-
£
@)

\);
)]

o
al
ol |
L)

University of British Columbia
CPSC 111, Intro to Computation
2009W2: Jan-Apr 2010

Tamara Munzner

More Class Design Il

Lecture 31, Wed Mar 31 2010
borrowing from slides by Kurt Eiselt

http://www.cs.ubc.ca/~tmm/courses/111-10

News

= A3 out today
m due Fri Apr 16 5pm

News: Midterm Correction Lab

= you can earn up to 10% of marks that you
missed back by working through what you
got wrong to find correct answers

= dOo your new version on separate sheets of
paper
= don't mark up the original midterm

Bunny Class Warmup

Question 4: [15 marks]

Now let’s use Java to simulate bunnies! (Why? Because everybody likes bunnies!) In our
simulation, each bunny is on a grid at some location defined by an X-coordinate and a
Y-coordinate. Also, each bunny has some number of energy units measured in carrot sticks.
(X-coordinates, Y-coordinates, and the number of carrot sticks are integer values.) Bunnies

can hop north, south, east, or west. When a bunny hops to the north, the bunny’s Y-coordinate
is increased by 1, and the X-coordinate remains unchanged. When a bunny hops to the west,
the bunny’s X-coordinate is decreased by 1, and the Y-coordinate remains unchanged. Same idea
for hops east (X-coordinate increased by 1, Y-coordinate unchanged) and south (Y-coordinate
decreased by 1, X-coordinate unchanged). Note that making one hop requires a bunny to eat one
carrot stick, and when a bunny has eaten all of his or her carrot sticks, that bunny can't hop.

Use Java to create a Bunny class which can be used to generate Bunny objects that behave as
described above. When a new Bunny object is created, the Bunny always starts at coordinates

X =10,Y =10, and the Bunny has 5 carrot sticks. Your Bunny class definition must include

a hop(int direction) method, and a displayInfo() method. The direction parameter is 12 for north,
3 for east, 6 for south, and 9 for west (like a clock face). The hop() method should test to make sure
that the Bunny has not eaten all the carrot sticks — if the Bunny still has carrot sticks, the hop()
method should update coordinates as explained above and print the message “hop”. If no carrot
sticks remain, it should just print the message “This bunny can’t hop”.

The displayInfo() method should print the Bunny’s location and number of remaining carrot
sticks. Below is a simple test program that could be used to test your Bunny class definition,
followed by the output we’d expect to see when using this test program with your Bunny

class definition.

public class BunnyTest

{

public static void main(String[] args)

{

System.out.println("Testing Peter");

Bunny

peter.
peter.
peter.
peter.
peter.

peter = new Bunny();
displayInfo();
hop(12);

hop(12);

hop(9);
displayInfo();

System.out.println("Testing Emily");

Bunny

emily.
emily.
emily.
emily.
emily.
emily.
emily.
emily.

emily = new Bunny();
displayInfo();
hop(9);

hop(9);

hop(9);

hop(12);

hop(9);

hopl2();
displayInfo();

> java BunnyTest
Testing Peter
This bunny is at
This bunny has 5
hop

hop

hop

This bunny is at
This bunny has 2
Testing Emily
This bunny is at
This bunny has 5
hop
hop
hop
hop
hop
This
This
This

bunny can't
bunny is at
bunny has 0

position 10,10
carrot sticks remaining

position 9,12
carrot sticks remaining

position 10,10
carrot sticks remaining

hop
position 6,11
carrot sticks remaining

More Bunnies
How could we keep track of a herd of bunnies?

We could make an array of bunnies.

More Bunnies

public class BunnyTestl
{

public static void main (String[] args)

{
Bunny[] myBunnyHerd = new Bunny[10];

myBunnyHerd[0] = new Bunny(3,6,4, "Foofoo");
myBunnyHerd[1l] = new Bunny(7,4,2, "Peter");
myBunnyHerd[3] = new Bunny(9,2,3,"Ed");

for(int i = 0; i < myBunnyHerd.length; i++)
{
if (myBunnyHerd[i] != null)
{
myBunnyHerd[i].hop(3);
System.out.println(myBunnyHerd[i]);
}

Even More Bunnies

Question 5: [16 marks]

The world desperately needs better bunny management software, so please help by
writing a BunnyHerd class. A BunnyHerd object holds an array of Bunny objects. Your
BunnyHerd class definition should include the following four methods:

constructor Expects two parameters, an integer representing the maximum number of
bunnies in the herd, and a String for the name of the herd.

addBunny(int xPos, int yPos, int carrots,String name) Expects four
parameters, the X- and Y-coordinates of the bunny, the number of carrots, and the
name. This method creates a new Bunny object and stores the reference to the object
in the next available location in the BunnyHerd object.

deleteBunny(String name) EXxpects one parameter, the name of the bunny. This
method removes from the BunnyHerd object all references to bunnies with the given
name by overwriting those references with the null pointer. This method does not
change the pointer to the next available location in the BunnyHerd object.

printHerd() This method uses the toString() method of the Bunny object to print
information about every Bunny in the herd.

Parameter Passing

Consider the following program:

public class ParamTestl

{

public static void main (String[] args)
{
int number = 4;
System.out.println("main: number is
methodl (number) ;
System.out.println("main: number is now

+ number);

+ number);

}
public static void methodl(int x)
{
System.out.println("methodl: x is " + X);
X =X * x;
System.out.println("methodl: x is now " + Xx);
}

}

Parameter Passing

Consider the following program:

public class ParamTestl

{
public static void main (String[] args)
{
int number = 4;
System.out.println("main: number is " + number);
methodl (number) ;
System.out.println("main: number is now " + number);
}
public static void methodl (int x)
{
System.out.println("methodl: x is " + X);
X = X * X3
System.out.println("methodl: x is now " + Xx);
}

}

What's the flow of control?

10

Parameter Passing

Consider the following program:

public class ParamTestl

{
public static void main (String[] args)
{
1 int number = 4;
System.out.println("main: number is " + number);
methodl (number) ;
System.out.println("main: number is now " + number);
}
public static void methodl (int x)
{
System.out.println("methodl: x is " + X);
X = X * X3
System.out.println("methodl: x is now " + Xx);
}

}

What's the flow of control?

11

Parameter Passing

Consider the following program:

public class ParamTestl

{
public static void main (String[] args)
{
1 int number = 4;
2 System.out.println("main: number is " + number);

methodl (number) ;
System.out.println("main: number is now

}
public static void methodl(int x)
{
System.out.println("methodl: x is " + X);
X =X * x;
System.out.println("methodl: x is now " + Xx);
}

}

What's the flow of control?

+ number);

12

Parameter Passing

Consider the following program:

public class ParamTestl

{
public static void main (String[] args)
{
1 int number = 4;
2 System.out.println("main: number is " + number);

3 methodl (number) ;
System.out.println("main: number is now

+ number);

}
public static void methodl(int x)
{
System.out.println("methodl: x is " + X);
X =X * x;
System.out.println("methodl: x is now " + Xx);
}

}

What's the flow of control?

13

Parameter Passing

Consider the following program:

public class ParamTestl

{

1

N

}

public static void main (String[] args)
{
int number = 4;
System.out.println("main: number is
methodl (number) ;
System.out.println("main: number is now

}

+ number);

+ number);

public static void methodl(int x)
{
System.out.println("methodl: x is " + X);
X =X * x;
System.out.println("methodl: x is now " + Xx);

}

What's the flow of control?

14

Parameter Passing

Consider the following program:

public class ParamTestl

{

1

N

1SN

}

public static void main (String[] args)
{
int number = 4;
System.out.println("main: number is
methodl (number) ;
System.out.println("main: number is now

}

+ number);

+ number);

public static void methodl(int x)
{
System.out.println("methodl: x is " + X);
X =X * x;
System.out.println("methodl: x is now " + Xx);

}

What's the flow of control?

15

Parameter Passing

Consider the following program:

public class ParamTestl

{

1

N

o O W

}

public static void main (String[] args)
{
int number = 4;
System.out.println("main: number is
methodl (number) ;
System.out.println("main: number is now

}

+ number);

+ number);

public static void methodl(int x)
{
System.out.println("methodl: x is " + X);
X =X * x;
System.out.println("methodl: x is now " + Xx);

}

What's the flow of control?

16

Parameter Passing

Consider the following program:

public class ParamTestl

{

N W N

o O W

}

public static void main (String[] args)
{
int number = 4;
System.out.println("main: number is
methodl (number) ;
System.out.println("main: number is now

}

+ number);

+ number);

public static void methodl(int x)
{
System.out.println("methodl: x is " + X);
X =X * x;
System.out.println("methodl: x is now " + Xx);

}

What's the flow of control?

17

Parameter Passing

Consider the following program:

public class ParamTestl

{

N W N

o O W

}

public static void main (String[] args)
{
int number = 4;
System.out.println("main: number is
methodl (number) ;
System.out.println("main: number is now

}

+ number);

+ number);

public static void methodl(int x)
{
System.out.println("methodl: x is " + X);
X =X * x;
System.out.println("methodl: x is now " + Xx);

}

What's printed?

18

Parameter Passing

Consider the following program:

public class ParamTestl

{

public static void main (String[] args)

{

int number = 4;

System.out.println("main: number is + number); |

N WIN |-

o O W

}

methodl (number) ;
System.out.println("main: number is now

}

+ number);

public static void methodl(int x)
{

System.out.println("methodl: x is " + X);
X =X * x;
System.out.println("methodl: x is now " + Xx);

}

main: number is 4

What's printed?

19

Parameter Passing

Consider the following program:

public class ParamTestl

{

N W N

public static void main (String[] args)
{
int number = 4;
System.out.println("main: number is
methodl (number) ;
System.out.println("main: number is now

}

+ number);

+ number);

public static void methodl(int x)

{
| 4 System.out.println("methodl: x is " + x);
5 X = X * X3
6 System.out.println("methodl: x is now " + Xx);
}
}

main: number is 4

What's printed? methodl: x is 4

20

Parameter Passing

Consider the following program:

public class ParamTestl

{

public static void main (String[] args)

{
1 int number = 4;
2 System.out.println("main: number is " + number);
3 methodl (number) ;
7 System.out.println("main: number is now " + number);
}
public static void methodl(int x)
{
4 System.out.println("methodl: x is " + X);
5 X = X * X3
| 6 System.out.println('methodl: x is now " + X);
}
}

What's printed?

main: number is 4

methodl:
methodl:

X is 4
X is now 16

21

Parameter Passing

Consider the following program:

public class ParamTestl

{
public static void main (String[] args)
{
1 int number = 4;
2 System.out.println("main: number is " + number);
3 methodl (number) ;
| 7 System.out.println("main: number is now " + number)j
}
public static void methodl (int x)
{
4 System.out.println("methodl: x is " + X);
5 X = X * X3
6 System.out.println("methodl: x is now " + Xx);
}
}

main: number is 4

What's printed? methodl: x is 4
methodl: x is now 16
PR 222722727272°

Parameter Passing

Consider the following program:

public class ParamTestl

{

public static void main (String[] args)
{
int number = 4;
System.out.println("main: number is
methodl (number) ;

+ number);

N W N

System.out.println("main: number is now + number) }

o O W

}

}

public static void methodl(int x)

{

System.out.println("methodl: x is " + X);
X =X * x;
System.out.println("methodl: x is now " + Xx);

}

main: number is 4

What's printed? methodl: x is 4

methodl: x is now 16
main: number is now 4

23

Parameter Passing

Consider the following program:

public class ParamTestl

{

N W N

o O W

}

public static void main (String[] args)
{
int number = 4;
System.out.println("main: number is
methodl (number) ;
System.out.println("main: number is now

}

+ number);

+ number);

public static void methodl(int x)

{

System.out.println("methodl: x is " + X);
X =X * x;
System.out.println("methodl: x is now " + Xx);

}

main: number is 4

Why not 16? methodl: x is 4

methodl: x is now 16
R main: number is now 4

24

Parameter Passing

Consider the following program:

public class ParamTestl

{
public static void main (String[] args)
{
1 int number = 4;
2 System.out.println("main: number is " + number);
3 methodl (number); «
7 System.out.println("main: number is now " + number);
}
public static void methodl (int x)
{
4 System.out.println("methodl: x is " + X);
5 X = X * X3
6 System.out.println("methodl: x is now " + Xx);
}
}

Because when the value in the int variable number is passed to method1,

25

Parameter Passing

Consider the following program:

public class ParamTestl

{
public static void main (String[] args)
{
1 int number = 4;
2 System.out.println("main: number is " + number);
3 methodl (number) ;
7 System.out.println("main: number is now " + number);
}
public static void methodl(int x) <«
{
4 System.out.println("methodl: x is " + X);
5 X = X * X3
6 System.out.println("methodl: x is now " + Xx);
}

}

Because when the value in the int variable number is passed to method1l,
what really happens is that a copy of the value (4) in number is assigned to

the parameter x.
26

Parameter Passing

Consider the following program:

public class ParamTestl

{

public static void main (String[] args)
{
int number = 4;
System.out.println("main: number is " + number);
methodl (number) ;
System.out.println("main: number is now " + number);

}

N W N

public static void methodl(int x)
{
System.out.println("methodl: x is " + X);
5 X = xX * x; <
6 System.out.println("methodl: x is now " + Xx);
}
}

1SN

Because when the value in the int variable number is passed to methodl,
what really happens is that a copy of the value (4) in number is assigned to
the parameter x. It's the value in x that's being modified here -- a copy of the
value in number. The original value in number is not affected. 27

Parameter Passing
Will this program behave differently? Why or why not?

public class ParamTest2

{
public static void main (String[] args)
{
int number = 4;
System.out.println("main: number is " + number);
methodl (number) ;
System.out.println("main: number is now " + number);
}
public static void methodl (int number)
{
System.out.println("methodl: number is " + number);

number = number * number;
System.out.println("methodl: number is now " + number);

}
}

What's printed?

Parameter Passing
Will this program behave differently? Why or why not?

public class ParamTest2

{

public static void main (String[] args)
{
int number = 4;
System.out.println("main: number is
methodl (number) ;
System.out.println("main: number is now

}

+ number);

+ number);

public static void methodl (int number)

{
System.out.println("methodl: number is
number = number * number;
System.out.println("methodl: number is now

}

+ number);

+ number);

main: number is 4

What'S prlnted? methodl: number is 4

methodl: number is now 16
R N Y N Y N N Y Y R Y Y

Parameter Passing
Will this program behave differently? Why or why not?

public class ParamTest2

{

public static void main (String[] args)
{
int number = 4;
System.out.println("main: number is
methodl (number) ;

+ number);

System.out.println("main: number is now " + number);
}
public static void methodl(int number)
{
System.out.println("methodl: number is " + number);
number = number * number;
System.out.println("methodl: number is now " + number);

}
}

main: number is 4

What'S prlnted? methodl: number is 4

methodl: number is now 16
main: number is now 4

Parameter Passing
Will this program behave differently? Why or why not?

public class ParamTest2

{

public static void main (String[] args)

{
int number = 4;
System.out.println("main: number is " + number);
methodl (number) ;
System.out.println("main: number is now " + number);

}

public static void methodl(int number)

{

System.out.println("methodl: number is " + number);
number = number * number;
System.out.println("methodl: number is now " + number);

}
}

Remember that a parameter declared in a method header has local scope,
just like a variable declared within that method. As far as Java is
concerned, number inside of method1 is unrelated to number outside of
methodl. They are not the same variable. 31

Parameter Passing

Now consider this program.

public class Ptest

{
public static void main(String[] args)
{
int[] foo = new int[1];
foo[0] = 4;
System.out.println("main: foo is now: " + foo[0]);
methodl (foo);
System.out.println("main: foo is now: " + foo[0]);
}
public static void methodl (int[] Xx)
{
System.out.println("methodl: x is now: " + x[0]);
x[0] = x[0] * x[O0];
System.out.println("methodl: x is now: " + x[0]);
}

}
What's printed?

32

Parameter Passing

Now consider this program.

public class Ptest

{
public static void main(String[] args)
{
int[] foo = new int[1l];
foo[0] = 4;

System.out.println("main: foo is now:

"'+ foo[0]);

methodl (foo);
System.out.println("main: foo is now:

}

public static void methodl(int[] x)
{

System.out.println("methodl: x is now:

x[0] = x[0] * x[0];

System.out.println("methodl: x is now:

}

}
What's printed?

main: foo is now:

"+ foo[0]);

"+ x[01);

"+ x[01);

33

Parameter Passing

Now consider this program.

public class Ptest

{
public static void main(String[] args)
{
int[] foo = new int[1l];
foo[0] = 4;
System.out.println("main: foo is now: " + foo[0]);
methodl (foo);
System.out.println("main: foo is now: " + foo[0]);
}
public static void methodl (int[] Xx)
{
| System.out.println("methodl: x is now: " + x[0]); |
x[0] = x[0] * x[O0];
System.out.println("methodl: x is now: " + x[0]);
}

main: foo is now: 4

}
What'S prlntedr) methodl: x is now: 4

34

Parameter Passing

Now consider this program.

public class Ptest

{
public static void main(String[] args)
{
int[] foo = new int[1l];
foo[0] = 4;
System.out.println("main: foo is now: " + foo[0]);
methodl (foo);
System.out.println("main: foo is now: " + foo[0]);
}
public static void methodl (int[] Xx)
{
System.out.println("methodl: x is now: " + x[0]);
x[0] = xX[0] * x[O0];
| System.out.println("methodl: x is now: " + x[0]);
}

main: foo is now: 4

}
What'S prlntedr) methodl: x is now: 4

methodl: x is now: 16

35

Parameter Passing

Now consider this program.

public class Ptest

{
public static void main(String[] args)
{
int[] foo = new int[1l];
foo[0] = 4;
System.out.println("main: foo is now: " + foo[0]);

methodl (foo);

| System.out.println("main: foo is now: " + foo[0]); |

}

public static void methodl(int[] x)

{
System.out.println("methodl: x is now: " + x[0]);
x[0] = x[0] * x[0];
System.out.println("methodl: x is now: " + x[0]);

}

main: foo is now: 4

}
What'S prlnted? methodl: x is now: 4

methodl: x is now: 16
YN N Y Y Y R N R)

36

Parameter Passing

Now consider this program.

public class Ptest

{
public static void main(String[] args)
{
int[] foo = new int[1l];
foo[0] = 4;
System.out.println("main: foo is now: " + foo[0]);
methodl (foo);
| System.out.println("main: foo is now: " + foo[0]); |
}
public static void methodl (int[] Xx)
{
System.out.println("methodl: x is now: " + x[0]);
x[0] = x[0] * x[O0];
System.out.println("methodl: x is now: " + x[0]);
}

} main: foo is now: 4

What's pnnted? methodl: x is now: 4
methodl: x is now: 16
main: foo is now: 16

37

Parameter Passing

Now consider this program.

public class Ptest

{
public static void main(String[] args)
{
int[] foo = new int[1l];
foo[0] = 4;
System.out.println("main: foo is now: " + foo[0]);
methodl (foo);
System.out.println("main: foo is now: " + foo[0]);
}
public static void methodl (int[] Xx)
{
System.out.println("methodl: x is now: " + x[0]);
x[0] = x[0] * x[O0];
System.out.println("methodl: x is now: " + x[0]);
}

main: foo is now: 4

}
Why nOt 4? methodl: x is now: 4

methodl: x is now: 16
— main: foo is now: 16

38

Parameter Passing

Now consider this program.

public class Ptest

{
public static void main(String[] args)
{
int[] foo = new int[1l];
foo[0] = 4;
System.out.println("main: foo is now: " + foo[0]);
» methodl (foo);
System.out.println("main: foo is now: " + foo[0]);
}
public static void methodl(int[] x)
{
System.out.println("methodl: x is now: " + x[0]);
x[0] = x[0] * x[0];
System.out.println("methodl: x is now: " + x[0]);
}
}

What's in foo? Isitthe int[] array object?

39

Parameter Passing

Now consider this program.

public class Ptest

{
public static void main(String[] args)
{
int[] foo = new int[1l];
foo[0] = 4;
System.out.println("main: foo is now: " + foo[0]);
» methodl (foo);
System.out.println("main: foo is now: " + foo[0]);
}
public static void methodl(int[] x)
{
System.out.println("methodl: x is now: " + x[0]);
x[0] = x[0] * x[0];
System.out.println("methodl: x is now: " + x[0]);
}
}

What's in foo? Isitthe int[] array object? No, it's the reference, or

pointer, to the object.

40

Parameter Passing

Now consider this program.

public class Ptest

{
public static void main(String[] args)
{
int[] foo = new int[1l];
foo[0] = 4;
System.out.println("main: foo is now: " + foo[0]);
methodl (foo);
System.out.println("main: foo is now: " + foo[0]);
}
— public static void methodl(int[] x)
{
System.out.println("methodl: x is now: " + x[0]);
x[0] = x[0] * x[O0];
System.out.println("methodl: x is now: " + x[0]);
}

}
What's in foo? Isitthe int[] array object? No, it's the reference, or

pointer, to the object. A copy of that reference is passed to method1l and

assigned to x.
41

Parameter Passing

Now consider this program.

public class Ptest

{
public static void main(String[] args)
{
int[] foo = new int[1l];
foo[0] = 4;
System.out.println("main: foo is now: " + foo[0]);
> methodl (foo);
System.out.println("main: foo is now: " + foo[0]);
}
—» public static void methodl(int[] x)
{
System.out.println("methodl: x is now: " + x[0]);
x[0] = x[0] * x[O0];
System.out.println("methodl: x is now: " + x[0]);
}

}
What's in foo? Isitthe int[] array object? No, it's the reference, or

pointer, to the object. A copy of that reference is passed to method1l and
assigned to x. The reference in foo and the reference in x both point to the
same object. 42

Parameter Passing

Now consider this program.

public class Ptest

{
public static void main(String[] args)
{
int[] foo = new int[1l];
foo[0] = 4;
System.out.println("main: foo is now: " + foo[0]);
methodl (foo);
System.out.println("main: foo is now: " + foo[0]);
}
public static void methodl (int[] Xx)
{
System.out.println("methodl: x is now: " + x[0]);
x[0] = x[0] * x[O0];
System.out.println("methodl: x is now: " + x[0]);
}

}
When the object pointed at by x is updated, it's the same as updating the
object pointed at by foo. We changed the object that was pointed at by
both x and foo.

Parameter Passing

m Passing primitive types (int, double, boolean)
as parameter in Java

m 'pass by value”
= value in variable is copied
m copy Is passed to method

= modifying copy of value inside called method
has no effect on original value outside called
method

= modifying aka mutating

44

Parameter Passing

m Passing object as parameter in Java
m "pass by reference”

= objects could be huge, so do not pass copies
around

m pass copy of the object reference
= Object reference aka pointer

= modifying object pointed to by reference
inside calling method does affect object
pointed to by reference outside calling method

= both references point to same object

45

Parameter Passing Pictures

object as parameter:
copy of pointer made
main

foo

prim as parameter:
copy of value

main
4
number

/

method1 |

/

method1 |
4

X

46

Midterm Q4 from 04W2

int[][] dataA = { { O, O}, { O, O } };
int[][] dataB = { { O, O}, { O, O } };

process(dataA, dataB);

public void process(int[][] arrA, int[][] arrB)

{

int row;

int col;

int[][] arrxc = { {1, 1, 1}, {1, 1, 1} };
arrA = arrC;

for(row = 0; row < arrB.length; row++)

{

for(col = 0; col < arrB[row].length; col++

{

arrB[row][col] = row + col;

dataB

OIOo||O | O

OIOo||O | O

47

Midterm Q4 from 04W2

int[][] dataA = { { 0, O}, { O, O} };
int[][] dataB = { { 0, O}, { O, O} };

process(dataA, dataB);

public void process(int[][] arrA, int[][] arrB)

{

int row;

int col;

int[][] arrxc = { {1, 1, 1}, {1, 1, 1} };
arrA = arrC;

for(row = 0; row < arrB.length; row++)

{

for(col = 0; col < arrB[row].length; col++

arrB[row][col] = row + col;

——->[0]0
0|0
- 0|0
0|0

48

Midterm Q4 from 04W2

int[][] dataA = { { 0, O}, { O, O} };
int[][] dataB = { { 0, O}, { O, O} };
process(dataA, dataB);

public void process(int[][] arrA, int[][] arrB)
{

int row;

int col;

int[][] arec = { {1, 1, 1}, {1, 1, 1} };

arrA = arrC;
for(row = 0; row < arrB.length; row++)

{

for(col = 0; col < arrB[row].length; col++

)
{

arrB[row][col] = row + col;

=00
010
- »10 |0
010

arrC

49

Midterm Q4 from 04W2

int[][] dataA = { { 0, O}, { O, O} };
int[][] dataB = { { 0, O}, { O, O} };
process(dataA, dataB);

public void process(int[][] arrA, int[][] arrB)

{

int row;
int col;

int[][] arrc = { {1, 1, 1}, {1, 1, 1} };

arrA = arrC;

for(row = 0; row < arrB.length; row++)

{

for(col = 0; col < arrB[row].length; col++

)
{

arrB[row][col] = row + col;

OIOo||O | O
OIOo||O | O

arraA arrB

arrC

50

Review: Static Fields/Methods

s Static fields belong to whole class

= nonstatic fields belong to instantiated object

s Static methods can only use static fields
s honstatic methods can use either nonstatic or static fields

class: Giraffe

numGiraffes

getGiraffeCount()

object: Giraffe2

—

object: Giraffe1

T

necklLength

necklLength

sayHowTall()

sayHowTall()

51

Review: Variable Scope

m Scope of a variable (or constant) is that part
of a program in which value of that variable
can be accessed

52

Variable Scope

public class CokeMachine4

{

private int numberOfCans;

public CokeMachine4 ()
{

numberOfCans = 2;
System.out.println("Adding another machine to your empire");

}

public int getNumberOfCans ()
{

return numberOfCans;

}

public void reloadMachine(int loadedCans)

{

numberOfCans = loadedCans;

}

= numberOfCans variable declared inside class but
not inside particular method

m Scope is entire class: can be accessed from
anywhere in class

53

Variable Scope

public class CokeMachine4

{

private int numberOfCans;

public CokeMachine4 ()
{

numberOfCans = 2;
System.out.println("Adding another machine to your empire");

}

public double getVolumeOfCoke()

{
double totalLitres = numberOfCans * 0.355;
return totalLitres;

}
public void reloadMachine(int loadedCans)
{
numberOfCans = loadedCans;
}

m totalLitres declared within a method

= scope is method: can only be accessed from
within method

= variable is local data: has local scope

54

Variable Scope

public class CokeMachine4

{

private int numberOfCans;

public CokeMachine4 ()
{

numberOfCans = 2;
System.out.println("Adding another machine to your empire");

}
public int getNumberOfCans ()

{

return numberOfCans;

}

public void reloadMachine(int loadedCans)

{

numberOfCans

}
= loadedCans is method parameter
= scope is method: also local scope

= just like variable declared within parameter
m accessed only within that method

loadedCans;

55

Variable Types

= Static variables

m declared within class

m associated with class, not instance
= Instance variables

m declared within class

m associated with instance

m accessible throughout object, lifetime of object
= Local variables

m declared within method

m accessible throughout method, lifetime of method
= Parameters

s declared in parameter list of method

m acessible throughout method, lifetime of method

56

Variable Types

m Static? Instance? Local? Parameters?

class: Giraffe

object: Giraffe2

int numGiraffes

object: Giraffe1

getGiraffeCount()

int neckLength

sayHowTall()

int neckLength

sayHowTall()

yell(String message)

int volume

yell(String message)

int volume

57

Questions?

58

