firstname 
                           + " " + lastname);
    }
}
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Object Example

■ Can consolidate declaration, assignment
■ just like with primitive data types

public class StringTest
{
    public static void main (String[] args)
    {
        String firstname = new String (“Kermit");
        String lastname = new String (“theFrog");

  System.out.println("I am not " + firstname 
                           + " " + lastname);
    }
}
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Objects vs. Primitives
■ references

int
favoriteNum

Frog object

Frog
favoriteFrog

42

int
famousNum

42

Frog
famousFrog

vs. direct storage

boolean isMuppet

true

String frogName

String object

“Kermit”
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Objects vs. Primitives
■ references

int
favoriteNum

Frog object

Frog
favoriteFrog

999

int
famousNum

42

Frog
famousFrog

vs. direct storage

boolean isMuppet

false

String frogName

String object

“Kermit”
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Class Libraries
■ Before making new class yourself,  check to see if

someone else did it already
■ libraries written by other programmers
■ many built into Java

■ Example
■ Java has single-character primitive data type
■ what if want to work with sequence of characters
■ String class already exists
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API Documentation
■ Online Java library documentation at

http://java.sun.com/javase/6/docs/api/
■ textbook alone is only part of the story
■ let’s take a look!

■ Everything we need to know: critical details
■ and often many things far beyond current need

■ Classes in libraries are often referred to as
Application Programming Interfaces
■  or just API
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Some Available String Methods
public String toUpperCase();
Returns a new String object identical to this object but with
all the characters converted to upper case.

public int length();
Returns the number of characters in this String object.

public boolean equals( String otherString );
Returns true if this String object is the same as
otherString and false otherwise.

public char charAt( int index );
Returns the character at the given index.  Note that the
first character in the string is at index 0.
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More String Methods
public String replace(char oldChar, char newChar);
Returns a new String object where all instances of oldChar have been

changed into newChar.

public String substring(int beginIndex);
Returns new String object starting from beginIndex position

public String substring( int beginIndex, int endIndex );
Returns new String object starting from beginIndex position and ending

at endIndex position

H e l l o K e r m i t F r o g

0 1 2 3 4 5 6 7 8 9 1110 12 13 14 15

substring(4, 7)    “o K”

 up to but not including endIndex char:
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Questions?
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public class StringTest
{
    public static void main (String[] args)
    {
        String firstname = new String ("Kermit");
        String lastname = new String ("theFrog");
        firstname = firstname.toUpperCase();
        System.out.println("I am not " + firstname 
                           + " " + lastname);
    }
}

String Method Example

■ invoking methods
■ objectName.methodName();
■ remember (simple) identifiers can't have . in them
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  String firstname = "Alphonse";
  char thirdchar = firstname.charAt(2);

                                             object

Methods and Parameters
■ Class definition says what kinds of data and

methods make up object
■ object is specific instance of class
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  String firstname = "Alphonse";
  char thirdchar = firstname.charAt(2);

                                             object                     method

Methods and Parameters
■ Class definition says what kinds of data and

methods make up object
■ object is specific instance of class
■ methods are how objects are manipulated

45

  String firstname = "Alphonse";
  char thirdchar = firstname.charAt(2);

                                             object                     method      parameter

Methods and Parameters
■ Class definition says what kinds of data and

methods make up object
■ object is specific instance of class
■ methods are how objects are manipulated
■ pass information to methods with parameters

■ inputs to method call
■ tell charAt method which character in the String object we're

interested in
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Parameters
■ Methods can have multiple parameters

■ API specifies how many, and what type

public String replace(char oldChar, char newChar);

     String animal = "mole";
     animal.replace('m', 'v');

public String substring( int beginIndex, int endIndex );

     animal = "aardwolf";
     String newanimal = animal.substring(4,8);
     System.out.println(newanimal);              // wolf
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Explicit vs. Implicit Parameters
■ Explicit parameters given between parentheses
■ Implicit parameter is object itself
■ Example: substring method needs

■ beginIndex, endIndex
■ but also the string itself!

     animal = "aardwolf";
     System.out.println(animal);                  // aardwolf
     String newanimal = animal.substring(4,8);
     System.out.println(newanimal);               // wolf

■ All methods have single implicit parameters
■ can have any number of explicit parameters

■ none, one, two, many…
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Parameters
■ Most of the time we'll just say parameters, meaning

the explicit ones
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Return Values
■ Methods can have return values
■ Example: charAt method result

■ return value, the character 'n',  is stored in thirdchar

  String firstname = "kangaroo";
  char thirdchar = firstname.charAt(2);

return value                 object               method    parameter
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Return Values
■ Methods can have return values
■ Example: charAt method result

■ return value, the character 'n',  is stored in thirdchar

  String firstname = "kangaroo";
  char thirdchar = firstname.charAt(2);

■ Not all methods have return values
■ Example: println method does not return anything

■ prints character 'n' on the monitor, but does not return
that value

■ printing value and returning it are not the same thing!

  System.out.println(thirdchar);

return value                 object               method    parameter
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Return Values
■ Again, API docs tell you

■ how many explicit parameters
■ whether method has return value
■ what return value is, if so

■ No return value indicated as void
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Constructors and Parameters
■ Many classes have more than one constructor,

taking different parameters
■ use API docs to pick which one to use based on

what initial data you have

animal = new String();
animal = new String("kangaroo");
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Accessors and Mutators
■ Method that only retrieves data is accessor

■ read-only access to the value
■ example: charAt method of String class

■ Method that changes data values internally is mutator
■ Stay tuned for examples of mutators, we haven't seen any yet
■ String class has no mutator methods

■ Accessor often called getters
■ Mutators often called setters

■ names often begin with get and set, as in getWhatever and
setWhatever


