Why 1s Compiling Lifted Inference into a Low-Level
L anguage so Effective?

Seyed Mehran Kazemi & David Poole
http://www.cs.ubc.ca/~smkazemi https://www.cs.ubc.ca/~poole

Calculating Z by Lifted Search Calculating Z by Knowledge Compilation
[Logical VariableS] [Afirst-ordew ‘ Weight \ Compiling to Data Structure Compiling to C++ Programs
L~ =

—

Z <{x,m},=l(x,m)vr(x,m)0.8 >

mj=5, [X| =5 e
< {x,m},—=c(m) Vv l(x,m),0.6 > m| X pop_m = 5;

Lifted . 00p_X = 5
decomposition
on m _ o To the power
of |m|
pOW(Z < x}, 2l My) Vir(x, My), 0.8 > 5 » C++ code which stores Z of the sub-graph in v2
< {x}, _IC(Ml) \% l(x, Ml), 0.6 > y | vl = pow(v2, pop_m):
Lifted case The i-th branch represents Llrtec.l Cas.ih
analysis on [(x,M,) is true for exactly i/5 dnalysis wi
(2, My) 5 individuals and must be X|+1) branches v2=0
multiplied by C(5,1): the number . for(inti = 0; i <= pop_x; i++){
pfdwqyés olne ca;)n choose 1 from 5 I-th branch * (C++ code which stores Z of the i-th sub-graph in v3
individuals to be true.
v

<1}, false Vr(x,, My),0.8 > X, represents the 2 individuals
< W) true Vr(xg, My),08 > | o0 \which [(x, M;) is true and

Z <A{x1}, 7c(My) V true, 0.6 > X, represents the other 3
<{x,},—~c(M;)V false, 0.6 > individuals

v2 += choose(pop_X, 1) * v3,)
by

* C++ code which stores Z of the rightmost sub-graph in v4
v3 = (0.8 * pow(2, pop X -1i)) *
(0.6 * pow(2, i)) * pow(2, pop_X - i) * v4;

Evaluating
and

— =

simplifying _ -
WFs < {x;:},7(x, M;),08 > | (08 xpow(2, |x,]))
| < (x,}, ~c(M;),0.6 > | *(0.6 xpow(2,1x,]))

* pow (2, |x;|))
Decomposition o o » C++ code which stores Z of the leftmost sub-graph in v5
—-» C++ code which stores Z of the rightmost sub-graph in v6
v4 = v5 * V0,
- . - - v
Z |< {x},7(x;, M,),08 > Z |< (2,3, ~c(My),0.6 >

- E

Comparing the Three Approaches (From KR-2016)

L2C (our compiler) compiles to C++ programs WFOMC compiles to data structures PTP uses lifted search
http://github.com/Mehran-k/L2C https://code.google.com/archive/p/alchemy-2/ https://code.google.com/archive/p/alchemy-2/
goodProf(x) A goodStu(y)
A advises(x,y) = futurePr_of(y) Simi_lar to the first benchmark _bUt a(x)Ab(y) alx)Ac(x) b(y) Ad(y) Similar to the third benchmark but varying a(x)ANb(x) Ac(x,y) Ad(y) Ahe(y¥) A f
coauth(x,y) = advises(x,y), varying |y| varying |x| and |y| at the same time c(x) Ad(y) eAd(y), varying ly| x| and |y| at the same time varying |x| and |y| at the same time

100 1000 1000 1000 1000

/
)

10
l T T T 1
1000 10000 100000

- . . - - . . . 0.1 ’ - - 0.1
Population size Population size Population size Population size Population size

[ERN
o
o

Time in seconds

!
1
+
L

=
o
=
o
o
-
o |
o
o

Time in seconds
Time in seconds
5
|
Time in seconds
S
|
Time in seconds
S

10000 10 100 1000 10000

].IO 100 1000 10000

T 100 1000 10000
0.1

o

[N
o
-

Why is Compiling to Low-Level Languages more Efficient?

For a theory, lifted inference requires the same operations using lifted search « Comparing 4 approaches: 1- compile to C++, then compile and optimize the C++ programs (-O3 is the optimizer)
(LS), compile to a data structure (DS), or to a low-level program (LP). 2- compile to C++, then compile the C++ programs without optimization

Question: Why are the runtimes so different if the operations are the same? 3- compile to C++, then interpret the C++ programs

Here’s how the three approaches can be viewed: 4- compiling to data structures and executing the data structure (WFOMC).

) Interpreter Compilation into target circuits/programs takes approximately the same time, so is excluded.
LS: [OperatlonsJ >[Result]

a@) Ab) al)Ac() bBOIAAY) () Ab) AcGoy) AdO) AeGHAf AP ADI Ac) Adlxy) Aey)

The date St c(x) Ad(y) eAd(y), varying |x|and |y| varying |x| and |y| at the same time A é\ g (yt)t;\\ h o
, ——Compiler | Low-level | Interpreter . - _varying |x| and |y| at the same time
DS: [Operatlons operations >[Result] % /

) - /)2{ A
The C++ program Machine code

Compiler Low-leveI\CompiIer 4 M) Execute /
> Ore >[Result]

operations | Optimizer | Low-level

[y
o

J

1000 10000 10000

=
o

0.1 g

LP: [Operations

0.1 >

o
[N

/ -
10 /
1 T T T
10 10000) | / |
: 10 1000

Time in seconds
Time in seconds

Time in seconds

J 0.01
and | |
optimized - Population size o Population size O'Ol Population size
\operationsj Compile with -O3 ~=-Compile without -O3 Compile with -O3 -=-Compile without -O3 Compile with -O3 -=-Compile without -O3
- - - o - . Interpret WEOMC Interpret — WEOMC Interpret | -<WFOMC
Hypothesis: The extra compilation & optimization steps speedup the reasoning When 'X'ZSOS{);?Q&B Inerpret nor WFOMC
Validation: Suppose for the LP we run the C++ programs using an interpreted * For the above three benchmarks:
instead of a compiler: « Compiling the compiled operations offers an average of 175x speedup compared to interpreting them.
The G+ pmgraﬁ » Compiling & optimizing the compiled operations offers an average of 2.3x speedup compared to only compiling
) Compiler_| Low-level | Interpreter >[] the compiled operations
[Operatlons) operations J Result P P :

If the extra compilation & optimization steps are the reason behind the speedup,

Interpreting the C++ programs must perform similarly as compiling to data

1) Seyed Mehran Kazemi and David Poole. Knowledge compilation for lifted probabilistic inference: Compiling to a low-level language , In KR-2016.
structures. 2) Guy Van den Broeck, Nima Taghipour, Wannes Meert, Jesse Davis, and Luc De Raedt. Lifted probabilistic inference by first-order knowledge compilation. In

: ; [JCAI-2011.
Test: See the results on the “ght' 3) Vibhav Gogate and Pedro Domingos. Probabilistic theorem proving. In UAI-2011.

