University of British Columbia
CPSC 111, Intro to Computation
2009W2: Jan-Apr 2010

Tamara Munzner

More Class Design
Lecture 11, Fri Jan 29 2010

borrowing from slides by Paul Carter and
Wolfgang Heidrich
http://www.cs.ubc.ca/~tmm/courses/111-10

Reminders

= Assignment 1 due Wed 5pm
= TA office hours in DLC
= http://www.cs.ubc.ca/ugrad/current/resources/cslearning.shtml
= Check your ugrad email account regularly (or
forward to active account)
= grade info will be sent there

Exam

= Midterm reminder: Mon Feb 8, 18:30 - 20:00
= FSC 1005
= exam will be one hour, extra time is just in case needed
= ['ll discuss coverage next time

= DRC: Disability Resource Center
= academic accommodation for disabilities
= forms due one week before exam (Monday!)
= http://students.ubc.ca/access/drc.cfm

Recap: Public vs Private

= public keyword indicates that something can be

referenced from outside object
= can be seen/used by client programmer

= private keyword indicates that something cannot

be referenced from outside object
= cannot be seen/used by client programmer

Recap: Designing Classes

= Blueprint for constructing objects
= build one blueprint
= manufacture many instances from it
= Consider two viewpoints
= client programmer: want to use object in program
= what public methods do you need
= designer: creator of class
= What private fields do you need to store data
= What other private methods do you need

Public vs. Private Example

public class Die {
public int roll()

private void cheat(int nextRoll)

Public vs. Private Example
Die myDie = new Die();

int result = myDie.roll(); // OK

myDie.cheat (6) ; //not allowed!

Unified Modeling Language

Unified Modeling Language (UML) provides us with
mechanism for modeling design of software

= critical to separate design from implementation (code)

= benefits of good software design

= easy to understand, easy to maintain, easy to implement

What if skip design phase and start implementing (coding)?
= code difficult to understand, thus difficult to debug
We’'ll use UML class diagrams represent design of our
classes

Once the design is completed, could be implemented in
many different programming languages

= Java, C++, Python,...

UML Visual Syntax

=+ for public, - for private
= fields above, methods below
Classname

+ field: type

- field: type

+ Classname ()
+ method() : return type

+ method (paraml type,
param2 type): return
type

- method () : return type

UML for Die

= UML diagram for bie class we designed

Die

- sides: int

Ids

+ Die()

+ setSides (numSides: int):

void

+ roll(): int

Separation and Modularity

= Design possibilities
= Die and RollDice as separate classes
= one single class that does it all
= Separation allows code re-use through modularity
= another software design principle
= One module for modeling a die: Die class
= Other modules can use die or dice
= we wrote one, the RollDice class
= Modularization also occurs at file level
= modules stored in different files
= also makes re-use easier

Control Flow Between Modules

= Last week was easy to understand control flow:

order in which statements are executed
= march down line by line through file

= Now consider control flow between modules

Client code Die class methods

int rollResult; public int roll()

{
myDie.setSides() ;

rollResult = myDie.roll(); }

public void setSides()
{

, »

Designing Point: UML

= class to represent points in 2D space

Implementing Point

public class Point {

Formal vs. Actual Parameters
= formal parameter: in declaration of class
= actual parameter: passed in when method is called
= variable names may or may not match
= if parameter is primitive type
= call by value: value of actual parameter copied into
formal parameter when method is called

= changes made to formal parameter inside method
body will not be reflected in actual parameter value
outside of method

= if parameter is object: covered later

Scope

= Fields of class are have class scope: accessible to

any class member
= in Die and Point class implementation, fields
accessed by all class methods

= Parameters of method and any variables declared

within body of method have local scope: accessible
only to that method
= not to any other part of your code

= In general, scope of a variable is block of code

within which it is declared
= block of code is defined by braces { }

Commenting Code
= Conventions
= explain what classes and methods do

= plus anywhere that you've done something

nonobvious
= often better to say why than what
= not useful
int wishes = 3; // set wishes to 3
= useful

int wishes = 3; // follow fairy tale convention

javadoc Comments

= Specific format for method and class header comments

= running javadoc program will automatically generate HTML
documentation

= Rules

/** to start, first sentence used for method summary

@param tag for parameter name and explanation

@return tag for return value explanation

other tags: @author, @version
= */toend

= Running

% javadoc Die.java
% javadoc *.java

javadoc Method Comment Example

Jxx
Sets the die shape, thus the range of values it can roll.
@param numSides the number of sides of the die

*/

public void setSides(int numSides) {
sides = numSides;

}

Jxx
Gets the number of sides of the die.
@return the number of sides of the die
*/

public int getSides() {

return sides;
}

javadoc Class Comment Example

/** Die: simulate rolling a die
* @Qauthor: CPSC 111, Section 206, Spring 05-06

* @version: Jan 31, 2006

*

* This is the final Die code. We started on Jan 24,
* tested and improved in on Jan 26, and did a final
* cleanup pass on Jan 31.

*/

Cleanup Pass

= Would we hand in our code as it stands?
= good use of whitespace?
= well commented?
= every class, method, parameter, return value
= clear, descriptive variable naming conventions?
= constants vs. variables or magic numbers?
= fields initialized?
= good structure?
= follows specification?
= ideal: do as you go
= commenting first is a great idea!
acceptable: clean up before declaring victory

Key Topic Summary

Borrowed phrasing from Steve Wolfman

= Generalizing from something concrete
= fancy name: abstraction

= Hiding the ugly guts from the outside
= fancy name: encapsulation

= Not letting one part ruin the other part
= fancy name: modularity

= Breaking down a problem
= fancy name: functional decomposition

Reading Assignment Next Week
= Chap 4.3-4.5 re-read

23

