

LR vs. RLR vs. MLN

	Logistic Regression (LR)	Relational Logistic Regression (RLR) [1]	MLN	
Model:	Directed	Directed	Undirected	
	Non-relational	Relational	Relational	
Defines:	Conditional prob. dist. (CPD)	CPD (aggregator)	Joint probability	
Using:	Pairwise terms	Weighted logic formulae	Weighted logic formulae	
Definition:	$P(\text { var } \mid \text { parents }) \propto \prod_{i} e^{w_{i} \text { parent }_{i}}$	$\begin{gathered} P(\text { ground var } \mid \text { ground parents }) \propto \prod_{\text {all true formula instances }} e^{w_{\text {formula }}} \\ P(\text { ground var } \mid \text { ground parents })=\operatorname{sigmoid}\left(\sum_{\text {all true f } f \text { ins. }} w_{\text {formula }}\right) \\ \operatorname{sigmoid}(x)=\frac{1}{1+e^{-x}} \end{gathered}$	$P(\text { all ground vars }) \propto \prod_{\substack{\text { all true formula } \\ \text { instances }}}$	$e^{w_{\text {formula }}}$

RLR $=$ relational extension of logistic regression (LR)
RLR = directed analog of MLNs

- When all parents observed: MLN's CPD = RLR's CPD
- When using RLR for all PRVs: MLN's joint distribution \neq RLRs' joint distribution

Unquantified RLRs: Canonical Forms

- Unquantified RLR formulae may use: $\{\neg, \wedge, \mathrm{V}, \oplus($ XOR $), \ldots\}$
- Prop 3: RLRs using only $\{\wedge\}$ are equally expressive.
- Corresponds to [2]'s "canonical parametrization with reference state 'true'"
- Prop 4: RLRs using only $\{\mathrm{V}\}$ are equally expressive.
- Related to [2]'s "canonical parametrization with reference state 'false",
- Note: RLRs using only $\{\oplus\}(\mathbf{X O R})$ are equally expressive.
- Corresponds to [2]'s "spectral parametrization"

RLR: Characterization

- Props 6,7 (if and only if):

CPD representable by RLR \Leftrightarrow CPD has the form
$P($ ground var $=$ true \mid ground parents $)=$
sigmoid (polynomial of counts)
count $=$ \#tuples (of individuals), for which a formula of the parents is true

RLR: Representing Common Aggregators

Unquantified RLRs can represent common aggregators.

- E.g.: AND, OR, noisy-AND, noisy-OR, majority, \#trues > constant, \%trues > constant
- Example $-Q \equiv O R(R(*)):\langle\{ \}, Q,-M\rangle$
$\langle\{x\}, Q \wedge R(x), 2 M\rangle$
error $_{M \rightarrow \infty} \rightarrow 0$.
With non-binary values: mean >constant, max >constant, max, mode=constant, mode

Examples

"A party is usually fun if you know at least one social person in the party." As RLR: $\langle\{x\}$, funFor $(x),-5\rangle$ $\langle\{x, y\}$, funFor $(x) \wedge$ knows $(x, y) \wedge \operatorname{social}(y), 10\rangle$
$\Rightarrow P($ funFor $(x) \mid \operatorname{knows}(\mathrm{x}, *), \operatorname{social}(*))=\operatorname{sigmoid}\left(-5+10 n_{T}\right)$ $n_{T}=\#$ individuals y for which $\operatorname{knows}(x, y) \wedge \operatorname{social}(y)$

REFERENCES

1. Kazemi, S.M., Buchman, D., Kersting, K., Natarajan, S., and Poole, D., "Relational logistic regression", In Proc. $14^{\text {th }}$ International Conference on Principles of Knowledge Representation and Reasoning (KR), 2014. The paper covered here.
2. Buchman, D., Schmidt, M., Mohamed, S., Poole, D., de Freitas, N., "On Sparse, Spectral and Other Parameterizations of Binary Probabilistic Models", in 15th International Conference on Artificial Intelligence and Statistics (AI-STATS), 2012. Canonical models (and learning) for the non-relational, undirected case.
Popescul, A., Ungar, L.H., Lawrence, S., and Pennock, D.M., "Towards structural logistic regression: Combining relational and statistical learning", In KDD Workshop on Multi-relational Data Mining, 2002
Learning LR for relational domains using propositionalization.
3. Huynh, T.N., and Mooney R.J., "Discriminative structure and parameter learning for Markov logic networks", In Proc. of the International Conference on Machine Learning (ICML), 2008.
Can be considered as an approach for learning RLR.
