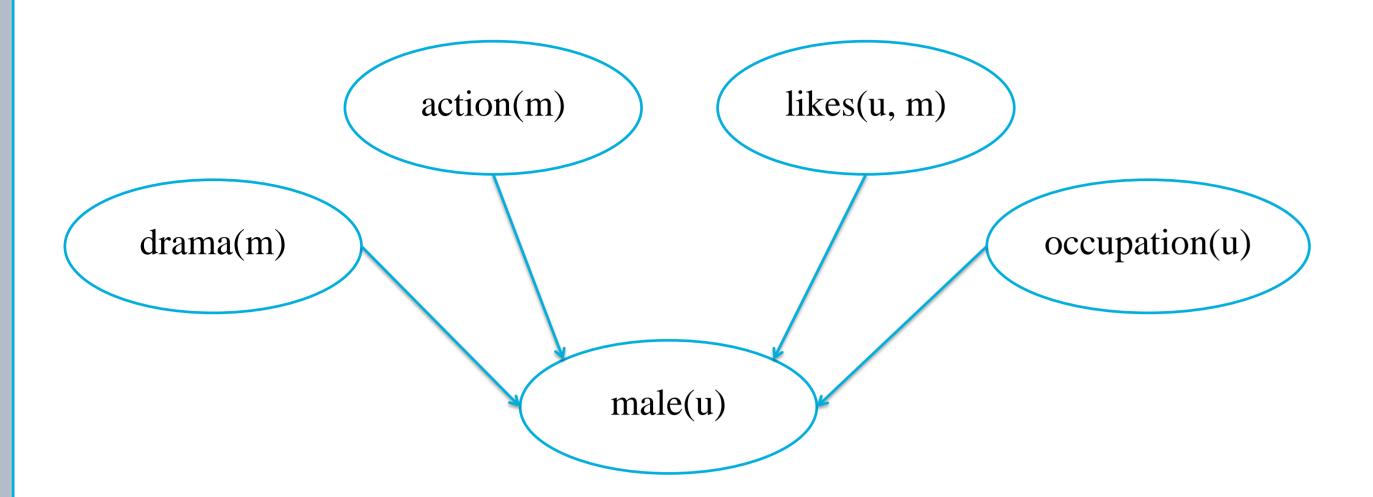


A Learning Algorithm for Relational Logistic Regression Preliminary Results

Bahare Fatemi, Seyed Mehran Kazemi & David Poole

Relational Logistic Regression (RLR)

• Relational Logistic Regression (RLR) defines probability distributions using weighted formulas (WFs).



• Example WFs for defining the conditional probability distribution (CPD) of male(u):

true: w₀
ikes(u m) A action(

 $likes(u,m) \land action(m): w_1$

 $likes(u,m) \wedge drama(m): w_2$

 $occupation(u) = doctor: w_3$

• Sample data:

	likes(u,m)				
	m_1	m_2	m_3	m_4	
u_1	V	V	V	×	
u_2	×	×			

u	occupation(u)
u_1	homemaker
u_2	doctor

m	action(m)	m	drama(m)
m_1	×	m_1	
m_2	×	m_2	
m_3	V	m_3	×
m_4	V	m_4	×

u	male(u)
u_1	×
u_2	

• Sufficient statistics for $u = u_1, u_2$:

$$true = 1$$
 $true = 1$ $\#m: likes(u_1, m) \land action(m) = 1$ $\#m: likes(u_2, m) \land action(m) = 2$ $\#m: likes(u_1, m) \land drama(m) = 2$ $\#m: likes(u_2, m) \land drama(m) = 0$ $(occupation(u_1) = doctor) = 0$ $(occupation(u_2) = doctor) = 1$

• The model implies P(male(u)) is:

$$P(male(u_1)) = sig(w_0 * 1 + w_1 * 1 + w_2 * 2 + w_3 * 0)$$

$$P(male(u_2)) = sig(w_0 * 1 + w_1 * 2 + w_2 * 0 + w_3 * 1)$$

• In general:

$$P(male(u)) = sig(w_0 * 1$$

$$+ w_1 * (\#m: likes(u, m) \land action(m))$$

$$+ w_2 * (\#m: likes(u, m) \land drama(m))$$

$$+ w_3 * (occupation(u) = doctor))$$

Parameter Learning

- Convert the data into a form that can be used by traditional ML learners for each CPD.
- Example of the converted data for CPD of male(u)

u	true	m: likes(u,m) ∧ action(m)	m: likes(u,m) ∧ drama(m)	occupation(u) = doctor	male(u)
u_1	1	1	2	0	false
u_2	1	2	0	1	true

• Using logistic regression, we can learn the weights of these formulas.

Structure Learning

- Hierarchical assumption:
 - A WF is defined to be *useless* if
 - ☐ An L-1 regularized learner learned a zero weight for it, or
 - ☐ A subset of it is useless
- Search Strategy
 - We start with WFs with at most one unary atom like:

 $true: w_0$ $likes(u,m) \land action(m): w_1$ $likes(u,m) \land \neg action(m): w_2$ $likes(u,m) \land drama(m): w_3$ $likes(u,m) \land \neg drama(m): w_4$ $occupation(u) = homemaker: w_5$ $occupation(u) = doctor: w_6$

• Consider L1-regularized logistic regression learns the weights as:

$$w_0, w_1, w_3 \neq 0$$
, and $w_2, w_4, w_5, w_6 = 0$

Based on the hierarchical assumption non-zero weights indicate useful WFs and zero weights indicate useless WFs.

 $true: w_0 \neq 0 \Rightarrow useful$ $likes(u,m) \land action(m): w_1 \neq 0 \Rightarrow useful$ $likes(u,m) \land \neg action(m): w_2 = 0 \Rightarrow useless$ $likes(u,m) \land drama(m): w_3 \neq 0 \Rightarrow useful$ $likes(u,m) \land \neg drama(m): w_4 = 0 \Rightarrow useless$ $occupation(u) = homemaker: w_5 = 0 \Rightarrow useless$ $occupation(u) = doctor: w_6 = 0 \Rightarrow useless$

• Conjoining useful WFs gives the feature below:

 $likes(u,m) \wedge drama(m) \wedge action(m): w_7$

Updated list of WFs:

 $true: w_0$ $likes(u,m) \land action(m): w_1$ $likes(u,m) \land drama(m): w_3$ $likes(u,m) \land drama(m) \land action(m): w_7$

• Hierarchical assumption forbids the below WF:

 $likes(u,m) \land action(m) \land occupation(u) = doctor$

Hidden Features

- Each object may contain useful information that has not been observed
- Example: in predicting gender of people, some movies may only be appealing to males and some only to females
- Learning Hidden Features
 - We add continues unary atoms such as H(m)
- Random initial values
- Learn their values using stochastic gradient descent using L1-regularization

Results

- Dataset: Movielens data-set with the modification made by Schulte and Khosravi
- Data contains 940 users and 1682 movies
- Predicting age and gender of users based on their attributes, the movies they have rated (ignoring the actual rating) and movie attributes
- The learning algorithms are:

Baseline: predicting the mean of the data

LR is the standard logistic regression

RLR-Base: RLR without use of hidden Features

RLR-H: RLR with considering one hidden feature.

- Accuracy: the percentage of correctly classified instances (higher accuracies indicate better performance)
- Average conditional log likelihood (ACLL) is computed as follows:

 $ACLL = \frac{1}{m} \sum_{i=1}^{m} \ln(P(male(u_i)|data, model))$ (higher accuracies indicate better performance)

		Learning Algorithm				
		Baseline	LR	RDN-Boost	RLR-Base	RLR-H
Gender	ACLL	-0.6020	-0.5694	-0.5947	-0.5368	-0.5046
	Accuracy	71.0638%	71.383%	70.6383%	73.8298%	77.3404%
Age	ACLL	-0.6733	-0.5242	-0.5299	-0.5166	-0.5090
	Accuracy	60.1064%	76.0638%	76.4893%	77.1277%	77.0212%