

Relational Logistic Regression: the Directed Analog of Markov Logic Networks Seyed Mehran Kazemi¹, David Buchman¹, Kristian Kersting², Sriraam Natarajan³, David Poole¹

1- http://cs.ubc.ca/~{smkazemi,davidbuc,poole}, 2-http://www-ai.cs.uni-dortmund.de/PERSONAL/kersting.html, 3-http://homes.soic.indiana.edu/natarasr/

LR vs. RLR vs. MLN

	Logistic Regression (LR)	Relational Logistic Regress
Model:	Directed	Directed
	Non-relational	Relational
Defines:	Conditional prob. dist. (CPD)	CPD (aggregator)
Using:	Pairwise terms	Weighted logic formulae
Definition:	$P(var parents) \propto \prod_i e^{w_i parent_i}$	$P(\text{ground var} \text{ground parents}) \propto all \text{ true } p$ $P(\text{ground var} \text{ground parents}) = sigma$ $sigmoid(x) = \frac{1}{1} + \frac{1}{1}$

- RLR = relational extension of logistic regression (LR)
- RLR = directed analog of MLNs
 - When all parents observed:
- MLN's CPD = RLR's CPD
- When using RLR for all PRVs: MLN's joint distribution \neq RLRs' joint distribution

Weighted Formulae (WFs)

	RLR [1]		MLN
Notation:	$\langle L, F, w \rangle$ F = logic formula w = weight $free_vars(F) \subseteq L = \text{set of logical variables}$		$\langle F, w \rangle$ F = logic formula w = weight
F instantiated for:	all bindings of individuals for <i>L</i>		all bindings of individuals for <i>free_vars</i> (<i>F</i>)
Example: R	LR WF	Equivalent MLN WF	#Instantiations
$\langle \{x\}, R(x) /$	$\langle Q, w \rangle$	$\langle R(x) \land Q, w \rangle$	x = population(x)
$\langle \{x, x'\}, R(x)$	$\land Q, w \rangle$	$\langle R(x) \land Q \land true(x'), w \rangle$ or $\langle R(x) \land Q \land (R(x') \lor \neg R(x')), w \rangle$	<i>x</i> ²

sion (RLR) [1]	MLN
	Undirected
	Relational
	Joint probability
	Weighted logic formulae
$ \prod_{formula instances} e^{w_{formula}} $ $ oid(\sum_{all true f. ins.} w_{formula}) $ $ \frac{1}{+e^{-x}} $	$P(all ground vars) \propto \prod_{\substack{all true formula \\ instances}} e^{w_{formula}}$

Unquantified RLRs: Canonical Forms

• Unquantified RLR formulae may use: $\{\neg, \land, \lor, \bigoplus (XOR), \ldots\}$

- Prop 3: RLRs using only $\{\Lambda\}$ are equally expressive.
 - Corresponds to [2]'s "canonical parametrization with reference state 'true'"
- Prop 4: RLRs using only {V} are equally expressive.
 - Related to [2]'s "canonical parametrization with reference state 'false'"
- RLRs using only $\{\bigoplus\}$ (XOR) are equally expressive. Note:
 - Corresponds to [2]'s "spectral parametrization"

RLR: Characterization

- Props 6,7 (if and only if): •
 - CPD representable by RLR \Leftrightarrow CPD has the form:
 - P(ground var = true | ground parents) =

sigmoid(polynomial of counts)

count = #tuples (of individuals), for which a formula of the parents is true.

RLR: Representing Common Aggregators

Unquantified RLRs can represent common aggregators.

E.g.: AND, OR, noisy-AND, noisy-OR, majority, #trues > constant, %trues > constant

• Example
$$-Q \equiv OR(R(*))$$
: $\langle \{ \}, Q, -M \rangle$

$$\langle \{x\}, Q \land R(x), 2M \rangle$$

$$ror_{M\to\infty} \to 0.$$

eri

With non-binary values: mean > constant, max > constant, max, mode=constant, mode

Examples

"A party is usually fun if you know at least one social person in the party." As RLR: $\langle \{x\}, funFor(x), -5 \rangle$ $\langle \{x, y\}, funFor(x) \land knows(x, y) \land social(y), 10 \rangle$ $\Rightarrow P(funFor(x) | knows(x,*), social(*)) = sigmoid(-5 + 10n_T)$ n_T = #individuals y for which $knows(x, y) \land social(y)$.

REFERENCES

- 1. Kazemi, S.M., Buchman, D., Kersting, K., Natarajan, S., and Poole, D., "Relational logistic regression", In Proc. 14th International Conference on Principles of Knowledge Representation and Reasoning (KR), 2014. The paper covered here.
- 2. Buchman, D., Schmidt, M., Mohamed, S., Poole, D., de Freitas, N., "On Sparse, Spectral and Other Parameterizations of Binary Probabilistic Models", in 15th International Conference on Artificial Intelligence and Statistics (AI-STATS), 2012. **Canonical models (and learning) for the non-relational, undirected case.**
- 3. Popescul, A., Ungar, L.H., Lawrence, S., and Pennock, D.M., "Towards structural logistic regression: Combining relational and statistical learning", In KDD Workshop on Multi-relational Data Mining, 2002.

Learning LR for relational domains using propositionalization.

4. Huynh, T.N., and Mooney R.J., "Discriminative structure and parameter learning for Markov logic networks", In Proc. of the International Conference on Machine Learning (ICML), 2008.

Can be considered as an approach for learning RLR.