University of British Columbia
CPSC 111, Intro to Computation
2009W2: Jan-Apr 2010

Tamara Munzner

Conditionals Il
Lecture 16, Wed Feb 10 2010
borrowing from slides by Kurt Eiselt

http://www.cs.ubc.ca/~tmm/courses/111-10

Recap: Static Methods

= Static methods do not operate in context of particular object

= cannot reference instance variables because they exist
only in an instance of a class

= compiler will give error if static method attempts to use
nonstatic variable

= Static method can reference static variables

= because static variables exist independent of specific
objects

Recap: Static Methods in java.Math

Java provides you with many pre-existing static methods
Package java.lang.Math is part of basic Java environment
= you can use static methods provided by Math class

= examples:
:-l;at_h‘sqrt(im) Math. random ()
> Math.sin(90) 7843919693319797
0.8939966636005579 Math.random()
> Math.sin (Math.toRadians (90)) 4253202368928023
1.0 Math.pow (2,3)
> Math.max (54,70) 0
70

Math.pow (3,2)

0

Math.1log(1000)
907755278982137
Math.1og10 (1000)
0

> Math.round(3.14159)
3

WVaVoVv®VoVoyv

Recap: Conditional Statement

= Conditional statement: choose which statement will
be executed next based on boolean expression
= changes control flow

= Example

if (age < 20)

System.out.println("Really, you look like you are "
+ (age + 5) + ".");

Recap: Boolean Expressions

Boolean expression: test which returns either true or false
when evaluated

= aka conditional

Consists of operands and operators, like arithmetic
expression

Recap: Relational Operators

= Tests two values (operands)

Operators
= == equal
= returns true if they are equal, false otherwise
= note: do not confuse this with =

Recap: Logical Operators

= Way to combine results from relational operators into single test
= AND, OR, and NOT

= in terms from math or philosophy class
= Operators

= && logical AND

Logical Operator Examples

= is (! (b > a)) the same as
= (a>Db)
= (a >= b)
= (b<a)

= but operators only return true or false when applied to = = notequal = Il logical OR
operands = returns true if they are not equal, false otherwise = | logical NOT

= Two different kinds of operators = < lessthan

= relational = <= less than or equal to

= sometime split into relational and equality = > greater than
= logical = >= greater than or equal to
5 6 5 .

Objectives Comparing Strings Comparing Strings Comparing Strings

= Understand how to compare objects and primitive
data types

= Understand syntax to use for conditionals and
switch statements

= How do we test for equality between Strings?
= Reminder:
= Strings are sequences of alphanumeric characters
= create with constructor
® String firstname = new String("Donald");
= or with shortcut
® String lastname = "Duck";

= Strings are objects, not primitive types!

= Relational operator == is wrong way to compare

String namel = "Bubba";
String name2 = "Bubba";
System.out.println(namel == name2); // prints false

= Equals method is right way to compare Strings

String namel
String name2

"Bubba";
"Bubba";

System.out.println(namel.equals (name2)); // prints true

= why? diagrams will help

"Bubba"

"Bubba"

= these values tested for equality with test of name1
== name2

= two different pointers (references), so false

Comparing Strings

"Bubba"

"Bubba"

= these values tested for equality with
namel.equals (name2)

= contents of objects are same, so true

Short-Circuting Evaluation
= Consider again expression

if ((b > a) & (c == 10))
System.out.println("this should print");

= Java evaluates left to right
= if (b>a) is false, does value of (¢ == 10) matter?
= no! result of && must be false since one operand already
evaluated to false
= short-circuiting: Java does not evaluate
= aka lazy evaluation

Short-Circuting Evaluation
= Consider different expression

if ((b > a) || == 10))
System.out.println("this should print");

= Java evaluates left to right
= if (b>a) is true, does value of (¢ == 10) matter?

= no! result of || must be true since one operand
already evaluated to true

If Syntax

= Syntax
= reserved word if
= followed by boolean expression enclosed in parentheses
= followed by statement

if (x ==y)
System.out.println("x equals y! ");

= Results
= if boolean evaluates to true, statement is executed

= otherwise statement is skipped, execution continues with
statement immediately following if statement

If-Else Syntax

= [f statement may include optional else clause
= reserved word else
= followed by another statement

if (x == y)
System.out.println("x equals y!");

else

System.out.println("x is not equal to y!");

= Results
= if boolean evaluates to true, first statement is executed
= otherwise (if boolean evalutes to false), statement following

else is executed

Block Statements

= Often want to do many actions, not just one, based on
condition

= Replace single statement with many statements surrounded
by curly braces

if (x == y)
{

System.out.println("x equals y!");
System.out.println("I'm happy");

}

else

{
System.out.println("x is not equal to y");
System.out.println("I'm depressed");
System.out.println("How about you?");

}

Block Statements
= What if we leave out block in else clause?

if (x == y)

{
System.out.println("x equals y!");
System.out.println("I'm happy");

}

else
System.out.println("x is not equal to y");
System.out.println("I'm depressed") ;
System.out.println("How about you?");

Nested If Syntax

= Statements within if-else statements can themselves be if-
else statements

public class NestTest
public static void main (String[] args)

int x = 1; int y = 3; int z = 2;

if (x == y)
if (y == z)
System.out.println("all three values the same");
else
System.out.println("y is not equal to z");
else

System.out println("x is not equal to y");

Nested If Syntax
= Multiple else statements also legal

if(Boolean expression 1)
// statements

else if(Boolean expression 2)
// statements

i

else if(Boolean expression 3)
// statements

else

// statements

Nested If Syntax

= Rewriting NestTest using multiple else statements

public class NestTest2
public static void main (String[] args)
int x = 1; int y = 3; int z = 2;
if ((x ==y) &6 (y == 2))
! System.out.println("all three values the same");
else if ((x ==y) & (y != z))
! System.out.println("y is not equal to z");

else
System.out.println("x is not equal to y");

Comparing Floating Point Numbers

= |s 0.3 the same thing as
1.0/10.0 + 1.0/10.0 + 1.0/10.0 ???

= Let'stryitout..

Comparing Floating Point Numbers

= Is 0.3 the same thing as
1.0/10.0 + 1.0/10.0 + 1.0/10.0 ???

= No - very close, but not exactly what you expect
= 0.30000000000000004

= Beware! Write tests for “darn near equal” like:

if (Math.abs(f1 - £2) < TOLERANCE)
System.out.println (“Essentially equal.”);

= where TOLERANCE is small number appropriate to problem

like 0.00000001
21 22 23 24
Comparing Characters Switch Syntax Switch Syntax Switch Syntax
= You can compare character types with relational = Use switch statement to get program to follow one of several = Expression should be int, char = Case values cannot be variables
operators different paths based on single value = (or enumerated type)
al < b switch (finalMark) switch (switch (finalMark)
{

2t == b {

A< case 4: case 4: case I;lm .
System.out.println("You get an A"); System.out.println("You get an A"); s: .out.println("You get an A");
break; break; break;

; i ; case 3: case 3: case
= Remember, cannot compare Strings with relational System.out.println("You get a B"); System.out.println("You get a B"); s .out.println("You get a B");
operators break; break; break;
. | case 2: case 2: case 2 5 " "
= or any other ObJeCtS_' System.out.println("You get a C"); System.out.println("You get a C"); S‘°“t'5’"“t1"‘ You get a C");
= must use methods like equals break; break; breek;
default: default: default:)
System.out.println("See you next year"); System.out.println("See you next year");) System.out.println("See you next year");
} }
25 26 27 28
Switch Syntax Switch Syntax
= Default statement optional, but very good idea = Break statements really important
switch (finalMark) switch (finalMark)
{ {
case 4: case 4:
System.out.println("You get an A"); System.out.println("You get an A");
break; break;
case 3: case
System.out.println("You get a B"); System.out.println("You get a B");
break; break;
case 2: case|
System.out.println("You get a C"); mat.println("You get a C");
break; break;
default: defaj +
m\.out.println("see you next year"); mt.println("see you next year");
} }
29 30

