
1

University of British Columbia
CPSC 111, Intro to Computation

2009W2: Jan-Apr 2010
Tamara Munzner

Languages, Whitespace, Identifiers

Lecture 3, Mon Jan 11 2010

http://www.cs.ubc.ca/~tmm/courses/111-10

borrowing from slides by Kurt Eiselt, Wolfgang Heidrich,
Alan Hu

2

News
■ labs and tutorials start this week

■ my office hours: Mon 4-5, or by appointment
■ in X661

■ UBC CS news

3

Department of Computer Science
Undergraduate Events

Events this week
Drop-In Resume Edition
Date: Mon. Jan 11
Time: 11 am – 2 pm
Location: Rm 255, ICICS/CS
Industry Panel
Speakers: Managers from IBM,

Microsoft, SAP, TELUS,
Radical …

Date: Tues. Jan 12
Time: Panel: 5:15 – 6:15 pm

Networking: 6:15 – 7:15 pm
Location: DMP 110 for panel,

X-wing ugrad lounge for
networking

Tech Career Fair
Date: Wed. Jan 13
Time: 10 am – 4 pm
Location: SUB Ballroom

Google Tech Talk
Date: Wed, Jan 13
Time: 4 – 5 pm
Location: DMP 110

IBM Info Session
Date: Wed, Jan 13
Time: 5:30 – 7 pm
Location: Wesbrook 100

4

Reading This Week
■ Chap 1: 1.3-1.8
■ Chap 2: 2.1-2.2, 2.5
■ Chap 4: 4.1-4.2

5

5802
5803
5804
5805
5806
5807

Data values are
stored in memory
locations – more
than one location
may be used if the
data is large.

10110101

Address

10110101

Review: Memory
■ Memory consists of a series of locations, each having a

unique address, that are used to store programs and data.
■ When data is stored in a memory location, the data that was

previously stored there is overwritten and destroyed.
■ Each memory location stores one byte (or 8 bits) of data.

■ Each bit is a 0 or a 1
■ More on this soon

6

fetch

decodeexecute

Review: Central Processing Unit
■ CPU executes instructions in a continuous cycle

■ known as the “fetch-decode-execute” cycle
■ CPU has dedicated memory locations known as registers

■ One register, the program counter, stores the address in
memory of the next instruction to be executed

7

Input Devices Output Devices

Central Processing Unit

Memory

Mass Storage Devices

Review: Computer Programming

Computer
Program

8

Review: Machine Language
■ First programming languages: machine languages

■ Most primitive kind

■ Sample machine language instruction
■ Register: special purpose memory location inside CPU

where real computation occurs

■ Difficult to write programs this way
■ People created languages that were more readable

00000000001000100011000000100000
add what’s to what’s and put it unimportant details for us
 in this in this in this
 register register register

9

Review: Assembly Language
■ Next: assembly languages

■ Direct mappings of machine language instructions
into helpful mnemonics, abbreviations

■ Sample assembly language instruction
■ Corresponds to machine language instructions

add r1,r2,r6

00000000001000100011000000100000
add what’s to what’s and put it unimportant details for us
 in this in this in this
 register register register

10

Review: Binary vs. Decimal Numbers
■ decimal system numbers

■ have digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
■ read from right to left:

■ ones (100), tens (101), hundreds (102), thousands (103), ...
■ ex: 4763 means 3*100+6*101+7*102+4*103

■ the exponents count up from 0
■ binary system numbers

■ have digits 0, 1
■ still read from right to left:

■ ones (20), twos (21), fours (22), eights (23), sixteens (24), ...
■ ex: 10010111 means: 1*20+1*21+1*22+0*23+1*24+0*25+0*26+1*27

 = 1+2+4+16+128 = 151

11

Aside – Other Bases
■ The same principle works for other bases
■ For example, hexadecimal (base 16)

■ uses digits 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
■ A-F correspond to values 10-15

■ Example:
 C350

■ Means:
 0*160 + 5*161 + 3*162 + 12*163

 = 5*16 + 3*256 + 12*4096 = 50,000

12

Assembly Language
■ Assembly language program converted into

corresponding machine language instructions by
another program called an assembler

add r1,r2,r6

00000000001000100011000000100000
add what’s to what’s and put it unimportant details for us
 in this in this in this
 register register register

assembler
assembly language machine language

13

Assembly Language
■ Both machine and assembly languages pose big challenges

for programmers
■ Difficult to read and write
■ Difficult to remember

■ Each instruction does very little
■ Takes lots of instructions just to get something simple done

■ Every machine or assembly language good for only one type
of computer
■ Different to program IBM than Honeywell than Burroughs...

14

High-Level Language
■ Next step: development of high-level languages

■ You may have heard of some
■ Fortran, COBOL, Lisp, BASIC, C, C++, C#, Ada, Perl, Java,

Python, Ruby, Javascript

■ High-level languages intended to be easier to use
■ still a long way from English.

■ A single high-level instruction gets more work done than a
machine or assembly language instruction.

■ Most high-level languages can be used on different
computers

15

Java
■ Java is the high-level language we’ll use.

■ Modern, widely used, portable, safe.

■ Developed by Sun in early 1990s
■ Originally intended for set-top boxes
■ Retargeted for the Web

16

High-Level Language
■ Example of a high-level instruction

■ A = B + C

■ Tells computer to
■ go to main memory and find value stored in location called B
■ go to main memory and find value stored in location called C
■ add those two values together
■ store result in memory in location called A

17

High-Level Language
■ Must be translated into machine language so the computer

can understand it.

■ High-level instruction: A = B + C
becomes at least four machine language instructions!

■ How?
■ You could translate it as you go (interpreter).
■ You could translate it in advance (compiler).

00010000001000000000000000000010 load B
00010000010000000000000000000011 load C
00000000001000100011000000100000 add them
00010100110000000000000000000001 store in A

18

Interpreters and Compilers
■ An interpreter translates the high-level language

into machine language on-the-fly, executing the
instructions as it goes.

■ A compiler translates the high-level language
program all at once in advance.

■ Both compilers and interpreters are themselves
computer programs.

■ Which is better?
■ Remember George and Stephen in France?

19

Java Does Both!

Your Program.java
(Java)

Your Program.class
(Java Bytecodes)

Windows PC Macintosh SPARC Server

java
JVM on Unix

java
JVM on Windows

java
JVM on MacOS

javac
Compiler

20

A Simple Java Program
// Our first Java program.

/* Traditionally, one’s first program in a new
language prints out “Hello, World!”

*/

class HelloTester {
public static void main(String[] args) {
System.out.println("Hello, World!");

}
}

21

Sample Java Application Program
//***
// Oreo.java Author: Kurt Eiselt
//
// Demonstrating simple Java programming concepts while
// revealing one of Kurt's many weaknesses
//***

public class Oreo
{
 //***
 // demand Oreos
 //***
 public static void main (String[] args)
 {
 System.out.println ("Feed me more Oreos!");
 }
}

22

Sample Java Application Program
■ Comments ignored by Java compiler

//***
// Oreo.java Author: Kurt Eiselt
//
// Demonstrating simple Java programming concepts while
// revealing one of Kurt's many weaknesses
//***

public class Oreo
{
 //***
 // demand Oreos
 //***
 public static void main (String[] args)
 {
 System.out.println ("Feed me more Oreos!");
 }
} 23

Sample Java Application Program

/*
 Oreo.java Author: Kurt Eiselt

 Demonstrating simple Java programming concepts while
 revealing one of Kurt's many weaknesses
*/

public class Oreo
{
 /* demand Oreos */
 public static void main (String[] args)
 {
 System.out.println ("Feed me more Oreos!");
 }
}

■ Comments could also look like this

24

Sample Java Application Program

■ Comments are important to people
■ But not to the compiler

■ Compiler only cares about

public class Oreo
{
 public static void main (String[] args)
 {
 System.out.println ("Feed me more Oreos!");
 }
}

25

Sample Java Application Program

■ Whole thing is the definition of a class
■ Package of instructions that specify

■ what kinds of data will be operated on
■ what kinds of operations there will be

■ Java programs will have one or more classes
■ For now, just worry about one class at a time

public class Oreo
{
 public static void main (String[] args)
 {
 System.out.println ("Feed me more Oreos!");
 }
}

26

Sample Java Application Program

■ Instructions inside class definition grouped into one
or more procedures called methods
■ group of Java statements (instructions) that has

name, performs some task
■ All Java programs you create will have main

method where program execution begins

public class Oreo
{
 public static void main (String[] args)
 {
 System.out.println ("Feed me more Oreos!");
 }
}

27

Sample Java Application Program

■ These class and method definitions are incomplete
at best
■ good enough for now
■ expand on these definitions as class continues

public class Oreo
{
 public static void main (String[] args)
 {
 System.out.println ("Feed me more Oreos!");
 }
}

28

Sample Java Application Program

■ Words we use when writing programs are called
identifiers
■ except those inside the quotes

public class Oreo
{
 public static void main (String[] args)
 {
 System.out.println ("Feed me more Oreos!");
 }
}

29

Sample Java Application Program

■ Kurt made up identifier Oreo

public class Oreo
{
 public static void main (String[] args)
 {
 System.out.println ("Feed me more Oreos!");
 }
}

30

Sample Java Application Program

■ Other programmers chose identifier
System.out.println
■ they wrote printing program
■ part of huge library of useful programs that comes with

Java

public class Oreo
{
 public static void main (String[] args)
 {
 System.out.println ("Feed me more Oreos!");
 }
}

31

Sample Java Application Program

■ Special identifiers in Java called reserved words
■ don’t use them in other ways

public class Oreo
{
 public static void main (String[] args)
 {
 System.out.println ("Feed me more Oreos!");
 }
}

32

Reserved Words
■ Get familiar with these

■ But you don’t need to memorize all 52 for exam

abstract do if private throw
boolean double implements protected throws
break else import public transient
byte enum instanceof return true
case extends int short try
catch false interface static void
char final long strictfp volatile
class finally native super while
const float new switch
continue for null synchronized
default goto package this

33

Identifiers
■ Identifier must

■ Start with a letter and be followed by
■ Zero or more letters and/or digits

■ Digits are 0 through 9.
■ Letters are the 26 characters in English alphabet

■ both uppercase and lowercase
■ plus the $ and _
■ also alphabetic characters from other languages

34

Identifiers
■ Identifier must

■ Start with a letter and be followed by
■ Zero or more letters and/or digits

■ Digits are 0 through 9.
■ Letters are the 26 characters in English alphabet

■ both uppercase and lowercase
■ plus the $ and _
■ also alphabetic characters from other languages

■ Which of the following are not valid identifiers?

userName user_name $cash 2ndName

first name user.age _note_ note2
35

Identifiers
■ Identifier must

■ Start with a letter and be followed by
■ Zero or more letters and/or digits

■ Digits are 0 through 9.
■ Letters are the 26 characters in English alphabet

■ both uppercase and lowercase
■ plus the $ and _
■ also alphabetic characters from other languages

■ Which of the following are not valid identifiers?

userName user_name $cash 2ndName

first name user.age _note_ note2
36

Identifiers
■ Java is case sensitive
■ Oreo oreo OREO 0reo

■ are all different identifiers, so be careful
■ common source of errors in programming

37

Identifiers
■ Java is case sensitive
■ Oreo oreo OREO 0reo

■ are all different identifiers, so be careful
■ common source of errors in programming

■ are these all valid identifiers?

38

Identifiers
■ Creating identifiers in your Java programs

■ Remember other people read what you create
■ Make identifiers meaningful and descriptive for both

you and them
■ No limit to how many characters you can put in your

identifiers
■ but don’t get carried away

public class ReallyLongNamesWillDriveYouCrazyIfYouGoOverboard
{
 public static void main (String[] args)
 {
 System.out.println ("Enough already!");
 }
}

39

White Space

//***
// Oreo.java Author: Kurt Eiselt
//
// Demonstrating good use of white space
//***

public class Oreo
{
 public static void main (String[] args)
 {
 System.out.println ("Feed me more Oreos!");
 }
}

40

White Space

//***
// Oreo1.java Author: Kurt Eiselt
//
// Demonstrating mediocre use of white space
//***

public class Oreo1
{
public static void main (String[] args)
{
System.out.println ("Feed me more Oreos!");
}
}

41

White Space

//***
// Oreo2.java Author: Kurt Eiselt
//
// Demonstrating bad use of white space
//***

public class Oreo2 { public static void main (String[]
args) { System.out.println ("Feed me more Oreos!"); } }

42

White Space

//***
// Oreo3.java Author: Kurt Eiselt
//
// Demonstrating totally bizarre use of white space
//***

 public
class Oreo3
 {
 public static
void main (String[] args)
 {
 System.out.println ("Feed me more Oreos!")
;
 }
 }

43

White Space

//***
// Oreo4.java Author: Kurt Eiselt
//
// Demonstrating deep psychological issues with whitespace
//***

public
class
Oreo4
{
public
static
void
main
(
String[]
args
)
{
System.out.println
("Feed me more Oreos!")
;
}
}

44

White Space
■ White space

■ Blanks between identifiers and other symbols
■ Tabs and newline characters are included

■ White space does not affect how program runs

■ Use white space to format programs we create so they’re
easier for people to understand

45

Program Development
■ Use an editor to create your Java program

■ often called source code
■ code used interchangeably with program or instructions in the

computer world
■ Another program, a compiler or an interpreter, translates

source code into target language or object code, which is
often machine language

■ Finally, your computer can execute object code

editing translating executing
insight source object results

 code code

46

Compiling and Running
■ Let’s try it!

■ command line for now
■ later we’ll use Eclipse

■ integrated development environment (IDE)

47

Syntax
■ Rules to dictate how statements are constructed.

■ Example: open bracket needs matching close bracket
■ If program is not syntactically correct, cannot be translated by

compiler
■ Different than humans dealing with natural languages like

English. Consider statement with incorrect syntax (grammar)

for weeks. rained in Vancouver it hasn’t

■ we still have pretty good shot at figuring out meaning

48

Semantics
■ What will happen when statement is executed
■ Programming languages have well-defined semantics, no

ambiguity
■ Different than natural languages like English. Consider

statement:
 Mary counted on her computer.

■ How could we interpret this?

■ Programming languages cannot allow for such ambiguities
or computer would not know which interpretation to execute

49

Errors
■ Computers follows our instructions exactly
■ If program produces the wrong result it’s the

programmer’s fault
■ unless the user inputs incorrect data
■ then cannot expect program to output correct results:

“Garbage in, garbage out” (GIGO)
■ Debugging: process of finding and correcting errors

■ Unfortunately can be very time consuming!

50

Errors

■ Error at compile time (during translation)
■ you did not follow syntax rules that say how Java

elements must be combined to form valid Java
statements

compile-time error

editing translating executing
insight source object results

 code code

51

Errors

■ Error at run time (during execution)
■ Source code compiles

■ Syntactically (structurally) correct
■ But program tried something computers cannot do

■ like divide a number by zero.
■ Typically program will crash: halt prematurely

compile-time error

editing translating executing
insight source object results

 code code

run-time error

52

Errors

■ Logical error
■ Source code compiles
■ Object code runs
■ But program may still produce incorrect results because logic

of your program is incorrect
■ Typically hardest problems to find

compile-time error

editing translating executing
insight source object results

 code code

run-time error

logical error

53

Errors
■ Let’s try it!

■ usually errors happen by mistake, not on purpose...

54

Memory and Identifiers
■ Example of a high-level instruction

■ A = B + C
■ Tells computer to

■ go to main memory and find value stored in location called B
■ go to main memory and find value stored in location called C
■ add those two values together
■ store result in memory in location called A

■ Great! But... in reality, locations in memory are not actually
called things like a, b, and c.

55

5802
5803
5804
5805
5806
5807

Data values are
stored in memory
locations – more
than one location
may be used if the
data is large.

10110101

Address*

10110101

*For total accuracy, these addresses should be binary numbers, but you get the idea, no?

Memory Recap
■ Memory: series of locations, each having a unique address,

used to store programs and data
■ When data is stored in a memory location, previously stored

data is overwritten and destroyed
■ Each memory location stores one byte (8 bits) of data

56

Memory and Identifiers
■ So what’s with the a, b, and c?

■ Machine language uses actual addresses for memory
locations

■ High-level languages easier
■ Avoid having to remember actual addresses
■ Invent meaningful identifiers giving names to memory locations

where important information is stored
■ pay_rate and hours_worked vs. 5802 and 5806

■ Easier to remember and a whole lot less confusing!

57

Memory and Identifiers: Variables
■ Variable: name for location in memory where data is stored

■ like variables in algebra class

■ pay_rate, hours_worked, a, b, and c are all variables

■ Variable names begin with lower case letters
■ Java convention, not compiler/syntax requirement

■ Variable may be name of single byte in memory or may refer to a group of
contiguous bytes
■ More about that next time

58

Programming With Variables

//***
// Test.java Author: Kurt
//
// Our first use of variables!
//***

public class Test
{
 public static void main (String[] args)
 {
 a = b + c;
 System.out.println ("The answer is " + a);
 }
}

■ Let’s give it a try...

59

Programming With Variables

//***
// Test.java Author: Kurt
//
// Our first use of variables!
//***

public class Test
{
 public static void main (String[] args)
 {
 a = b + c;
 System.out.println ("The answer is " + a);
 }
}

■ Let’s give it a try...
■ b and c cannot be found!
■ need to assign values

60

Programming With Variables: Take 2

//***
// Test2.java Author: Kurt
//
// Our second use of variables!
//***

public class Test2
{
 public static void main (String[] args)
 {
 b = 3;
 c = 5;
 a = b + c;
 System.out.println ("The answer is " + a);
 }
}

61

Programming With Variables: Take 2

//***
// Test2.java Author: Kurt
//
// Our second use of variables!
//***

public class Test2
{
 public static void main (String[] args)
 {
 b = 3;
 c = 5;
 a = b + c;
 System.out.println ("The answer is " + a);
 }
}

■ Now what?
■ such a lazy computer, still can’t find symbols...

62

Now What?

■ Java doesn’t know how to interpret the contents of
the memory location
■ are they integers? characters from the keyboard?

shades of gray? or....

b
c

00000011
00000101

memory

:

:

63

Data Types
■ Java requires that we tell it what kind of data it is working with

■ For every variable, we have to declare a data type

■ Java language provides eight primitive data types
■ i.e. simple, fundamental

■ For more complicated things, can use data types
■ created by others provided to us through the Java libraries
■ that we invent

■ More soon - for now, let’s stay with the primitives

■ We want a, b, and c to be integers. Here’s how we do it...

64

Programming With Variables: Take 3

//***
// Test3.java Author: Kurt
//
// Our third use of variables!
//***

public class Test3
{
 public static void main (String[] args)
 {
 int a; //these
 int b; //are
 int c; //variable declarations
 b = 3;
 c = 5;
 a = b + c;
 System.out.println ("The answer is " + a);
 }
}

65

Primitive Data Types: Numbers

■ Six primitives for numbers
■ integer vs. floating point
■ fixed size, so finite capacity

approx 1.7E308 (15 sig. digits)approx -1.7E308 (15 sig. digits)8 bytesdouble

approx 3.4E38 (7 sig.digits)approx -3.4E38 (7 sig.digits)4 bytesfloat

9,223,372,036,854,775,807-9,223,372,036,854,775,8088 byteslong

2,147,483,647-2,147,483,6484 bytesint

32,767-32,7682 bytesshort

127-1281 bytebyte

MaxMinSizeType

66

Primitive Data Types: Non-numeric
■ Character Type

■ named char
■ Java uses the Unicode character set so each char occupies 2

bytes of memory.
■ Boolean Type

■ named boolean
■ Variables of type boolean have only two valid values

■ true and false
■ Often represents whether particular condition is true
■ More generally represents any data that has two states

■ yes/no, on/off

67

Primitive Data Types: Numbers

■ Primary primitives are int and double
■ Just worry about those for now

approx 1.7E308 (15 sig. digits)approx -1.7E308 (15 sig. digits)8 bytesdouble

approx 3.4E38 (7 sig.digits)approx -3.4E38 (7 sig.digits)4 bytesfloat

9,223,372,036,854,775,807-9,223,372,036,854,775,8088 byteslong

2,147,483,647-2,147,483,6484 bytesint

32,767-32,7682 bytesshort

127-1281 bytebyte

MaxMinSizeType

68

Questions?

