
1

University of British Columbia
CPSC 111, Intro to Computation

2009W2: Jan-Apr 2010
Tamara Munzner

More Class Design

Lecture 11, Fri Jan 29 2010

http://www.cs.ubc.ca/~tmm/courses/111-10

borrowing from slides by Paul Carter and
 Wolfgang Heidrich

2

Reminders
■ Assignment 1 due Wed 5pm
■ TA office hours in DLC

■ http://www.cs.ubc.ca/ugrad/current/resources/cslearning.shtml

■ Check your ugrad email account regularly (or
forward to active account)
■ grade info will be sent there

3

Exam
■ Midterm reminder: Mon Feb 8, 18:30 - 20:00

■ FSC 1005
■ exam will be one hour, extra time is just in case needed
■ I'll discuss coverage next time

■ DRC: Disability Resource Center
■ academic accommodation for disabilities
■ forms due one week before exam (Monday!)
■ http://students.ubc.ca/access/drc.cfm

4

Recap: Public vs Private
■ public keyword indicates that something can be

referenced from outside object
■ can be seen/used by client programmer

■ private keyword indicates that something cannot
be referenced from outside object
■ cannot be seen/used by client programmer

5

Recap: Designing Classes
■ Blueprint for constructing objects

■ build one blueprint
■ manufacture many instances from it

■ Consider two viewpoints
■ client programmer: want to use object in program

■ what public methods do you need
■ designer: creator of class

■ what private fields do you need to store data
■ what other private methods do you need

6

Public vs. Private Example
public class Die {
...
public int roll()
...
private void cheat(int nextRoll)

...
}

7

Public vs. Private Example
Die myDie = new Die();

int result = myDie.roll(); // OK
myDie.cheat(6); //not allowed!

8

Unified Modeling Language
■ Unified Modeling Language (UML) provides us with

mechanism for modeling design of software
■ critical to separate design from implementation (code)
■ benefits of good software design

■ easy to understand, easy to maintain, easy to implement
■ What if skip design phase and start implementing (coding)?

■ code difficult to understand, thus difficult to debug
■ We’ll use UML class diagrams represent design of our

classes
■ Once the design is completed, could be implemented in

many different programming languages
■ Java, C++, Python,...

9

UML Visual Syntax
■ + for public, - for private
■ fields above, methods below

Classname

fields

methods

+ field: type

- method(): return type

+ Classname()

+ method(): return type

+ method(param1 type,
param2 type): return
type

- field: type

10

UML for Die

■ UML diagram for Die class we designed

Die

fields

methods

- sides: int

+ Die()

+ setSides(numSides: int):
void

+ roll(): int

11

Separation and Modularity
■ Design possibilities

■ Die and RollDice as separate classes
■ one single class that does it all

■ Separation allows code re-use through modularity
■ another software design principle

■ One module for modeling a die: Die class
■ Other modules can use die or dice

■ we wrote one, the RollDice class
■ Modularization also occurs at file level

■ modules stored in different files
■ also makes re-use easier

12

Control Flow Between Modules
■ Last week was easy to understand control flow:

order in which statements are executed
■ march down line by line through file

■ Now consider control flow between modules

int rollResult;

myDie.setSides();

rollResult = myDie.roll();

public int roll()
{
 …
}

public void setSides()
{
 …
}

Client code Die class methods

13

Designing Point: UML

■ class to represent points in 2D space

14

Implementing Point
public class Point {

}

15

Formal vs. Actual Parameters
■ formal parameter: in declaration of class
■ actual parameter: passed in when method is called

■ variable names may or may not match
■ if parameter is primitive type

■ call by value: value of actual parameter copied into
formal parameter when method is called

■ changes made to formal parameter inside method
body will not be reflected in actual parameter value
outside of method

■ if parameter is object: covered later

16

Scope
■ Fields of class are have class scope: accessible to

any class member
■ in Die and Point class implementation, fields

accessed by all class methods
■ Parameters of method and any variables declared

within body of method have local scope: accessible
only to that method
■ not to any other part of your code

■ In general, scope of a variable is block of code
within which it is declared
■ block of code is defined by braces { }

17

Commenting Code
■ Conventions

■ explain what classes and methods do
■ plus anywhere that you've done something

nonobvious
■ often better to say why than what

■ not useful
int wishes = 3; // set wishes to 3

■ useful
int wishes = 3; // follow fairy tale convention

18

javadoc Comments
■ Specific format for method and class header comments

■ running javadoc program will automatically generate HTML
documentation

■ Rules
■ /** to start, first sentence used for method summary
■ @param tag for parameter name and explanation
■ @return tag for return value explanation
■ other tags: @author, @version
■ */ to end

■ Running
 % javadoc Die.java
 % javadoc *.java

19

javadoc Method Comment Example
/**
 Sets the die shape, thus the range of values it can roll.
 @param numSides the number of sides of the die
*/
public void setSides(int numSides) {
 sides = numSides;
}

/**
 Gets the number of sides of the die.
 @return the number of sides of the die
*/
public int getSides() {
 return sides;
}

20

javadoc Class Comment Example
/** Die: simulate rolling a die
 * @author: CPSC 111, Section 206, Spring 05-06
 * @version: Jan 31, 2006
 *
 * This is the final Die code. We started on Jan 24,
 * tested and improved in on Jan 26, and did a final
 * cleanup pass on Jan 31.
 */

21

Cleanup Pass
■ Would we hand in our code as it stands?

■ good use of whitespace?
■ well commented?

■ every class, method, parameter, return value
■ clear, descriptive variable naming conventions?
■ constants vs. variables or magic numbers?
■ fields initialized?
■ good structure?
■ follows specification?

■ ideal: do as you go
■ commenting first is a great idea!

■ acceptable: clean up before declaring victory

22

Key Topic Summary

Borrowed phrasing from Steve Wolfman

■ Generalizing from something concrete
■ fancy name: abstraction

■ Hiding the ugly guts from the outside
■ fancy name: encapsulation

■ Not letting one part ruin the other part
■ fancy name: modularity

■ Breaking down a problem
■ fancy name: functional decomposition

23

Reading Assignment Next Week
■ Chap 4.3-4.5 re-read

