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Comparing the Three Approaches (From KR-2016)

L2C (our compiler) compiles to C++ programs WFOMC compiles to data structures PTP uses lifted search
http://github.com/Mehran-k/L2C https://code.google.com/archive/p/alchemy-2/ https://code.google.com/archive/p/alchemy-2/
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Why is Compiling to Low-Level Languages more Efficient?

For a theory, lifted inference requires the same operations using lifted search « Comparing 4 approaches: 1- compile to C++, then compile and optimize the C++ programs (-O3 is the optimizer)
(LS), compile to a data structure (DS), or to a low-level program (LP). 2- compile to C++, then compile the C++ programs without optimization

Question: Why are the runtimes so different if the operations are the same? 3- compile to C++, then interpret the C++ programs

Here’s how the three approaches can be viewed: 4- compiling to data structures and executing the data structure (WFOMC).

) Interpreter Compilation into target circuits/programs takes approximately the same time, so is excluded.
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Hypothesis: The extra compilation & optimization steps speedup the reasoning When 'X'ZSOS{);?Q&B Inerpret nor WFOMC
Validation: Suppose for the LP we run the C++ programs using an interpreted * For the above three benchmarks:
instead of a compiler: « Compiling the compiled operations offers an average of 175x speedup compared to interpreting them.
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If the extra compilation & optimization steps are the reason behind the speedup,

Interpreting the C++ programs must perform similarly as compiling to data
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