
 

 

 

 

 

 

 

 

 

 

New Liftable Classes for First-Order Probabilistic Inference 
 

Seyed Mehran Kazemi, Angelika Kimmig, Guy Van den Broeck & David Poole 

Motivation 
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 Simple Probability Queries: 

 - P(First Card is a      ) = ? 

 - P(First Card is the Q of      ) = ? 

 - P(Last Card is a      | First Card is a      ) = ? 

 - … 

 

… 

Automating the query answering using, e.g., a Markov network 

• 52 variables (nodes), each taking 52 values 

• All variables connected to each other (no independence) 

• Classical reasoning algorithms require a table with 5252 

rows (tree-width = 52) 

 
Why is answering such simple queries so difficult for classical reasoning algorithms? 

• The cards are exchangeable: swapping two cards does not change the probability distribution 

• Classical reasoning algorithms do not exploit exchangeability 

• Lifted (first-order) inference algorithms aim at speeding up inference by exploiting exchangeability 

Weighted Model Counting (WMC) 

 

 

 

 

 

 

 

 

 

 

 

 

P(First Card is the Q of      ) = P(Second Card is the Q of      ) = …= P(Last Card is the Q of       )   

𝐴 ∨ 𝐵 ∨ 𝐶 
𝐶 ∨ 𝐷 ∨ 𝐸 

w(A=True) = 0.2 

w(A=False) = 0.6 

w(B=True) = 1.1 

w(B=False) = 1 

w(C=True) = 0.1 

w(C=False) = 0.7 

w(D=True) = 2.2 

w(D=False) = 0.5 

w(E=True) = 1.5 

w(E=False) = 2 

C 
False True 

𝐴 ∨ 𝐵 

𝐷 ∨ 𝐸 

𝐴 ∨ 𝐵 ∨ 𝑇𝑟𝑢𝑒 
𝑇𝑟𝑢𝑒 ∨ 𝐷 ∨ 𝐸 

* 

𝐴 ∨ 𝐵 𝐷 ∨ 𝐸 

Cache the results 

* 0.7 * 0.1 

∀𝑥: 𝑆𝑚𝑜𝑘𝑒𝑠 𝑥 ⇒ 𝐶𝑎𝑛𝑐𝑒𝑟(𝑥)    𝑥 ∈ 𝐴, 𝐵, 𝐶, 𝐷  

• 𝑆𝑚𝑜𝑘𝑒𝑠 𝐴 ⇒ 𝐶𝑎𝑛𝑐𝑒𝑟 𝐴  

• … 

• 𝑆𝑚𝑜𝑘𝑒𝑠 𝐷 ⇒ 𝐶𝑎𝑛𝑐𝑒𝑟 𝐷  

 

* 

Due to exchangeability: 𝑆𝑚𝑜𝑘𝑒𝑠 𝐴 ⇒ 𝐶𝑎𝑛𝑐𝑒𝑟 𝐴  
 

4 

∀𝑥, 𝑦: 𝑆𝑚𝑜𝑘𝑒𝑠 𝑥 ∧ 𝐹𝑟𝑖𝑒𝑛𝑑(𝑥, 𝑦) ⇒ 𝑆𝑚𝑜𝑘𝑒𝑠(𝑦) 

Smokes 

… 

Smokes 
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Due to exchangeability 

Deck of Cards Example Revisited 

 

 

 

 

• Instead of a Markov net, formulate the problem as follows: 
• ∀𝑝𝑜𝑠, ∃𝑐𝑎𝑟𝑑: 𝐼𝑛 𝑐𝑎𝑟𝑑, 𝑝𝑜𝑠  

• ∀𝑐𝑎𝑟𝑑, ∃𝑝𝑜𝑠: 𝐼𝑛 𝑐𝑎𝑟𝑑, 𝑝𝑜𝑠  

• ∀𝑝𝑜𝑠, 𝑐𝑎𝑟𝑑1, 𝑐𝑎𝑟𝑑2 ≠ 𝑐𝑎𝑟𝑑1:¬𝐼𝑛 𝑐𝑎𝑟𝑑1, 𝑝𝑜𝑠 ∨ ¬𝐼𝑛 𝑐𝑎𝑟𝑑2, 𝑝𝑜𝑠  

• This formulation reveals the exchangeabilities/symmetries of the problem  

𝑊𝑀𝐶 =  
𝑛

𝑘
 
𝑛

𝑙
𝑙 + 1 𝑘 −1 2𝑛−𝑘−𝑙

𝑛

𝑙

∈ 𝑂(𝑛2)

𝑛

𝑘=0

 

Using the rules in R (and some preprocessing): 

Note: Any query can be converted into calculating two WFOMCs 

Domain Recursion Rule 

 

 

 

 

 

 

 

Consider the theory:  ∀𝑥, 𝑦 ≠ 𝑥: 𝐹𝑟 𝑥, 𝑦 ⇒ 𝐹𝑟 𝑦, 𝑥           x, y ∈ {A,B,…,Z} 

Reveal/Separate one person (e.g., A) from the population:  

∀𝑦′: 𝐹𝑟 𝐴, 𝑦′ ⇒ 𝐹𝑟 𝑦′, 𝐴        ∀𝑥′: 𝐹𝑟 𝑥′, 𝐴 ⇒ 𝐹𝑟 𝐴, 𝑥′         ∀𝑥′, 𝑦′ ≠ 𝑥′: 𝐹𝑟 𝑥′, 𝑦′ ⇒ 𝐹𝑟 𝑦′, 𝑥′         𝑥′, 𝑦′ ∈ {𝐵,… , 𝑍}   

Apply the rules in R on 𝐹𝑟(𝐴, 𝑦′) and 𝐹𝑟(𝑥′, 𝐴):   ∀𝑥′, 𝑦′ ≠ 𝑥′: 𝐹𝑟 𝑥′, 𝑦′ ⇒ 𝐹𝑟 𝑦′, 𝑥′     𝑥′, 𝑦′ ∈ {𝐵,… , 𝑍} 

This theory is equivalent to the initial theory, with the population size reduced by one. 

Using a cache, the WFOMC of the above theory can be computed in polynomial time using dynamic programming. 

Theoretical Results 

FO2 FO3 S2FO2 

Symmetric Transitivity 

∀𝑥, 𝑦, 𝑧: 𝐹 𝑥, 𝑦 ∧ 𝐹 𝑦, 𝑧 ⇒ 𝐹 𝑥, 𝑧  

∀𝑥, 𝑦: 𝐹 𝑥, 𝑦 ⇒ 𝐹(𝑦, 𝑥) 

S4 Clause 

∀𝑥1, 𝑥2, 𝑦1, 𝑦2: 𝑆 𝑥1, 𝑦1 ∨ ¬𝑆 𝑥1, 𝑦2 ∨ 𝑆 𝑥2, 𝑦2 ∨ ¬𝑆(𝑥2, 𝑦1) 

FO4 

• Definitions: A theory is liftable if calculating its WMC is polynomial 

in sizes of the populations. A class C is liftable if every 𝑇 ∈ 𝐶 is 

liftable. 𝑭𝑶𝒊: class of theories with up to i variables per sentence. 
 

• Previously proved (without domain recursion) 

• 𝑭𝑶𝟐 is liftable. 

• Not every 𝑇 ∈ 𝑭𝑶𝟑 is liftable. 
 

• Our results (using domain recursion) 

• 𝑺𝟐𝑭𝑶𝟐 is liftable and subsumes 𝑭𝑶𝟐. 
• Symmetric transitivity and S4 are liftable. 

A New Liftable Class: 𝑺𝟐𝑭𝑶𝟐 

 

 

 

 

 

 

 

Empirical Evaluation 
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Theories from left to right: 

• Volunteers & jobs 

• Symmetric transitivity 

• S4 clause 

∀𝑗, 𝑣: 𝐼𝑛𝑣𝑜𝑙𝑣𝑒𝑠𝐺𝑎𝑠 𝑗 ∧ 𝑆𝑚𝑜𝑘𝑒𝑠(𝑣)  ⇒ ¬𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑗, 𝑣  
∀𝑣1, 𝑣2: 𝐴𝑈𝑋 𝑣1, 𝑣2 ⇔  𝑆𝑚𝑜𝑘𝑒𝑠 𝑣1 ∧ 𝐹𝑟𝑖𝑒𝑛𝑑𝑠 𝑣1, 𝑣2 ⇒ 𝑆𝑚𝑜𝑘𝑒𝑠 𝑣2  

∀𝑣1, 𝑣2 ≠ 𝑣1, 𝑗: ¬𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑗, 𝑣1 ∨ ¬𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑗, 𝑣2  

∀𝑣, 𝑗1, 𝑗2 ≠ 𝑗1:¬𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑗1, 𝑣 ∨ ¬𝐴𝑠𝑠𝑔𝑖𝑛𝑒𝑑(𝑗2, 𝑣) 

Example: Volunteers (v) & Jobs (j) 

Clause1: Jobs involving gas are not assigned to smokers 

Clause2: Smokers are mostly friends with each other 

Clause3: Each volunteer is assigned to at most one job 

Clause4: At most one volunteer is assigned to any job  

∈ 𝛼 𝐴𝑠𝑠𝑔𝑖𝑛𝑒𝑑  

∈ 𝐹𝑂2 

• Let 𝑇 ∈ 𝐹𝑂2, 𝑆 𝑥,𝑚 ∈ 𝑇, and for any sentence 𝑐 ∈ 𝑇, if 
𝑆 𝑥,𝑚 ∈ 𝑐, all other atoms in 𝑐 have at most one variable. 

• Add any sentence 𝛼(𝑆) to 𝑇 having exactly 2 𝑆 atoms, e.g.: 

• ∀𝑥,𝑚1, 𝑚2: 𝑆 𝑥,𝑚1 ∨ 𝑆(𝑥,𝑚2) 
• ∀𝑥,𝑚1, 𝑚2: ¬𝑆 𝑥,𝑚1 ∨ 𝑆 𝑥,𝑚2  

• ∀𝑥1, 𝑥2, 𝑚: 𝑆 𝑥1, 𝑚 ∨ 𝑆 𝑥2, 𝑚  

• ∀𝑥1, 𝑥2, 𝑚1, 𝑚2: 𝑆 𝑥1, 𝑚1 ∨ 𝑆 𝑥2, 𝑚2  

• … 

• 𝑇 is in 𝑆2𝐹𝑂2 

Here are a set R of rules for efficient WMC: 


