

New Liftable Classes for First-Order Probabilistic Inference

Seyed Mehran Kazemi, Angelika Kimmig, Guy Van den Broeck & David Poole

Motivation

…

 Simple Probability Queries:

 - P(First Card is a) = ?

 - P(First Card is the Q of) = ?

 - P(Last Card is a | First Card is a) = ?

 - …

…

Automating the query answering using, e.g., a Markov network

• 52 variables (nodes), each taking 52 values

• All variables connected to each other (no independence)

• Classical reasoning algorithms require a table with 5252

rows (tree-width = 52)

Why is answering such simple queries so difficult for classical reasoning algorithms?

• The cards are exchangeable: swapping two cards does not change the probability distribution

• Classical reasoning algorithms do not exploit exchangeability

• Lifted (first-order) inference algorithms aim at speeding up inference by exploiting exchangeability

Weighted Model Counting (WMC)

P(First Card is the Q of) = P(Second Card is the Q of) = …= P(Last Card is the Q of)

𝐴 ∨ 𝐵 ∨ 𝐶
𝐶 ∨ 𝐷 ∨ 𝐸

w(A=True) = 0.2

w(A=False) = 0.6

w(B=True) = 1.1

w(B=False) = 1

w(C=True) = 0.1

w(C=False) = 0.7

w(D=True) = 2.2

w(D=False) = 0.5

w(E=True) = 1.5

w(E=False) = 2

C
False True

𝐴 ∨ 𝐵

𝐷 ∨ 𝐸

𝐴 ∨ 𝐵 ∨ 𝑇𝑟𝑢𝑒
𝑇𝑟𝑢𝑒 ∨ 𝐷 ∨ 𝐸

*

𝐴 ∨ 𝐵 𝐷 ∨ 𝐸

Cache the results

* 0.7 * 0.1

∀𝑥: 𝑆𝑚𝑜𝑘𝑒𝑠 𝑥 ⇒ 𝐶𝑎𝑛𝑐𝑒𝑟(𝑥) 𝑥 ∈ 𝐴, 𝐵, 𝐶, 𝐷

• 𝑆𝑚𝑜𝑘𝑒𝑠 𝐴 ⇒ 𝐶𝑎𝑛𝑐𝑒𝑟 𝐴

• …

• 𝑆𝑚𝑜𝑘𝑒𝑠 𝐷 ⇒ 𝐶𝑎𝑛𝑐𝑒𝑟 𝐷

*

Due to exchangeability: 𝑆𝑚𝑜𝑘𝑒𝑠 𝐴 ⇒ 𝐶𝑎𝑛𝑐𝑒𝑟 𝐴

4

∀𝑥, 𝑦: 𝑆𝑚𝑜𝑘𝑒𝑠 𝑥 ∧ 𝐹𝑟𝑖𝑒𝑛𝑑(𝑥, 𝑦) ⇒ 𝑆𝑚𝑜𝑘𝑒𝑠(𝑦)

Smokes

…

Smokes
0

1 2 3 4

*
4
0

 *
4
1

 *
4
2

 *
4
3

 *
4
4

Due to exchangeability

Deck of Cards Example Revisited

• Instead of a Markov net, formulate the problem as follows:
• ∀𝑝𝑜𝑠, ∃𝑐𝑎𝑟𝑑: 𝐼𝑛 𝑐𝑎𝑟𝑑, 𝑝𝑜𝑠

• ∀𝑐𝑎𝑟𝑑, ∃𝑝𝑜𝑠: 𝐼𝑛 𝑐𝑎𝑟𝑑, 𝑝𝑜𝑠

• ∀𝑝𝑜𝑠, 𝑐𝑎𝑟𝑑1, 𝑐𝑎𝑟𝑑2 ≠ 𝑐𝑎𝑟𝑑1:¬𝐼𝑛 𝑐𝑎𝑟𝑑1, 𝑝𝑜𝑠 ∨ ¬𝐼𝑛 𝑐𝑎𝑟𝑑2, 𝑝𝑜𝑠

• This formulation reveals the exchangeabilities/symmetries of the problem

𝑊𝑀𝐶 =
𝑛

𝑘

𝑛

𝑙
𝑙 + 1 𝑘 −1 2𝑛−𝑘−𝑙

𝑛

𝑙

∈ 𝑂(𝑛2)

𝑛

𝑘=0

Using the rules in R (and some preprocessing):

Note: Any query can be converted into calculating two WFOMCs

Domain Recursion Rule

Consider the theory: ∀𝑥, 𝑦 ≠ 𝑥: 𝐹𝑟 𝑥, 𝑦 ⇒ 𝐹𝑟 𝑦, 𝑥 x, y ∈ {A,B,…,Z}

Reveal/Separate one person (e.g., A) from the population:

∀𝑦′: 𝐹𝑟 𝐴, 𝑦′ ⇒ 𝐹𝑟 𝑦′, 𝐴 ∀𝑥′: 𝐹𝑟 𝑥′, 𝐴 ⇒ 𝐹𝑟 𝐴, 𝑥′ ∀𝑥′, 𝑦′ ≠ 𝑥′: 𝐹𝑟 𝑥′, 𝑦′ ⇒ 𝐹𝑟 𝑦′, 𝑥′ 𝑥′, 𝑦′ ∈ {𝐵,… , 𝑍}

Apply the rules in R on 𝐹𝑟(𝐴, 𝑦′) and 𝐹𝑟(𝑥′, 𝐴): ∀𝑥′, 𝑦′ ≠ 𝑥′: 𝐹𝑟 𝑥′, 𝑦′ ⇒ 𝐹𝑟 𝑦′, 𝑥′ 𝑥′, 𝑦′ ∈ {𝐵,… , 𝑍}

This theory is equivalent to the initial theory, with the population size reduced by one.

Using a cache, the WFOMC of the above theory can be computed in polynomial time using dynamic programming.

Theoretical Results

FO2 FO3 S2FO2

Symmetric Transitivity

∀𝑥, 𝑦, 𝑧: 𝐹 𝑥, 𝑦 ∧ 𝐹 𝑦, 𝑧 ⇒ 𝐹 𝑥, 𝑧

∀𝑥, 𝑦: 𝐹 𝑥, 𝑦 ⇒ 𝐹(𝑦, 𝑥)

S4 Clause

∀𝑥1, 𝑥2, 𝑦1, 𝑦2: 𝑆 𝑥1, 𝑦1 ∨ ¬𝑆 𝑥1, 𝑦2 ∨ 𝑆 𝑥2, 𝑦2 ∨ ¬𝑆(𝑥2, 𝑦1)

FO4

• Definitions: A theory is liftable if calculating its WMC is polynomial

in sizes of the populations. A class C is liftable if every 𝑇 ∈ 𝐶 is

liftable. 𝑭𝑶𝒊: class of theories with up to i variables per sentence.

• Previously proved (without domain recursion)

• 𝑭𝑶𝟐 is liftable.

• Not every 𝑇 ∈ 𝑭𝑶𝟑 is liftable.

• Our results (using domain recursion)

• 𝑺𝟐𝑭𝑶𝟐 is liftable and subsumes 𝑭𝑶𝟐.
• Symmetric transitivity and S4 are liftable.

A New Liftable Class: 𝑺𝟐𝑭𝑶𝟐

Empirical Evaluation

0.001

0.01

0.1

1

10

100

1000

1 10 100
T

im
e

in
 s

ec
o

n
d

s

Population size

WFOMC-v3.0 Domain Recursion

0.001

0.01

0.1

1

10

100

1000

3 30 300 3000

T
im

e
in

 s
ec

o
n

d
s

Population size
WFOMC-v3.0 Domain Recursion

0.001

0.01

0.1

1

10

100

1000

1 10 100

T
im

e
in

 s
ec

o
n

d
s

Population size
WFOMC-v3.0 Domain Recursion

Theories from left to right:

• Volunteers & jobs

• Symmetric transitivity

• S4 clause

∀𝑗, 𝑣: 𝐼𝑛𝑣𝑜𝑙𝑣𝑒𝑠𝐺𝑎𝑠 𝑗 ∧ 𝑆𝑚𝑜𝑘𝑒𝑠(𝑣) ⇒ ¬𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑗, 𝑣
∀𝑣1, 𝑣2: 𝐴𝑈𝑋 𝑣1, 𝑣2 ⇔ 𝑆𝑚𝑜𝑘𝑒𝑠 𝑣1 ∧ 𝐹𝑟𝑖𝑒𝑛𝑑𝑠 𝑣1, 𝑣2 ⇒ 𝑆𝑚𝑜𝑘𝑒𝑠 𝑣2

∀𝑣1, 𝑣2 ≠ 𝑣1, 𝑗: ¬𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑗, 𝑣1 ∨ ¬𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑗, 𝑣2

∀𝑣, 𝑗1, 𝑗2 ≠ 𝑗1:¬𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑗1, 𝑣 ∨ ¬𝐴𝑠𝑠𝑔𝑖𝑛𝑒𝑑(𝑗2, 𝑣)

Example: Volunteers (v) & Jobs (j)

Clause1: Jobs involving gas are not assigned to smokers

Clause2: Smokers are mostly friends with each other

Clause3: Each volunteer is assigned to at most one job

Clause4: At most one volunteer is assigned to any job

∈ 𝛼 𝐴𝑠𝑠𝑔𝑖𝑛𝑒𝑑

∈ 𝐹𝑂2

• Let 𝑇 ∈ 𝐹𝑂2, 𝑆 𝑥,𝑚 ∈ 𝑇, and for any sentence 𝑐 ∈ 𝑇, if
𝑆 𝑥,𝑚 ∈ 𝑐, all other atoms in 𝑐 have at most one variable.

• Add any sentence 𝛼(𝑆) to 𝑇 having exactly 2 𝑆 atoms, e.g.:

• ∀𝑥,𝑚1, 𝑚2: 𝑆 𝑥,𝑚1 ∨ 𝑆(𝑥,𝑚2)
• ∀𝑥,𝑚1, 𝑚2: ¬𝑆 𝑥,𝑚1 ∨ 𝑆 𝑥,𝑚2

• ∀𝑥1, 𝑥2, 𝑚: 𝑆 𝑥1, 𝑚 ∨ 𝑆 𝑥2, 𝑚

• ∀𝑥1, 𝑥2, 𝑚1, 𝑚2: 𝑆 𝑥1, 𝑚1 ∨ 𝑆 𝑥2, 𝑚2

• …

• 𝑇 is in 𝑆2𝐹𝑂2

Here are a set R of rules for efficient WMC:

