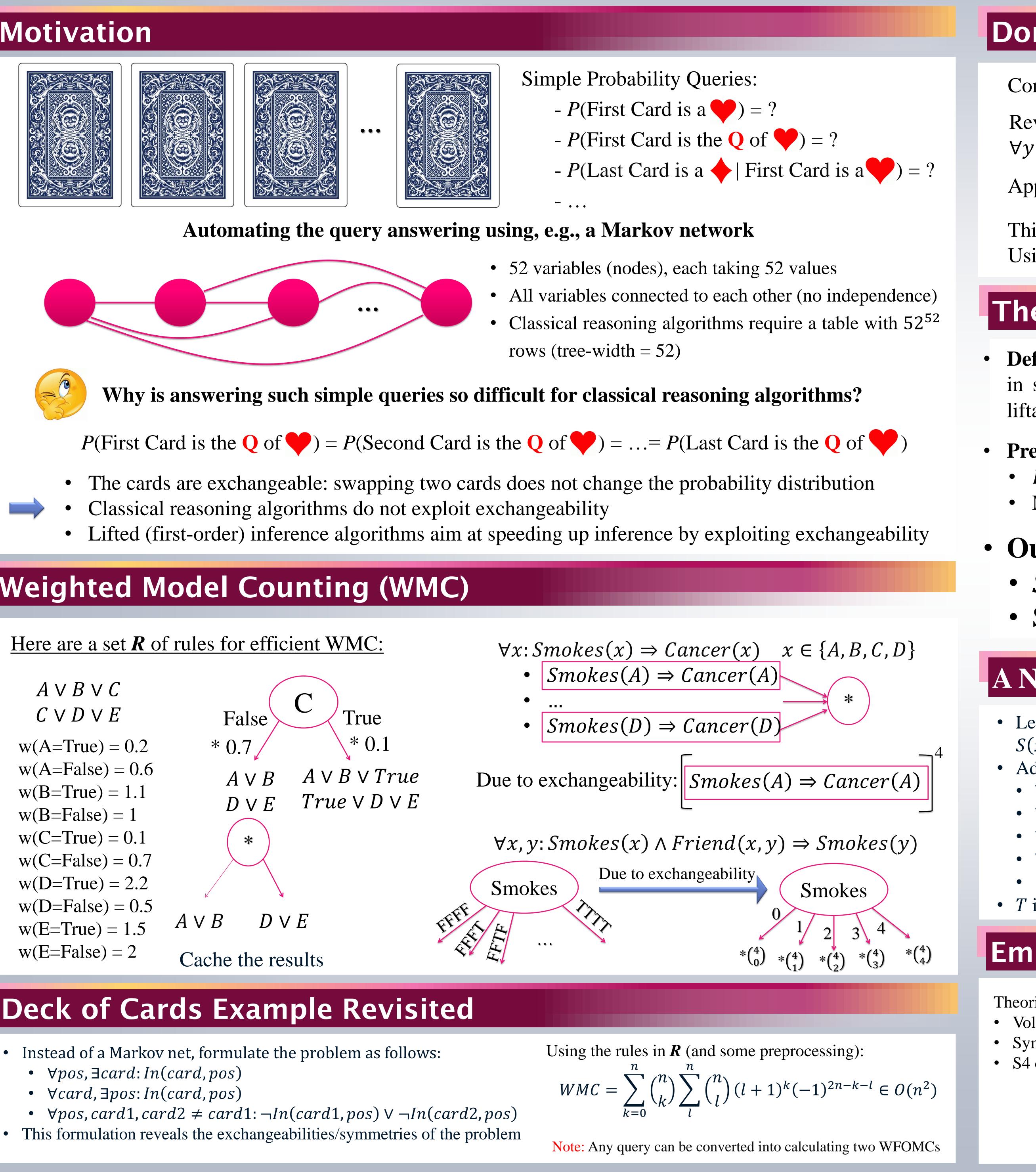


Weighted Model Counting (WMC)



Deck of Cards Example Revisited

New Liftable Classes for First-Order Probabilistic Inference

Seyed Mehran Kazemi, Angelika Kimmig, Guy Van den Broeck & David Poole

Domain Recursion Rule

Consider the theory: $\forall x, y \neq x$: $Fr(x, y) \Rightarrow Fr(y, x)$

Reveal/Separate one person (e.g., A) from the population: $\forall y': Fr(A, y') \Rightarrow Fr(y', A) \qquad \forall x': Fr(x', A) \Rightarrow Fr(A, x') \qquad \forall x', y' \neq x': Fr(x', y') \Rightarrow Fr(y', x') \qquad x', y' \in \{B, \dots, Z\}$

Apply the rules in \mathbf{R} on Fr(A, y') and Fr(x', A): $\forall x', y' \neq x': Fr(x', y') \Rightarrow Fr(y', x') \quad x', y' \in \{B, \dots, Z\}$

This theory is equivalent to the initial theory, with the population size reduced by one. Using a cache, the WFOMC of the above theory can be computed in polynomial time using dynamic programming.

Theoretical Results

Definitions: A theory is **liftable** if calculating its WMC is polynomial in sizes of the populations. A class C is **liftable** if every $T \in C$ is liftable. **FOⁱ**: class of theories with up to *i* variables per sentence.

Previously proved (without domain recursion) • FO^2 is liftable. • Not every $T \in FO^3$ is liftable.

Our results (using domain recursion) • $S^2 F O^2$ is liftable and subsumes $F O^2$. • Symmetric transitivity and S4 are liftable.

A New Liftable Class: S²FO²

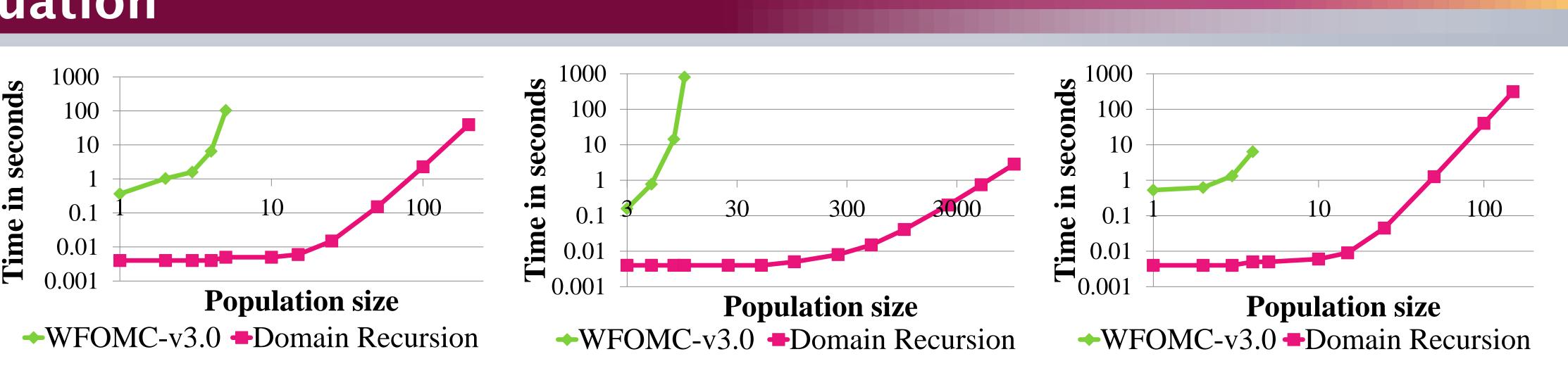
• Let $T \in FO^2$, $S(x, m) \in T$, and for any sentence $c \in T$, if $S(x,m) \in c$, all other atoms in *c* have at most one variable. • $\forall x, m_1, m_2: S(x, m_1) \lor S(x, m_2)$ • $\forall x, m_1, m_2: \neg S(x, m_1) \lor S(x, m_2)$ • $\forall x_1, x_2, m: S(x_1, m) \lor S(x_2, m)$ • $\forall x_1, x_2, m_1, m_2: S(x_1, m_1) \lor S(x_2, m_2)$

 $\forall j, v: InvolvesGas(j) \land Smokes(v) \Rightarrow \neg Assigned(j, v)$ • Add any sentence $\alpha(S)$ to T having exactly 2 S atoms, e.g.: $\forall v1, v2: AUX(v1, v2) \Leftrightarrow Smokes(v1) \land Friends(v1, v2) \Rightarrow Smokes(v2)$ $\vdash \in FO^2$ $\forall v1, v2 \neq v1, j: \neg Assigned(j, v1) \lor \neg Assigned(j, v2) \\ \forall v, j1, j2 \neq j1: \neg Assigned(j1, v) \lor \neg Assgined(j2, v) \\ \end{bmatrix} \in \alpha(Assgined)$

• T is in $S^2 F O^2$

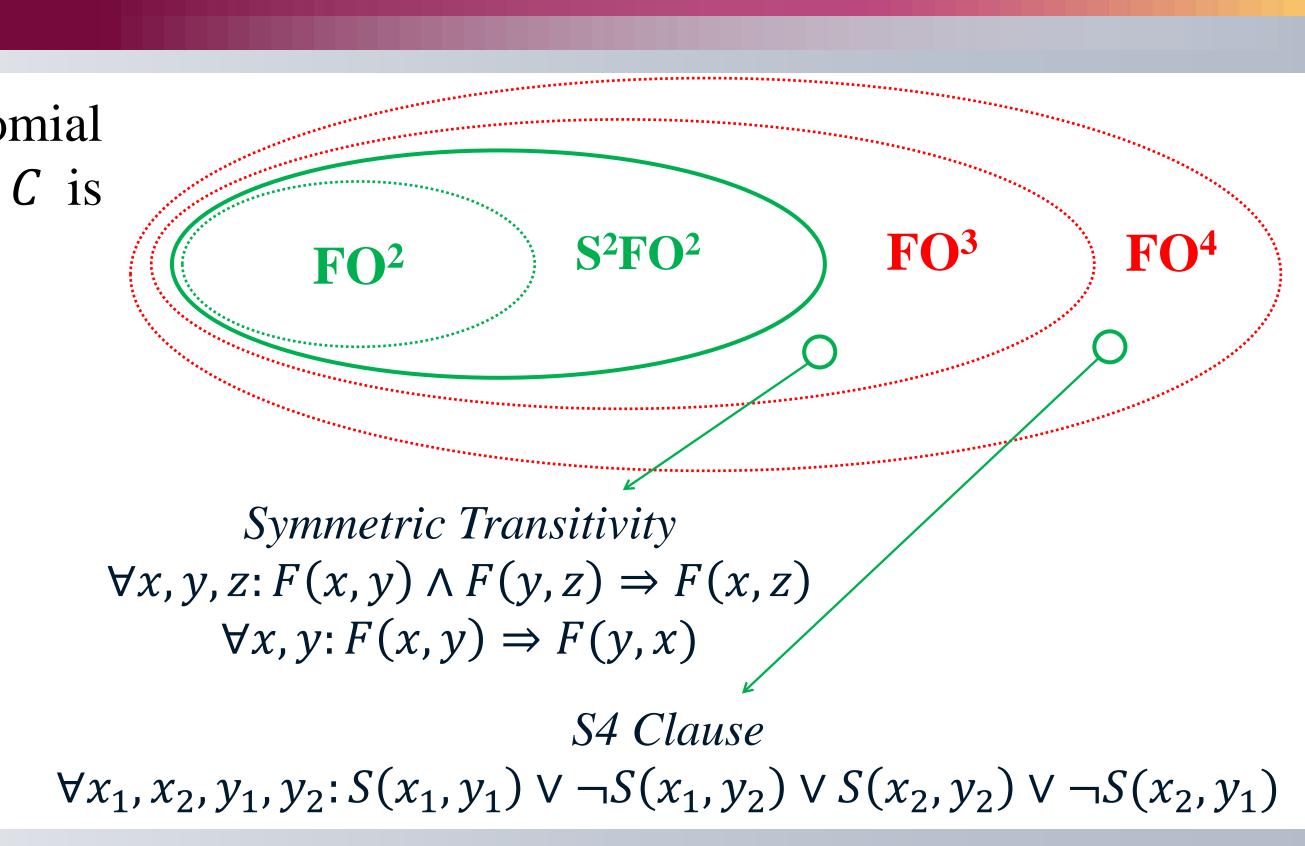
Empirical Evaluation

Theories from left to right: • Volunteers & jobs Symmetric transitivity



KU LEUVEN

 $x, y \in \{A, B, ..., Z\}$



Example: Volunteers (v) & Jobs (j)

Clause1: Jobs involving gas are not assigned to smokers Clause2: Smokers are mostly friends with each other Clause3: Each volunteer is assigned to at most one job Clause4: At most one volunteer is assigned to any job