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Can be considered as an approach for learning RLR.

Unquantified RLRs can represent common aggregators.

• E.g.: AND, OR, noisy-AND, noisy-OR, majority, #trues > constant, %trues > constant

• Example – 𝑄 ≡ 𝑂𝑅(𝑅 ∗ ): , 𝑄, − 𝑀

〈 𝑥 , 𝑄 ∧ 𝑅 𝑥 , 2𝑀 〉

𝑒𝑟𝑟𝑜𝑟 𝑀→∞ → 0.

• With non-binary values: mean > constant, max > constant, max, mode=constant, mode

RLR: Representing Common Aggregators
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Examples

“A party is usually fun if you know at least one social person in the party.”

As RLR: 〈 𝑥 , 𝑓𝑢𝑛𝐹𝑜𝑟 𝑥 , − 5 〉

〈 𝑥, 𝑦 , 𝑓𝑢𝑛𝐹𝑜𝑟 𝑥 ∧ 𝑘𝑛𝑜𝑤𝑠 𝑥, 𝑦 ∧ 𝑠𝑜𝑐𝑖𝑎𝑙(𝑦), 10 〉

⟹ 𝑃 𝑓𝑢𝑛𝐹𝑜𝑟 𝑥 knows x,∗ , social ∗ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(−5 + 10𝑛𝑇)

𝑛𝑇 = #individuals y for which 𝑘𝑛𝑜𝑤𝑠 𝑥, 𝑦 ∧ 𝑠𝑜𝑐𝑖𝑎𝑙 𝑦 .

Weighted Formulae (WFs)

RLR [1] MLN

Notation: 〈 𝐿, 𝐹, 𝑤 〉
𝐹 = logic formula

𝑤 = weight

𝑓𝑟𝑒𝑒_𝑣𝑎𝑟𝑠(𝐹) ⊆ 𝐿 = set of logical variables

〈 𝐹, 𝑤〉
𝐹 = logic formula

𝑤 = weight

𝐅 instantiated 

for:

all bindings of individuals for 𝐿 all bindings of individuals 

for 𝑓𝑟𝑒𝑒_𝑣𝑎𝑟𝑠(𝐹)

Example:  RLR WF Equivalent MLN WF #Instantiations

〈 𝑥 , 𝑅 𝑥 ∧ 𝑄, 𝑤 〉 〈 𝑅 𝑥 ∧ 𝑄, 𝑤 〉 𝑥 = |𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑥 |

〈 𝑥, 𝑥′ , 𝑅 𝑥 ∧ 𝑄, 𝑤 〉 〈 𝑅 𝑥 ∧ 𝑄 ∧ 𝑡𝑟𝑢𝑒(x′), 𝑤 〉
or  〈 𝑅 𝑥 ∧ 𝑄 ∧ (𝑅 𝑥′ ∨ ¬𝑅 𝑥′ ), 𝑤 〉

𝑥 2

Logistic Regression (LR) Relational Logistic Regression (RLR) [1] MLN

Model: Directed Directed Undirected

Non-relational Relational Relational

Defines: Conditional prob. dist. (CPD) CPD (aggregator) Joint probability

Using: Pairwise terms  Weighted logic formulae Weighted logic formulae

Definition: 𝑃 𝑣𝑎𝑟 | 𝑝𝑎𝑟𝑒𝑛𝑡𝑠 ∝ 
𝑖

𝑒𝑤𝑖 𝑝𝑎𝑟𝑒𝑛𝑡𝑖 𝑃 𝑔𝑟𝑜𝑢𝑛𝑑 𝑣𝑎𝑟 | 𝑔𝑟𝑜𝑢𝑛𝑑 𝑝𝑎𝑟𝑒𝑛𝑡𝑠 ∝  

𝑎𝑙𝑙 𝑡𝑟𝑢𝑒 𝑓ormula 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑒𝑤𝑓𝑜𝑟𝑚𝑢𝑙𝑎

𝑃 𝑔𝑟𝑜𝑢𝑛𝑑 𝑣𝑎𝑟 | 𝑔𝑟𝑜𝑢𝑛𝑑 𝑝𝑎𝑟𝑒𝑛𝑡𝑠 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(  

𝑎𝑙𝑙 𝑡𝑟𝑢𝑒 𝑓. 𝑖𝑛𝑠.

𝑤𝑓𝑜𝑟𝑚𝑢𝑙𝑎 )

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑥 =
1

1 + 𝑒−𝑥

𝑃 𝑎𝑙𝑙 𝑔𝑟𝑜𝑢𝑛𝑑 𝑣𝑎𝑟𝑠 ∝  
𝑎𝑙𝑙 𝑡𝑟𝑢𝑒 𝑓𝑜𝑟𝑚𝑢𝑙𝑎
𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑒𝑤𝑓𝑜𝑟𝑚𝑢𝑙𝑎

LR vs. RLR vs. MLN

• RLR = relational extension of logistic regression (LR)

• RLR = directed analog of MLNs

• When all parents observed: MLN’s CPD = RLR’s CPD

• When using RLR for all PRVs: MLN’s joint distribution ≠ RLRs’ joint distribution

Unquantified RLRs:  Canonical Forms

• Unquantified RLR formulae may use: {¬,∧,∨,⊕ (XOR), …}

• Prop 3: RLRs using only {∧} are equally expressive.

• Corresponds to [2]’s “canonical parametrization with reference state ‘true’ ”

• Prop 4: RLRs using only {∨} are equally expressive.

• Related to [2]’s “canonical parametrization with reference state ‘false’ ”

• Note: RLRs using only {⊕} (XOR) are equally expressive.

• Corresponds to [2]’s “spectral parametrization”

RLR: Characterization

• Props 6,7 (if and only if):

CPD representable by RLR ⟺ CPD has the form:

𝑃 𝑔𝑟𝑜𝑢𝑛𝑑 𝑣𝑎𝑟 = 𝑡𝑟𝑢𝑒 | 𝑔𝑟𝑜𝑢𝑛𝑑 𝑝𝑎𝑟𝑒𝑛𝑡𝑠 =

𝑠𝑖𝑔𝑚𝑜𝑖𝑑( 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑜𝑓 𝑐𝑜𝑢𝑛𝑡𝑠 )

count = #tuples (of individuals), for which a formula of the parents is true.

The RLR: 𝑥, 𝑥′ , 𝑄 ∧ 𝑅 𝑥 ∧ 𝑅 𝑥′ , 10

𝑥 , 𝑄 ∧ ¬𝑅 𝑥 , − 20

, 𝑄 , − 45

Represents: 𝑃 𝑄 = 𝑡𝑟𝑢𝑒 | 𝑅(∗) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 10𝑛𝑇
2 − 20𝑛𝐹 − 45

𝑛𝑇 , 𝑛𝐹 = #𝑥’s such that 𝑅 𝑥 = 𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒

⟹ 𝑃 𝑄 = 𝑡𝑟𝑢𝑒 | 𝑅(∗) ≅ { 0 𝑖𝑓 𝑛𝑇
2 ≤ 2𝑛𝐹 + 4, 1 𝑖𝑓𝑛𝑇

2 ≥ 2𝑛𝐹 + 5 }.

In canonical {∧} form: 𝑥, 𝑥′ , 𝑄 ∧ 𝑅 𝑥 ∧ 𝑅 𝑥′ , 10

𝑥 , 𝑄, − 20

𝑥 , 𝑄 ∧ 𝑅 𝑥 , 20

, 𝑄 , − 45


