University of British Columbia
CPSC 111, Intro to Computation
2009W2: Jan-Apr 2010

Tamara Munzner

Objects, Strings, Parameters
Lecture 6, Mon Jan 18 2010
borrowing from slides by Kurt Eiselt

http://www.cs.ubc.ca/~tmm/courses/111-10

News
= CS dept announcements
= Undergraduate Summer Research Award (USRA)

= applications due Feb 26
= see Guiliana for more details

Drop-in Resume/Cover Letter Editing

Date: Tues., Jan 19 CSSS Laser Tag

Time: 12:30 -2 pm Date: Sun,, Jan 24

Location: Rm 255, ICICS/CS Bldg. ~ Time: 7-9pm
Location: Planet Laser

Interview Skills Workshop 100‘ B,'ail: St., New

Date: Thurs., Jan 21 estminster

Time: 12:30 - 2 pm

DMP 201
: Em:

i : Email
dianejoh@cs.ubc.ca

Public Speaking 101

Date: Mon., Jan 25
Project Management Workshop Time: 5-6pm
Speaker: David Hunter (ex-VP, Location: DMP 101
SAP)
Date: Thurs., Jan 21
Time: 5:30 -7 pm

Location: DMP 110

Resources

= Demco Learning Center: drop by if you have any questions!
= ICICS/CS x150
= Normal schedule starts today
= 10 am -6 pm M-Th, 10 am - 4 pm F
= Staffed by TAs from all 1st year courses, see schedule at
http://www.cs.ubc.ca/ugrad/current/resources/cslearning.shtml

—

s F mazon |

F/v

More Resources

= WebCT discussion groups
= Monitored by TAs/instructor, use to ask questions

= don’t forget to check web page first/often!
= lecture slides, handouts, schedule, links,

= http://www.cs.ubc.ca/~tmm/courses/111-10

Yet More Resources

= reminder: my office hours Mondays 4-5pm, starting today

= office location is X661 (tall wing of ICICS/CS bldg)

Locaton Map

_J this elevator to X6 me!

TOACCESS FLOOR X7, TO ACCESS FLOOR X6,

TAKE ELEVATOR #1 TAKE ELEVATOR #2

Followup

= Q: identifiers - what about “.”?
= System.out.println(“hey, what’s the story?”);

= A: not allowed in simple identifiers
= qualified identifiers: sequence of simple identifiers,
separated by “.”
= stay tuned for more on scope, namespace and
packages

Reading This Week

= Rest of Chap 2
u 2.3-4,2.6-2.10

= Rest of Chap 4
u 4.3-4.7

Recap: Declaration and Assignment

= Variable declaration is instruction to compiler

= reserve block of main memory large enough to store data type
specified in declaration

= Variable name is specified by identifier
= Syntax:
u typeName variableName;
u typeName variableName = value;
= can declare and assign in one step

= Java first computes value on right side
= Then assigns value to variable given on left side
x=4+7;

Recap: Assignment Statements

= Here’s an occasional point of confusion:

7; // what’s in a?
a; // what’s in b?

// what’s in a now???
System.out.println(®a is ™ + a + “b is ™ +b);
a=8;

System.out.println(®a is ™ + a + “b is “ +b);

a
b

a| Draw and fill in boxes for your variables at
each time step if you're confused

Recap: Expressions

= expression is combination of
= one or more operators and operands
= operator examples: +, *, /, ...
= operand examples: numbers, variables, ...

= precedence: multiply/divide higher than
add/subtract

Recap: Converting Between Types

= Doubles can simply be assigned ints

= double socks = 1;

= ints are subset of doubles
= Casting: convert from one type to another with information
loss
Converting from real to integer
= int shoes = (int) 1.5;
Truncation: fractional part thrown away
= int shoes = (int) 1.75;
= Rounding: must be done explicitly

= shoes = Math.round(1.99);

Recap: Primitive Data Types: Numbers

Type Size Min Max
byte 1 byte -128 127
short |2bytes |-32,768 32,767

int 4 bytes |-2,147,483,648 2,147,483,647

long 8 bytes -9,223,372,036,854,775,808 9,223,372,036,854,775,807

float |4 bytes |approx -3.4E38 (7 sig.digits) approx 3.4E38 (7 sig.digits)

double |8 bytes |approx-1.7E308
(15 sig. digits)

approx 1.7E308
(15 sig. digits)

= Primary primitives are int and double
= three other integer types
= one other real type

Recap: Primitives: Non-numeric

= Character type
= named char
= Java uses the Unicode character set so each char occupies 2
bytes of memory.
= Boolean type
= named boolean
= variables of type boolean have only two valid values
= true and false
= often represents whether particular condition is true
= more generally represents any data that has two states
= yes/no, on/off

Recap: Constants

= Things that do not vary
= unlike variables
= will never change
= Syntax:
= final typeName variableName;
= final typeName variableName = value;
= Constant names in all upper case
= Java convention, not compiler/syntax requirement

Recap: Avoiding Magic Numbers

= magic numbers: numeric constants directly in code
= almost always bad idea!
= hard to understand code
= hard to make changes
= typos possible
= use constants instead

Programming

= Programming is all about specifiying
= data that is to be manipulated or acted upon
= operations that can act upon data
= order in which operations are applied to data

= So far: specify data using primitive data types
= come with pre-defined operations like
+, -, % and/

Programming with Classes

= What if data we want to work with is more complex
these few primitive data types?

Programming with Classes

= What if data we want to work with is more complex
these few primitive data types?

= We can make our own data type: create a class

= specifies nature of data we want to work with

= operations that can be performed on that kind of data
= Operations defined within a class called methods

Programming with Classes

= Can have multiple variables of primitive types (int, double)
= each has different name
= each can have a different value
int x = 5;
int y = 17;

= Similar for classes: can have multiple instances of class
String

= each has different name

= each can have different value
String name = “Tamara Munzner”;
String computerName = “pangolin”;

Programming with Objects

= Object: specific instance of a class
= Classes are templates for objects

= programmers define classes
= objects created from classes

Object Example

public class StringTest
{
public static void main (String[] args)
{
String firstname;
String lastname;
firstname = new String (“Kermit");
lastname = new String (“theFrog");
System.out.println("I am not " + firstname

Object Example

public class StringTest
{

public static void main (String[] args)

{
String firstname;
String lastname;
firstname = new String ("Kermit");

lastname = new String (“theFrog");
System.out.println("I am not " + firstname

Object Example
public class StringTest

{

public static void main (String[] args)
{

String firstname;

String lastname;

= Variable declaration does not create objects!

public class StringTest
{
public static void main (String[] args)

{
String firstnam
String lastname;
= Variable declaration does not create objects!

= just tells compiler to set aside spaces in memory with these
names

= Spaces will not actually hold the whole objects
= will hold references: pointers to or addresses of objects
= objects themselves will be somewhere else in memory

public class StringTest
{
public static void main (String[] args)

{
String firstname;
String lastname;
firstname = new String ("Kermit");
lastname = new String (“theFrog");

System.out.println("I am not " + firstname
+ " " + lastname);

}

= SO firstname and lastname Will not contain String
objects

= contain references to String objects

= Constructor: method with same name as class
= always used with new
= actually creates object
» typically initializes with data

firstname = new String (“Kermit");

27

4+ " " 4+ lastname); + " " + lastname) ;
} }
} }
= Declare two different String objects
= one called £irstname and one called lastname
21 22 23 24
Object Example Object Example Constructors

Object Example

public class StringTest
{
public static void main (String[] args)
{
String firstname;
String 1 H
[firstname = new String (“Kermit");]
lastname = new String (“theFrog");
System.out.println("I am not " + firstname
+ " " + lastname);

}

= Now create new instance of the String class
= String object with data “Kermit”
= Puts object somewhere in memory
= puts address of the object’s location in firstname:
£irstname holds reference to String object with data “Kermit”

Object Example
public class StringTest
{

public static void main (String[] args)

{
String firstname;
String lastname;
[firstname = new String (“Kermit");|
lastname = new String (“theFrog");
System.out.println("I am not " + firstname

+ " " + lastname) ;

}

= New operator and String constructor method
instantiate (create) new instance of String class (a
new String object)

Object Example

firstname

L]

Object Example

firstname

L]

String object

expression on right side
of assignment operator

31

Object Example

firstname

[o——

String object

bind variable to
expression on right side
of assignment operator

Object Example

public class StringTest

{
public static void main (String[] args)
{

String firstname;
String lastname;

lastname = new String (“theFrog
System.out.printin ("I am not " + firstname
+ " " + lastname);

}
= And so on

Object Example

public class StringTest
{
public static void main (String[] args)

{

String firstname = new String (“Kermit");

String lastname = new String (“theFrog");

System.out.println("I am not " + firstname
4+ " " + lastname);

= Can consolidate declaration, assignment
= just like with primitive data types

Objects vs. Primitives

= references

Frog object

Frog
famousFrog

String frogName

boolean isMuppet

Frog
favoriteFrog

int
famousNum

int
favoriteNum

=vs. direct storage

String object

35

Objects vs. Primitives

= references Frog object

String object

Frog

String frogName
famousFrog

boolean isMuppet

Frog
favoriteFrog

int
famousNum

int
favoriteNum

=vs. direct storage

Class Libraries

Before making new class yourself, check to see if
someone else did it already

u libraries written by other programmers

= many built into Java

= Example

= Java has single-character primitive data type

= what if want to work with sequence of characters

= String class already exists

API Documentation

= Online Java library documentation at
http://java.sun.com/javase/6/docs/api/
= textbook alone is only part of the story
= let's take a look!

= Everything we need to know: critical details
= and often many things far beyond current need

= Classes in libraries are often referred to as
Application Programming Interfaces
= orjust API

Some Available String Methods

public String toUpperCase();
Rsturns a new string object identical to this object but with
all the characters converted to upper case.

public int length();
Returns the number of characters in this string object.

public boolean equals(String otherString);
Returns true if this string object is the same as
otherString and false otherwise.

public char charAt(int index);
Returns the character at the given index. Note that the
first character in the string is at index 0.

39

More String Methods

public String replace(char oldChar, char newChar);
Returns a new string object where all instances of oldchar have been
changed into newChar.

public String substring(int beginIndex);
Returns new string object starting from beginindex position

public String substring(int beginIndex, int endIndex);
Returns new string object starting from beginIndex position and ending
at endIndex position

= up to but not including endindex char:
substring (4, 7) “o K”

(e[t [t fo] J«fe[r [m[i [t [F]r Jo]g]
012345678 9101112131415

Questions?

String Method Example

public class StringTest
{

public static void main (String[] args)

String firstname = new String ("Kermit");
Sstring lastname = new String ("theFrog");
firstname = firstname.toUpperCase();
System.out.println("I am not " + firstname
+ " " + lastname);
}
}

= invoking methods
= objectName.methodName();
= remember (simple) identifiers can't have . in them

Methods and Parameters

= Class definition says what kinds of data and

methods make up object
= object is specific instance of class

String firstname = "Alphonse";
char thirdchar = firstname.charAt(2);

object

43

Methods and Parameters

= Class definition says what kinds of data and
methods make up object

= object is specific instance of class
= methods are how objects are manipulated

String firstname = "Alphonse";
char thirdchar = firstname.charAt(2);

object method

Methods and Parameters

Class definition says what kinds of data and
methods make up object

= object is specific instance of class

= methods are how objects are manipulated

= pass information to methods with parameters
= inputs to method call

= tell charAt method which character in the String object we're
interested in

String firstname = "Alphonse";
char thirdchar = firstname.charAt(2);

object method parameter

Parameters

= Methods can have multiple parameters
= API specifies how many, and what type

public String replace(char oldChar, char newChar);

String animal = "mole";
animal.replace('m', 'v');

public String substring(int beginIndex, int endIndex);

animal = "aardwolf";
String newanimal = animal.substring(4,8);
System.out.println(newanimal) ; // wolf

Explicit vs. Implicit Parameters

Explicit parameters given between parentheses
Implicit parameter is object itself
Example: substring method needs
= beginIndex, endIndex
= but also the string itself!
animal = "aardwolf";
System.out.println(animal) ;

String newanimal = animal.substring(4,8);
System.out.println(newanimal) ; /1 wolf

// aardwolf

All methods have single implicit parameters
= can have any number of explicit parameters
= none, one, two, many...

47

Parameters

= Most of the time we'll just say parameters, meaning
the explicit ones

Return Values

= Methods can have return values
= Example: charAt method result
= return value, the character 'n’, is stored in thirdchar

String firstname = "kangaroo";
char thirdchar = firstname.charAt(2);
return value object method parameter

Return Values

Methods can have return values
Example: charAt method result
= return value, the character 'n', is stored in thirdchar

String firstname = "kangaroo";
char thirdchar = firstname.charAt(2);
return value object method parameter

Not all methods have return values
Example: println method does not return anything

= prints character 'n' on the monitor, but does not return
that value

= printing value and returning it are not the same thing!

System.out.println(thirdchar);

Return Values

= Again, API docs tell you
= how many explicit parameters
= whether method has return value
= what return value is, if so

Method Summary

chas|charat(int index)
Returns the char value at the specified index.

= No return value indicated as void

Constructors and Parameters

= Many classes have more than one constructor,
taking different parameters
= use API docs to pick which one to use based on
what initial data you have

Constructor Summary

strina()
Initializes a newly created stxing object so that it represents an empty character
sequence.

String(String original)

Initializes a newly created stxing object so that it represents the same sequence of
characters as the argument; in other words, the newly created string is a copy of the
a|argument string.

animal = new String("kangaroo");

Accessors and Mutators

= Method that only retrieves data is accessor
= read-only access to the value
= example: charAt method of String class
= Method that changes data values internally is mutator
= Stay tuned for examples of mutators, we haven't seen any yet
= String class has no mutator methods
= Accessor often called getters
= Mutators often called setters

= names often begin with get and set, as in getWhatever and
setWhatever

