University of British Columbia
CPSC 111, Intro to Computation
2009W2: Jan-Apr 2010

Tamara Munzner

More Class Design lll, Parameter/Scope Review
Lecture 32, Wed Apr 7 2010
borrowing from slides by Kurt Eiselt

http://www.cs.ubc.ca/~tmm/courses/111-10

News

= you should already have a good start on A3
= don't wait until the last minute, it's substantial

= reminder that pair programming can only be
groups of 2 (not 3 or more)

= make sure to check your ugrad account email
(or forward it) to see your detailed marking
report for assignments

= inform me ASAP, by end of this week at the
lastest, if you have a final exam
conflict/hardship

News Il

= update for the 20% assignment mark
breakdown
= three main assignments are each worth 6%,
not 4% as the writeups say
= all the weekly reading questions combined
are worth 2%.
= tutorials now over for the term, except Friday
Apr 9 makeup sessions for Apr 2 holiday
cancellation.

= final review session will be Mon Apr 26

News: Midterm Correction Lab

= you can earn up to 10% of marks that you
missed back by working through what you
got wrong to find correct answers

= do your new version on separate sheets of
paper
= don't mark up the original midterm

= as with all labs, if you don't finish during the
time slot you can turn in at beginning of next
week's lab

m pick up your midterm after class or in lab

2 10am-12pm, room TBA. 3 4
Reading Recap: Bunnies Even More Bunnies
Even More Bunnies
= Last week was Chap 8 = Bunny.java int Question 5: [16 marks] = BunnyHerd.java
nt x
The world desperately needs better bunny management software, so please help by
H i -int writing a BunnyHerd class. A BunnyHerd object holds an array of Bunny objects. Your
= This week is Chap 11, except 11.8.3 ! ty Carrot BunnyHerd cacs defion should inclods 6 fllowing fout mathocs
[PEp—. - Int numCarrots
= 2nd edition: Chap 13, except 13.8.3 Expects two an integer the maximum number of
+Bunny() bunnies in the herd, and a String for the name of the herd
+h0p(mt dlrectlon) addBunny(int xPos, int yPos, int carrots,String name) Expects four
i i +displayinfo parameters, the X- and Y-coordinates of the bunny, the number of carrots, and the
= Weeklies due for last week either last Wed play () name. This method creates a new Bunny object and stores the reference to the object
i i i . in the next available location in the BunnyHerd object.
3/31 or this Wed 4/7 (since no class Fri, Mon) = NamedBunny.java
. ' . deleteBunny(String name) Expects one parameter, the name of the bunny. This
= This week's weekly due Fri as usual method removes from the BunnyHerd object all references to bunnies with the given
name by overwriting those references with the nu11 pointer. This method does not
. . . . change the pointer to the next available location in the BunnyHerd object.
+Bunny(int x, int y, int numCarrots, String name)
printHerd() This method uses the tostring() method of the Bunny object to print
information about every Bunny in the herd
5 6 7 8
Bunnies and Interfaces Bunnies and Interfaces Bunnies and Interfaces Bunnies and Interfaces
public interface Bunnies public class BigBunny implements Bunnies else if (direction == 3) public class LittleBunny implements Bunnies
public void moveBunny(int direction); private int x, y; X = x + 3; private int x, y;
private int carrots; carrots = carrots - 2; private int carrots;
}
public BigBunny() else if (direction == 6) public LittleBunny()
x = 5; y=vy-3; x =
y = 5; carrots = carrots - 2; y = 5;
carrots = 10; carrots = 10;
} else if (direction == 9) }
public void moveBunny(int direction) X =x - 3; public void moveBunny(int direction)
carrots = carrots - 2; {
if (direction == 12) } if (direction == 12)
{ else {
y=y+3; { y=y+1;
carrots = carrots - 2; System.out.println("Invalid direction"); carrots = carrots - 1;
} } }
}
}
9 10 1 12
Bunnies and Interfaces Parameter Passing Parameter Passing Parameter Passing
else if (direction == 3) Consider the following program: Consider the following program: Consider the following program:
X =x+1; public class ParamTestl public class ParamTestl public class ParamTestl
carrots = carrots - 1;
public static void main (String[] args) public static void main (String[] args) public static void main (String[] args)
else if (direction == 6)
int number = 4; int number = 4; 1 int number = 4;
y=y-1 methodl (number) ; methodl (number) ; methodl (number) ;
carrots = carrots - 1; System.out.println("main: number is now " + number); System.out.println("main: number is now " + number); System.out.println("main: number is now " + number);
} ¥ ¥ }
else if (direction == 9)
public static void methodl(int x) public static void methodl(int x) public static void methodl(int x)
ko1
} System.out.println('methodl: x is now " + x); System.out.println('methodl: x is now " + x); System.out.println('methodl: x is now " + x);
else } } }
} } }
System.out.println("Invalid direction");
What's the flow of control? What's the flow of control?
}
}
13 14 15 16

Parameter Passing

Consider the following program:
public class ParamTestl
public static void main (String[] args)
1 int number = 4;

2 system.out.println("main: number is ' + number);
method1 (number) ;

System.out.println("main: number is now ' + number);

}

public static void methodl(int x)

¢ System.out.println('methodl: x is " + x);
;y:t:m.o:;.prin:ln1"methodl: % is now " + x);

}
}

What's the flow of control?

Parameter Passing

Consider the following program:
public class ParamTestl
public static void main (String[] args)
1 int number 4;
System.out.println(“main: number is * + number);

3 methodl(number);
System.out.println("main: number is now ' + number);

public static void methodl(int x)

System.out.println("methodl: x is " + x);
System.out.println("methodl: x is now " + x);
}
}

What's the flow of control?

Parameter Passing

Consider the following program:
public class ParamTestl
public static void main (String[] args)

1 int number = 4;
2 system.out.println("main: number is " + number);
3 methodl(number);
System.out.println("main: number is now ' + number);

public static void methodl(int x)
{

4 system.out.println("methodl: x is " + x);
System.out.println("methodl: x is now " + x);
}
}

What's the flow of control?

Parameter Passing

Consider the following program:
public class ParamTestl
public static void main (String[] args)

1 int number = 4;
2 system.out.println("main: number is " + number);
3 methodl (number);
System.out.println("main: number is now ' + number);

}
public static void methodl(int x)
{

4 system.out.println("methodl: x is " + x);
5 x=x*x;
System.out.println("methodl: x is now " + x);
}
}

What's the flow of control?

18 19 20
Consider the following program: Consider the following program: Consider the following program: Consider the following program:
public class ParamTestl public class ParamTestl public class ParamTestl public class ParamTestl
public static void main (String[] args) public static void main (String[] args) public static void main (String[] args) public static void main (String[] args)
{
1 int number = 4; 1 int number = 4; 1 int number = 4; 1 int number = 4;
2 System.out.println('main: number is * + number); 2 System.out.println(’main: number is * + number); 2 System.out.println('main: number is * + number); [z systen.out printin("main: number is * + number); |
3 methodl(number); 3 methodl(number); 3 methodl(number); 3 methodl (number) ;
Syste.out.println("main: number is now * + number); 7 System.out.println("main: number is now * + number); 7 system.out.println("main: number is now * + number); 7 System.out.println('main: number is now " + number);
public static void methodl(int x) public static void methodl(int x) public static void methodl(int x) public static void methodl(int x)
{ { { {
4 System.out.println('methodl: x is " + x); 4 system.out.println(’methodl: x is " + x); 4 system.out.println(’methodl: x is " + x); 4 system.out.println(’methodl: x is " + x);
5 ox=xcx 5 ox=xcx 5 ox=xcx 5 ox=xcx
6 System.out.println('methodl: x is now " + x); 6 System.out.println(*methodl: x is now " + x); 6 System.out.println(‘methodl: x is now " + x); 6 System.out.println('methodl: x is now " + x);
} } } }
} } } }
)) o o main: number is 4
What's the flow of control? What's the flow of control? What's printed? What's printed?
21 22 23 24
Consider the following program: Consider the following program: Consider the following program: Consider the following program:
public class ParamTestl public class ParamTestl public class ParamTestl public class ParamTestl
public static void main (String[] args) public static void main (String[] args) public static void main (String[] args) public static void main (String[] args)
1 int number 4; 1 int number 4; 1 int number = 4; 1 int number = 4;
2 System.out.println("main: number is " + number); 2 System.out.println("main: number is " + number); 2 System.out.println("main: number is " + number); 2 System.out.println(“main: number is " + number);
3 method1 (number) ; 3 method1 (number) ; 3 method1 (number) ; 3 method1 (number) ;
7 System.out.println('main: number is now ' + number); 7 System.out.println('main: number is now ' + number); [7__System.out.printin('main: number is now " ¥ number)} [7_System.out.printin("main: number is now " + number)}
} } } }
public static void methodl(int X) public static void methodl(int X) public static void methodl(int x) public static void methodl(int X)
1{ 1{ { {
[.printin('methodl: x is " + x); 4 system.out. println("methodl: x is " + x); 4 System.out.println(’methodl: x is " + x); 4 System.out.println('methodl: x is " + x);
5 s 5 ox-xvx 5 ox=xorx
6 System.out.println("methodl: x is now " + x); ‘ 6 .println(methodl: x is now +x); 6 System.out.println("methodl: x is now " + x); 6 System.out.println("methodl: x is now " + X);
} ¥ } }
} } } }
. . ain: number is 4 . . main: number is 4 . . main: number is 4 . . main: number is 4
What's printed? Dethodls % is 4 What's printed? methodl: x is 4 What's printed? What's printed? methodl: x is 4
methodl: x is now 16 methodl: x is now 16
main: number is now 4
25 26 27 28
Consider the following program: Consider the following program: Consider the following program: Consider the following program:
public class ParamTestl public class ParamTestl public class ParamTestl public class ParamTestl
public static void main (String[] args) public static void main (String[] args) public static void main (String[] args) public static void main (String[] args)
{
1 int number 4; 1 int number = 4; 1 int number 4; 1 int number 4;
2 system.out.printin('main: number is * + number); 2 System.out.println('main: number is * + number); > system.out.printin('main: number is * + number); > system.out.printin("main: number is * + number);
3 methodl(number); 3 methodl(number); 3 methodl(number); 3 methodl (number);
7 System.out.println("main: number is now " + number); 7 System.out.println("main: number is now " + number); \ 7 System.out.println("main: number is now " + number); 7 System.out.println("main: number is now " + number);
public static void methodl(int x) public static void methodl(int x) public static void methodl(int x) ﬁ public static void methodl(int x)
{ { { {
4 System.out.println('methodl: x is " + x); 4 system.out.println(’methodl: x is " + x); 4 system.out.println(’methodl: x is " + x); 4 system.out.println(’methodl: x is " + x);
5 ox=xcx 5 ox=xcx 5 ox=xcx 5 ox=xcx
6 System.out.println(*methodl: x is now " + x); 6 System.out.println(*methodl: x is now " + x); 6 System.out.println(‘methodl: x is now " + x); 6 System.out.println('methodl: x is now " + x);
} } } }
y) \) N y
main: number is 4) .) _) .) _) .) _
Why not 16? methodl: x is 4 Because when the value in the int variable number is passed to method1, Because when the value in the int variable number is passed to method1, Because when the value in the int variable number is passed to method1,
:jt:‘fd:;m;_isl‘jﬂ’uj_ﬂ what really happens is that a copy of the value (4) in number is assigned to what really happens is that a copy of the value (4) in number is assigned to
» - the parameter x. the parameter x. It's the value in x that's being modified here -- a copy of the
29 30 31

value in number. The original value in number is not affected.

Parameter Passing

Will this program behave differently? Why or why not?
public class ParamTest2
public static void main (String[] args)
int number = 4;
System.out.println(“main

method1 (number) ;
System.out.printin("main:

: number is " + number);

number is now ' + number);
}

public static void methodl(int number)
1{

System.out.println("methodl:

Parameter Passing

Will this program behave differently? Why or why not?
public class ParamTest2
public static void main (String[] args)
int number 4;
System.out.println(“main

method1 (number) ;
System.out.printin("main:

: number is " + number);

number is now ' + number);

}
public static void methodl(int number)
{

System.out.printin("methodl:
number = number * number;

System.out.println("methodl: number is now ' + number);
}

}

number is " + number);

main: number is 4
methodl:
method1

What's printed?

Parameter Passing

Will this program behave differently? Why or why not?
public class ParamTest2
public static void main (String[] args)

int number = 4;
System.out.println(*main
method1 (number) ;
System.out.printin("main:

}

: number is " + number);

number is now ' + number);

public static void methodl(int number)
{

System.out.println("methodl:
number = number * number;

System.out.println("methodl: number is now " + number);
}

}

number is " + number);

main: number is 4

methodl: number is 4

methodl: number is now 16
: number is now 4

What's printed?

35

Parameter Passing

Will this program behave differently? Why or why not?
public class ParamTest2
public static void main (String[] args)
int number = 4;
System.out.println(“main

method1 (number) ;
System.out.printin("main:

: number is " + number);

number is now ' + number);

public static void methodl(int number)
{

System.out.println("methodl:
number = number * number

System.out.println("methodl: number is now " + number);
}

number is " + number);

}

Remember that a parameter declared in a method header has local scope,
just like a variable declared within that method. As far as Java is
concerned, number inside of method1 is unrelated to number outside of
methodl. They are not the same variable.

Parameter Passing

Now consider this program.
public class Ptest
public static void main(String[] args)

int[] foo = new int[1];
4

£00(0]
[Systenout . printin("main: foo Is now: " ¥ oo[01)7 |
methodl (£00);
System.out.println("main: foo is now: " + foo[0]);
public static void methodl(int(] x)
System.out.println("methodl: x is now: " + x(0]);
x(0] = x[0] * x[0];
System.out.println(*methodl: x is now: " + x[0]);
}

main: foo is now: 4

}
What's printed?

Parameter Passing

Now consider this program.
public class Ptest
public static void main(String[] args)

int[] foo = new int[1];
foo[0] = 4;
System.out.println("main:
method1(£00) ;

System.out.println("main: foo is now: " + £0o[0]);

foo is now: " + f£0o[0]);

public static void methodl(int(] x)
{

[Systen-out.printin(methodls
X[0] = x[0] * x[0];
Systen.out.println("methodl:

)

% is now:

x is now: "

+ x[01);

main: foo is now:
methodl: x is now

}
What's printed?

39

Parameter Passing

Now consider this program.
public class Ptest
public static void main(String[] args)
int[] foo = new int[1];

foo[0] = 4;
System.out.println("main:

foo is now: " + £00[0]);
methodl(foo);
System.out.println("main: foo is now: " + £0o[0]);
public static void methodl(int[] x)
System.out.println("methodl: x is now: " + x[0]);
x(0) = x[0) * x[0];
[System.out.printin("methodl: x is mow: * + x(01); |
¥

main: foo is now: 4
methodl: x is now: 4
methodl: x is now: 16

}
What's printed?

Parameter Passing

Now consider this program.
public class Ptest
public static void main(String[] args)

int[] foo = new int[1];
£f00[0] = 4;

System.out.println("main: foo is now: " + foo[0]);
methodl (foo) ;
[System.out.printin('main: oo is now + Fool01)7 |
}
public static void methodl(int[] x)
System.out.println(“methodl: x is now: * + x[0]);
x[0] = x[0] * x[0];
System.out.println(methodl: x is now: " + x[0]);
X) ain: foo is now: 4
What's printed? nethodls x is mov: 4

thodl: x is now: 16
main: foo is now: 16

Parameter Passing

Now consider this program.
public class Ptest
public static void main(String[] args)

int[] foo = new int[1];
foo[0] =

Systen.out. println("main:
methodl (£00

System.out.println("main: foo is now: * + £00[01);
¥

foo is mow: " + foo[01);

public static void methodl(int[] x)

System.out.println(*methodl:
x[0] = x[0] * x[0];
System.out.println("methodl:

x is now: " + x[0]);

x is now: " + x[0]);
main: foo is not
methodl:

method1:
—» main:

i 4
x is now
% is now
foo is now: 16

}
Why not 4?

4

43

40
Now consider this program.
public class Ptest
public static void main(String[] args)
int[] foo = new int[1];
fo0[0] =
System.. out prlm:lnt ‘main: foo is now: " + foo[0]);
method1 (£
System.out brintln('main: foo is nows * + foo(01);
public static void methodl(int[] x)
Systen.out.println("nethodls x is nows * + x(01);
x[0] = x[0] * x[0]
System.out.println("methodls x is nows " + x(0]);
b N - .
What's in foo? Is it the int[] array object?
44

number is " + number);
number = number * number
System.out.println("methodl: number is now " + number);
}
}
What's printed?
33
Now consider this program.
public class Ptest
public static void main(String[] args)
int[] foo = new int[1];
foo[0] = 4;
Systen.out.println("main: foo is now: " + £00(0]);
methodl(foo);
Systen.out.println("main: foo is now: " + f0o[0]);
public static void methodl(int[] x)
1{
System.out.println("methodl: x is now: " + x[0]);
x(0] = x(0] * x(0];
System.out.println("methodl: x is now: " + x[0]);
}
}
What's printed?
37
Now consider this program.
public class Ptest
public static void main(String[] args)
int(] foo = new int[1];
foo[0] = 4;
System.out.println("main: foo is now: " + foo[0]);
methodl (£00) ;
[System.out.printin('main: foo is m + Fool01)7 |
}
public static void methodl(int[] x)
System.out println(‘methodl: x is nows * + X(01);
x[0] = x[0] * x[0]
System.out.println("methodls x is nows * + x(0]);
i ,) main: foo is now
What's printed?
41
Now consider this program.
public class Ptest
public static void main(String[] args)
int[] foc = new int[1];
foo[0) = 4;
Systen.out.println("main: foo is now: " + £00(0]);
methodl(foo);
Systen.out.println("main: foo is now: " + f0o[0]);
public static void methodl(int[] x)
System.out.println("methodl: x is now: " + x[0]);
x(0] = x(0] * x(0];
System.out.println("methodl: x is now: " + x[0]);
}
)
What's in foo? Isitthe int[] array object? No, it's the reference, or
pointer, to the object.
45

Parameter Passing
Now consider this program.
public class Ptest
public static void main(String[] args)
1
int[] foc = new int[1];
f00(0] = 4;
System.out.println("main: foo is nows " + £00[0]);
methodl(foo);
System.out.println("main: foo is mow: " + £00[0]);
public static void methodl(int[] x)
<
System.out.println("methodl: x is now: " + x[0]);
%(0] = x(0] * x(0];
System.out.println("methodl: x is now: " + x[0]);
}
What's in foo? Isitthe int[] array object? No, it's the reference, or
pointer, to the object. A copy of that reference is passed to method1 and
assigned to x.
46

Parameter Passing

Now consider this program.
public class Ptest
public static void main(String[] args)

inel) £00 = new inc(1);
£00(0] = 4;
System.out.println("main:
method1 (£oo) ;
System.out.println("main:

foo is now: " + f£00[0]);

foo is now: " + f0o[0]);

public static void methodl(int[] x)

System.out.println("methodl:
X[0] = x[0] * x[0];

System.out.println("methodl: x is now: " + x[0]);
}

% is now: " + x[0]);

)
What's in foo? Isitthe int[] array object? No, it's the reference, or
pointer, to the object. A copy of that reference is passed to method1 and

assigned to x. The reference in foo and the reference in x both point to the
same object.

Parameter Passing

Now consider this program.
public class Ptest
public static void main(String[] args)

intl] fo0 = now int(1l;
£00(0] = 4;
System.out.println("main:
method1 (£oo) ;
System.out.println("main:

foo is now: " + £00[0]);

foo is now: " + f0o[0]);

public static void methodl(int[] x)

System.out.println("methodl: x is now: " + x[0]);

x[0] = x[0] * x[0];
System.out.println("methodl: x is now: " + x[0]);
}

)
When the object pointed at by x is updated, it's the same as updating the

object pointed at by foo. We changed the object that was pointed at by
both x and foo.

Parameter Passing

= Passing primitive types (int, double, boolean)
as parameter in Java

Parameter Passing

= Passing object as parameter in Java

Parameter Passing Pictures

object as parameter:

Midterm Q4 from 04W2

63

prim as parameter: e (100 datar = ({0, 03, (0,03 %’ 00
. int[][] dataB = { { 0, 0}, { 0, O} }; 0 O
= "pass by reference" copy of pointer made copy of value process(datar, datas)7
= "pass by value” = objects could be huge, so do not pass copies main main L g
= value in variable is copied around \\ [\\ int row; 00
B ~ \ int col;
u copy is passed to method m pass copy of the object reference foo \\“ number \‘ ine(10) arec = { (1, 1, 13, (1, 1,1))
. \ \ arrA = arrC;
= modifying copy of value inside called method = object reference aka pointer 1 Jil for(zow = 0; row < ares.length; rowst)
has no effect on original value outside called = modifying object pointed to by reference method1/,"L / method1/"”/ ’ fort oot = 03 co < aresl row). 1ongthy coter
method inside calling method does affect object J/ .
= modifying aka mutating pointed to by reference outside calling method « areB[row 1 col] = row + col;
= both references point to same object , '
49 50 51 } 52
Midterm Q4 from 04W2 Midterm Q4 from 04W2 Midterm Q4 from 04W2 Review: Static Fields/Methods
nt(10) datar = ((0, 01, (0, 0} 1y lg"’ 010 int(10) datar = { (0, 01, (0, 0} 1s g’_’ 0|0 int(10) datar = { (0, 0, (0, 0} 1s %’ 010 = Static fields belong to whole class
[—1;:2::(‘*:::: ;:;:': poreory 010 ;::::(d:::: ;a:_:')? poto oy 010 ;::::(d:::: :a:_:')'? poto oy 010 = nonstatic fields belong to instantiated object
[t 4 (int(1(] areh, int(1(] arsB) | > biic void TR T TRy P T a— > TP T e Bt e =N = Static methods can only use static fields

public void process(inf arri, inf arrl public void process(inf arrA, in arrl public void process(inf arrA, in arr]

R aatan 00 i aatan 00 i aatan 00 = nonstatic methods can use either nonstatic or static fields
i 0j0 i 0j0 i 0j0) object: Giraffe2
int coli 4 int coli 4 int coli 4 class: Giraffe
int(][] arrc = { {1, 1, 1}, {1, 1, 1} }; int(][] arrC = { {1, 1, 1}, {1, 1, 1} }; int[][] arrc = { {1, 1, 1}, {1, 1, 1} }; Giraffes :\7 b Giraffet neckLength
arrh = arrc; |—’_—| A = arrcy wreA = an |_’__| num ~ object: Giraffe
for(row = 0; row < arrB.length; rowt+) arrA Py for(row = 0; row < arrB.length; rowt+) arra arrs m’ < arrB.length; rowt+) arrA arrs - Jk|_ th
{ { { neckteng sayHowTall()

for(col = 0; col < arrB[row].length; col++ for(col = 0; col < arrB[row].length; col++ for(col = 0; col < arrB[row].length; col++
)
{ { l:c_'" 111 { l:c_'" 111 sayHowTall()
arrB[row][col]| = row + col; arrB[row][col]| = row + colj arr arrB[row][col]| = row + col; ar
N N 111 N 111
)))
} 53 Y 54 } 55 56
Review: Variable Scope Variable Scope Variable Scope Variable Scope
public class CokeMachine4 public class CokeMachine4
. . public class CokeMachine4
n Scope of a Vanable (Or Constant) is that part { peivate int numberofCans; private int numberOfCans; private int numberOfCans;
of a program in which value of that variable public CokeMachined () public CokeMachined) public CokeMachined)
1{ numberOfCans = 2; numberOfCans = 2;
can be accessed numberOfCans = 2; . System.out.println("Adding another machine to your empire); System.out.println("Adding another machine to your empire);
System.out.println("Adding another machine to your empire"); 3 3
public int getiumberofCans() ;,umu: double getVolumeOfCoke () public int getNumberOfCans()
double totallitres = numberofCans * 0.355; return numberofCans;
return numberOfCans; return totalLitres; !
}
public void reloadMachine(int loadedCans) public void reloadMachine(int loadedCans) ?ubuc voLa retenachine (ink oadedcans)
numberOfCans = loadedCans; number0fCans = loadedCans; } pumerottane 7 tosencane
= numberOfCans variable declared inside class but = totallitres declared within a method - loa:::2?3;5;156?12?0;8?;2?;; o
not inside particular method = scope is method: can only be accessed from "3 p_ - . o P
» scope is entire class: can be accessed from within method = just like variable declared within parameter
7 anywhere in class 8 = variable is local data: has local scope % = accessed only within that method ©
Variable Types Variable Types Questions?
)) = Static? Instance? Local? Parameters?
= Static variables
2 avsocatedwit clas,ntinstance e et obieckCirafle
" d int numGiraffes | v_ iact Gi .
= Instance variables —~ 9bJECt- Giraffe1 int neckLength
= declared within class int neckLength
= associated with instance
= accessible throughout object, lifetime of object
= Local variables
= declared within method :
. - yell(String)
= accessible throughout method, lifetime of method ell(String message))
= Parameters int volume
= declared in parameter list of method int volume
= accessible throughout method, lifetime of method
61 62

