

Knowledge Compilation for Lifted Probabilistic Inference
Compiling to a Low-Level Program

Seyed Mehran Kazemi & David Poole

Calculating Z by Lifted Search

Markov Logic Networks

• Weighted Formula (WF): < 𝑥,𝑚 , ¬𝑙𝑖𝑘𝑒𝑠 𝑥,𝑚 ∨ 𝑟𝑎𝑡𝑒𝑠 𝑥,𝑚 , 1.4 >

• A Markov logic network (MLN) consists of a set of weighted formulae:

𝑊𝐹1: < 𝑥,𝑚 ,¬𝑙𝑖𝑘𝑒𝑠 𝑥,𝑚 ∨ 𝑟𝑎𝑡𝑒𝑠 𝑥,𝑚 , 0.8 >

𝑊𝐹2: < 𝑥,𝑚 ,¬𝑐𝑜𝑚𝑒𝑑𝑦 𝑚 ∨ 𝑙𝑖𝑘𝑒𝑠 𝑥,𝑚 , 0.6 >

• For a world 𝜔 in which 𝑙𝑖𝑘𝑒𝑠 𝑋1,𝑀1 , 𝑟𝑎𝑡𝑒𝑠 𝑋1,𝑀2 , 𝑐𝑜𝑚𝑒𝑑𝑦 𝑀1 , 𝑐𝑜𝑚𝑒𝑑𝑦(𝑀2) and

the other atoms are false:

 𝑃 𝜔 =
1

𝑍
exp 24 ∗ 0.8 ∗ exp (16 ∗ 0.6)

𝑍 = exp 𝜂 𝜔′,𝑊𝐹1 ∗ 0.8 ∗ exp (𝜂 𝜔
′,𝑊𝐹2 ∗ 0.6)

𝜔′

Logical variables A first-order clause Weight

𝑥 ∈ {𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5}
𝑚 ∈ {𝑀1, 𝑀2, 𝑀3, 𝑀4, 𝑀5}

𝜂 𝜔,𝑊𝐹1 = 24
𝜂 𝜔,𝑊𝐹2 = 16

< 𝑥,𝑚 ,¬𝑙 𝑥,𝑚 ∨ 𝑟 𝑥,𝑚 , 0.8 >

< 𝑥,𝑚 ,¬𝑐 𝑚 ∨ 𝑙 𝑥,𝑚 , 0.6 >

Z

< 𝑥 ,¬𝑙 𝑥,𝑀1 ∨ 𝑟 𝑥,𝑀1 , 0.8 >

< 𝑥 ,¬𝑐 𝑀1 ∨ 𝑙 𝑥,𝑀1 , 0.6 > Z pow(, 5)

Lifted

decomposition

on m

Lifted case

analysis on

𝑙(𝑥,𝑀1)
0

1 2 3 4
5

+ The i-th branch represents

𝑙(𝑥,𝑀1) is true for exactly i/5

individuals and must be

multiplied by C(5,i): the number

of ways one can choose i from 5

individuals to be true.

< 𝑥1 , 𝑓𝑎𝑙𝑠𝑒 ∨ 𝑟 𝑥1, 𝑀1 , 0.8 >

< 𝑥2 , 𝑡𝑟𝑢𝑒 ∨ 𝑟 𝑥2, 𝑀1 , 0.8 >

< 𝑥1 , ¬𝑐 𝑀1 ∨ 𝑡𝑟𝑢𝑒, 0.6 >

< 𝑥2 , ¬𝑐 𝑀1 ∨ 𝑓𝑎𝑙𝑠𝑒, 0.6 >
Z

x1 represents the 2 individuals

for which 𝑙(𝑥,𝑀1) is true and

x2 represents the other 3

individuals

Evaluating

and

simplifying

WFs

Z
< 𝑥1 , 𝑟 𝑥1, 𝑀1 , 0.8 >

< 𝑥2 , ¬𝑐 𝑀1 , 0.6 >

∗ (0.8 ∗ 𝑝𝑜𝑤 2, 𝑥2)
∗ (0.6 ∗ 𝑝𝑜𝑤 2, 𝑥1)
∗ 𝑝𝑜𝑤(2, 𝑥2)

Z < 𝑥1 , 𝑟 𝑥1, 𝑀1 , 0.8 > Z < 𝑥2 , ¬𝑐 𝑀1 , 0.6 >

*
Decomposition

Z < 𝑥2 , 𝑓𝑎𝑙𝑠𝑒, 0.6 >

+

Z < 𝑥2 , 𝑡𝑟𝑢𝑒, 0.6 >

Case

analysis

Z Z ∗ (0.6 ∗
 𝑝𝑜𝑤 2, 𝑥2)

Results on Lifted Inference

Calculating Z by Knowledge Compilation

Compiling to a Data Structure Compiling to C++

pow(|m|)

|m| = 5, |x| = 5

Lifted case

analysis with

(|x|+1) branches

i-th branch

*

𝑝𝑜𝑤 2, 𝑥 − 𝑖
*

+

∗ 𝑝𝑜𝑤 2, 𝑥2

* *

1 𝑝𝑜𝑤(2, 𝑥 − 𝑖) 1 0.6 ∗ 𝑝𝑜𝑤(2, 𝑥 − 𝑖)

pop_m = 5;

pop_x = 5;

C++ code which stores Z of the sub-graph in v2

v1 = pow(v2, pop_m);

v2 = 0;

for(int i = 0; i <= pop_x; i++){

 C++ code which stores Z of the i-th sub-graph in v3

 v2 += choose(pop_x, i) * v3;

}

C++ code which stores Z of the rightmost sub-graph in v4

 v3 = (0.8 * pow(2, pop_x - i)) *

 (0.6 * pow(2, i)) * pow(2, pop_x - i) * v4;

C++ code which stores Z of the leftmost sub-graph in v5

C++ code which stores Z of the rightmost sub-graph in v6

v4 = v5 * v6;

C++ code which stores Z of the leftmost sub-graph in v7

C++ code which stores Z of the rightmost sub-graph in v8

v6 = v7 + v8;

v7 = pow(2, pop_x - i);

v8 = 0.6 * pow(2, pop_x - i);

After generating and running the above C++ program, the Z

of the MLN will be stored in v1.

• We comparing “compile to C++” with weighted first-order model counting (WFOMC) and

probabilistic theorem proving (PTP), the state of the art lifted inference softwares, on different

benchmarks:

 PTP does lifted inference using lifted search.

 WFOMC does lifted inference by compiling to a data structure.

 We do lifted inference by compiling to a low-level language (e.g. C/C++) instead of a data

structure.

• The following 5 diagrams correspond (from left to right) to the benchmarks below:

1) 𝑔𝑜𝑜𝑑𝑃𝑟𝑜𝑓 𝑥 ∧ 𝑔𝑜𝑜𝑑𝑆𝑡𝑢𝑑𝑒𝑛𝑡 𝑦 ∧ 𝑎𝑑𝑣𝑖𝑠𝑒𝑠 𝑥, 𝑦 ⇒ 𝑓𝑢𝑡𝑢𝑟𝑒𝑃𝑟𝑜𝑓 𝑦 , 𝑐𝑜𝑎𝑢𝑡ℎ𝑜𝑟 𝑥, 𝑦 ⇒

𝑎𝑑𝑣𝑖𝑠𝑒𝑠 𝑥, 𝑦 , varying |y|

2) 𝑆ame as (1) but varying |x| and |y| at the same time

3) 𝑎 𝑥 ∧ 𝑏 𝑦 , 𝑎 𝑥 ∧ 𝑐 𝑥 , 𝑏 𝑦 ∧ 𝑑 𝑦 , 𝑐 𝑥 ∧ 𝑑 𝑦 , 𝑒 ∧ 𝑑(𝑦), varying |y|

4) 𝑆ame as (3) but varying |x| and |y| at the same time

5) 𝑎 𝑥 ∧ 𝑏 𝑥 ∧ 𝑐 𝑥,𝑚 ∧ 𝑑 𝑚 ∧ 𝑒 𝑚 ∧ 𝑓, varying |x| and |m| at the same time

0.1

1

10

100

1000

10 100 1000 10000

T
im

e
in

 s
ec

o
n

d
s

Population size

Compile to C++ WFOMC PTP

0.1

1

10

100

1000

10 100 1000 10000

T
im

e
in

 s
ec

o
n

d
s

Population size

Compile to C++ WFOMC PTP

0.1

1

10

100

10 100 1000 10000

T
im

e
in

 s
ec

o
n

d
s

Population size

Compile to C++ WFOMC PTP

0.1

1

10

100

1000

10 100 1000 10000

T
im

e
in

 s
ec

o
n

d
s

Population size

Compile to C++ WFOMC PTP

0.1

1

10

100

1000

10 100 1000 10000 100000

T
im

e
in

 s
ec

o
n

d
s

Population size

Compile to C++ WFOMC PTP

…

…

References

1) Matthew Richardson and Pedro Domingos. 2006. Markov logic networks. Machine Learning 62:107–136.

2) Guy Van den Broeck, Nima Taghipour, Wannes Meert, Jesse Davis, and Luc De Raedt. Lifted probabilistic inference by first-order knowledge compilation. In Proceedings of International Joint Conference on AI (IJCAI) , pages 2178–

2185, 2011.

3) Vibhav Gogate and Pedro Domingos. Probabilistic theorem proving. In Proceedings of the Conference on Uncertainty in Artificial Intelligence, pages 256–265, 2011.

