
1

University of British Columbia
CPSC 111, Intro to Computation

2009W2: Jan-Apr 2010
Tamara Munzner

Objects, Strings, Parameters

Lecture 6, Mon Jan 18 2010

http://www.cs.ubc.ca/~tmm/courses/111-10

borrowing from slides by Kurt Eiselt

2

News
■ CS dept announcements

■ Undergraduate Summer Research Award (USRA)
■ applications due Feb 26
■ see Guiliana for more details

3

Department of Computer Science
Undergraduate Events

Events this week
Drop-in Resume/Cover Letter Editing
Date: Tues., Jan 19
Time: 12:30 – 2 pm
Location: Rm 255, ICICS/CS Bldg.

Interview Skills Workshop
Date: Thurs., Jan 21
Time: 12:30 – 2 pm
Location: DMP 201
Registration: Email

dianejoh@cs.ubc.ca

Project Management Workshop
Speaker: David Hunter (ex-VP,

SAP)
Date: Thurs., Jan 21
Time: 5:30 – 7 pm
Location: DMP 110

CSSS Laser Tag
Date: Sun., Jan 24
Time: 7 – 9 pm
Location: Planet Laser
 @ 100 Braid St., New

Westminster

Event next week
Public Speaking 101
Date: Mon., Jan 25
Time: 5 – 6 pm
Location: DMP 101

4

Resources
■ Demco Learning Center: drop by if you have any questions!

■ ICICS/CS x150
■ Normal schedule starts today

■ 10 am - 6 pm M-Th, 10 am - 4 pm F
■ Staffed by TAs from all 1st year courses, see schedule at

http://www.cs.ubc.ca/ugrad/current/resources/cslearning.shtml

5

More Resources
■ WebCT discussion groups

■ Monitored by TAs/instructor, use to ask questions

■ don’t forget to check web page first/often!
■ lecture slides, handouts, schedule, links,
■ http://www.cs.ubc.ca/~tmm/courses/111-10

6

Yet More Resources
■ reminder: my office hours Mondays 4-5pm, starting today

■ office location is X661 (tall wing of ICICS/CS bldg)

this elevator to X6 me!
Xwing entrances facing Dempster

7

Followup
■ Q: identifiers - what about “.”?

■ System.out.println(“hey, what’s the story?”);

■ A: not allowed in simple identifiers
■ qualified identifiers: sequence of simple identifiers,

separated by “.”
■ stay tuned for more on scope, namespace and

packages

8

Reading This Week
■ Rest of Chap 2

■ 2.3-4, 2.6-2.10
■ Rest of Chap 4

■ 4.3-4.7

9

Recap: Declaration and Assignment
■ Variable declaration is instruction to compiler

■ reserve block of main memory large enough to store data type
specified in declaration

■ Variable name is specified by identifier
■ Syntax:

■ typeName variableName;
■ typeName variableName = value;

■ can declare and assign in one step

■ Java first computes value on right side
■ Then assigns value to variable given on left side
 x = 4 + 7;

10

Recap: Assignment Statements

■ Here’s an occasional point of confusion:

■ Draw and fill in boxes for your variables at
each time step if you’re confused

 a = 7; // what’s in a?
 b = a; // what’s in b?
 // what’s in a now???
 System.out.println(“a is “ + a + “b is “ +b);
 a = 8;
 System.out.println(“a is “ + a + “b is “ +b);

11

Recap: Expressions
■ expression is combination of

■ one or more operators and operands
■ operator examples: +, *, /, ...
■ operand examples: numbers, variables, ...

■ precedence: multiply/divide higher than
add/subtract

12

Recap: Converting Between Types
■ Doubles can simply be assigned ints

■ double socks = 1;
■ ints are subset of doubles

■ Casting: convert from one type to another with information
loss

■ Converting from real to integer
■ int shoes = (int) 1.5;

■ Truncation: fractional part thrown away
■ int shoes = (int) 1.75;

■ Rounding: must be done explicitly
■ shoes = Math.round(1.99);

13

Recap: Primitive Data Types: Numbers

■ Primary primitives are int and double
■ three other integer types
■ one other real type

approx 1.7E308
 (15 sig. digits)

approx -1.7E308
(15 sig. digits)

8 bytesdouble

approx 3.4E38 (7 sig.digits)approx -3.4E38 (7 sig.digits)4 bytesfloat

9,223,372,036,854,775,807-9,223,372,036,854,775,8088 byteslong

2,147,483,647-2,147,483,6484 bytesint

32,767-32,7682 bytesshort

127-1281 bytebyte

MaxMinSizeType

14

Recap: Primitives: Non-numeric
■ Character type

■ named char
■ Java uses the Unicode character set so each char occupies 2

bytes of memory.
■ Boolean type

■ named boolean
■ variables of type boolean have only two valid values

■ true and false
■ often represents whether particular condition is true
■ more generally represents any data that has two states

■ yes/no, on/off

15

Recap: Constants
■ Things that do not vary

■ unlike variables
■ will never change

■ Syntax:
■ final typeName variableName;
■ final typeName variableName = value;

■ Constant names in all upper case
■ Java convention, not compiler/syntax requirement

16

Recap: Avoiding Magic Numbers
■ magic numbers: numeric constants directly in code

■ almost always bad idea!
■ hard to understand code
■ hard to make changes
■ typos possible

■ use constants instead

17

Programming
■ Programming is all about specifiying

■ data that is to be manipulated or acted upon
■ operations that can act upon data
■ order in which operations are applied to data

■ So far: specify data using primitive data types
■ come with pre-defined operations like

+, -, *, and /

18

Programming with Classes
■ What if data we want to work with is more complex

these few primitive data types?

19

Programming with Classes
■ What if data we want to work with is more complex

these few primitive data types?

■ We can make our own data type: create a class
■ specifies nature of data we want to work with
■ operations that can be performed on that kind of data

■ Operations defined within a class called methods

20

Programming with Classes
■ Can have multiple variables of primitive types (int, double)

■ each has different name
■ each can have a different value

int x = 5;
int y = 17;

■ Similar for classes: can have multiple instances of class
String
■ each has different name
■ each can have different value

String name = “Tamara Munzner”;
String computerName = “pangolin”;

21

Programming with Objects
■ Object: specific instance of a class

■ Classes are templates for objects

■ programmers define classes
■ objects created from classes

22

Object Example
public class StringTest
{
 public static void main (String[] args)
 {
 String firstname;
 String lastname;
 firstname = new String (“Kermit");
 lastname = new String (“theFrog");
 System.out.println("I am not " + firstname
 + " " + lastname);
 }
}

23

Object Example

■ Declare two different String objects
■ one called firstname and one called lastname

public class StringTest
{
 public static void main (String[] args)
 {
 String firstname;
 String lastname;
 firstname = new String ("Kermit");
 lastname = new String (“theFrog");
 System.out.println("I am not " + firstname
 + " " + lastname);
 }
}

24

Object Example

■ Variable declaration does not create objects!

public class StringTest
{
 public static void main (String[] args)
 {
 String firstname;
 String lastname;

25

Object Example

■ Variable declaration does not create objects!
■ just tells compiler to set aside spaces in memory with these

names
■ Spaces will not actually hold the whole objects

■ will hold references: pointers to or addresses of objects
■ objects themselves will be somewhere else in memory

public class StringTest
{
 public static void main (String[] args)
 {
 String firstname;
 String lastname;

26

Object Example

■ So firstname and lastname will not contain String
objects
■ contain references to String objects

public class StringTest
{
 public static void main (String[] args)
 {
 String firstname;
 String lastname;

public class StringTest
{
 public static void main (String[] args)
 {
 String firstname;
 String lastname;
 firstname = new String ("Kermit");
 lastname = new String (“theFrog");
 System.out.println("I am not " + firstname
 + " " + lastname);
 }
}

27

Constructors
■ Constructor: method with same name as class

■ always used with new
■ actually creates object
■ typically initializes with data

 firstname = new String (“Kermit");

28

Object Example

■ Now create new instance of the String class
■ String object with data “Kermit”

■ Puts object somewhere in memory
■ puts address of the object’s location in firstname:
 firstname holds reference to String object with data “Kermit”

public class StringTest
{
 public static void main (String[] args)
 {
 String firstname;
 String lastname;

public class StringTest
{
 public static void main (String[] args)
 {
 String firstname;
 String lastname;
 firstname = new String (“Kermit");
 lastname = new String (“theFrog");
 System.out.println("I am not " + firstname
 + " " + lastname);
 }
}

29

Object Example

■ New operator and String constructor method
instantiate (create) new instance of String class (a
new String object)

public class StringTest
{
 public static void main (String[] args)
 {
 String firstname;
 String lastname;

public class StringTest
{
 public static void main (String[] args)
 {
 String firstname;
 String lastname;
 firstname = new String (“Kermit");
 lastname = new String (“theFrog");
 System.out.println("I am not " + firstname
 + " " + lastname);
 }
}

30

Object Example

firstname

31

Object Example

firstname String object

“Kermit”

expression on right side
of assignment operator

32

Object Example

firstname String object

“Kermit”

bind variable to
expression on right side
of assignment operator

33

Object Example

■ And so on

public class StringTest
{
 public static void main (String[] args)
 {
 String firstname;
 String lastname;

public class StringTest
{
 public static void main (String[] args)
 {
 String firstname;
 String lastname;
 firstname = new String (“Kermit");
 lastname = new String (“theFrog");
 System.out.println("I am not " + firstname
 + " " + lastname);
 }
}

34

Object Example

■ Can consolidate declaration, assignment
■ just like with primitive data types

public class StringTest
{
 public static void main (String[] args)
 {
 String firstname = new String (“Kermit");
 String lastname = new String (“theFrog");

 System.out.println("I am not " + firstname
 + " " + lastname);
 }
}

35

Objects vs. Primitives
■ references

int
favoriteNum

Frog object

Frog
favoriteFrog

42

int
famousNum

42

Frog
famousFrog

vs. direct storage

boolean isMuppet

true

String frogName

String object

“Kermit”

36

Objects vs. Primitives
■ references

int
favoriteNum

Frog object

Frog
favoriteFrog

999

int
famousNum

42

Frog
famousFrog

vs. direct storage

boolean isMuppet

false

String frogName

String object

“Kermit”

37

Class Libraries
■ Before making new class yourself, check to see if

someone else did it already
■ libraries written by other programmers
■ many built into Java

■ Example
■ Java has single-character primitive data type
■ what if want to work with sequence of characters
■ String class already exists

38

API Documentation
■ Online Java library documentation at

http://java.sun.com/javase/6/docs/api/
■ textbook alone is only part of the story
■ let’s take a look!

■ Everything we need to know: critical details
■ and often many things far beyond current need

■ Classes in libraries are often referred to as
Application Programming Interfaces
■ or just API

39

Some Available String Methods
public String toUpperCase();
Returns a new String object identical to this object but with
all the characters converted to upper case.

public int length();
Returns the number of characters in this String object.

public boolean equals(String otherString);
Returns true if this String object is the same as
otherString and false otherwise.

public char charAt(int index);
Returns the character at the given index. Note that the
first character in the string is at index 0.

40

More String Methods
public String replace(char oldChar, char newChar);
Returns a new String object where all instances of oldChar have been

changed into newChar.

public String substring(int beginIndex);
Returns new String object starting from beginIndex position

public String substring(int beginIndex, int endIndex);
Returns new String object starting from beginIndex position and ending

at endIndex position

H e l l o K e r m i t F r o g

0 1 2 3 4 5 6 7 8 9 1110 12 13 14 15

substring(4, 7) “o K”

 up to but not including endIndex char:

41

Questions?

42

public class StringTest
{
 public static void main (String[] args)
 {
 String firstname = new String ("Kermit");
 String lastname = new String ("theFrog");
 firstname = firstname.toUpperCase();
 System.out.println("I am not " + firstname
 + " " + lastname);
 }
}

String Method Example

■ invoking methods
■ objectName.methodName();
■ remember (simple) identifiers can't have . in them

43

 String firstname = "Alphonse";
 char thirdchar = firstname.charAt(2);

 object

Methods and Parameters
■ Class definition says what kinds of data and

methods make up object
■ object is specific instance of class

44

 String firstname = "Alphonse";
 char thirdchar = firstname.charAt(2);

 object method

Methods and Parameters
■ Class definition says what kinds of data and

methods make up object
■ object is specific instance of class
■ methods are how objects are manipulated

45

 String firstname = "Alphonse";
 char thirdchar = firstname.charAt(2);

 object method parameter

Methods and Parameters
■ Class definition says what kinds of data and

methods make up object
■ object is specific instance of class
■ methods are how objects are manipulated
■ pass information to methods with parameters

■ inputs to method call
■ tell charAt method which character in the String object we're

interested in

46

Parameters
■ Methods can have multiple parameters

■ API specifies how many, and what type

public String replace(char oldChar, char newChar);

 String animal = "mole";
 animal.replace('m', 'v');

public String substring(int beginIndex, int endIndex);

 animal = "aardwolf";
 String newanimal = animal.substring(4,8);
 System.out.println(newanimal); // wolf

47

Explicit vs. Implicit Parameters
■ Explicit parameters given between parentheses
■ Implicit parameter is object itself
■ Example: substring method needs

■ beginIndex, endIndex
■ but also the string itself!

 animal = "aardwolf";
 System.out.println(animal); // aardwolf
 String newanimal = animal.substring(4,8);
 System.out.println(newanimal); // wolf

■ All methods have single implicit parameters
■ can have any number of explicit parameters

■ none, one, two, many…

48

Parameters
■ Most of the time we'll just say parameters, meaning

the explicit ones

49

Return Values
■ Methods can have return values
■ Example: charAt method result

■ return value, the character 'n', is stored in thirdchar

 String firstname = "kangaroo";
 char thirdchar = firstname.charAt(2);

return value object method parameter

50

Return Values
■ Methods can have return values
■ Example: charAt method result

■ return value, the character 'n', is stored in thirdchar

 String firstname = "kangaroo";
 char thirdchar = firstname.charAt(2);

■ Not all methods have return values
■ Example: println method does not return anything

■ prints character 'n' on the monitor, but does not return
that value

■ printing value and returning it are not the same thing!

 System.out.println(thirdchar);

return value object method parameter

51

Return Values
■ Again, API docs tell you

■ how many explicit parameters
■ whether method has return value
■ what return value is, if so

■ No return value indicated as void

52

Constructors and Parameters
■ Many classes have more than one constructor,

taking different parameters
■ use API docs to pick which one to use based on

what initial data you have

animal = new String();
animal = new String("kangaroo");

53

Accessors and Mutators
■ Method that only retrieves data is accessor

■ read-only access to the value
■ example: charAt method of String class

■ Method that changes data values internally is mutator
■ Stay tuned for examples of mutators, we haven't seen any yet
■ String class has no mutator methods

■ Accessor often called getters
■ Mutators often called setters

■ names often begin with get and set, as in getWhatever and
setWhatever

