
Why is Compiling Lifted Inference into a Low-Level

Language so Effective?

Seyed Mehran Kazemi & David Poole

http://www.cs.ubc.ca/~smkazemi https://www.cs.ubc.ca/~poole

Calculating Z by Lifted Search

Z

< 𝑥 , ¬𝑙 𝑥, 𝑀1 ∨ 𝑟 𝑥, 𝑀1 , 0.8 >

< 𝑥 , ¬𝑐 𝑀1 ∨ 𝑙 𝑥, 𝑀1 , 0.6 > Z pow(, 5)

Lifted

decomposition

on m

Lifted case

analysis on

𝑙(𝑥, 𝑀1)
0

1 2 3 4
5

+ The i-th branch represents

𝑙(𝑥, 𝑀1) is true for exactly i/5

individuals and must be

multiplied by C(5,i): the number

of ways one can choose i from 5

individuals to be true.

< 𝑥1 , 𝑓𝑎𝑙𝑠𝑒 ∨ 𝑟 𝑥1, 𝑀1 , 0.8 >

< 𝑥2 , 𝑡𝑟𝑢𝑒 ∨ 𝑟 𝑥2, 𝑀1 , 0.8 >

< 𝑥1 , ¬𝑐 𝑀1 ∨ 𝑡𝑟𝑢𝑒, 0.6 >

< 𝑥2 , ¬𝑐 𝑀1 ∨ 𝑓𝑎𝑙𝑠𝑒, 0.6 >
Z

x1 represents the 2 individuals

for which 𝑙(𝑥, 𝑀1) is true and

x2 represents the other 3

individuals Evaluating

and

simplifying

WFs

Z
< 𝑥1 , 𝑟 𝑥1, 𝑀1 , 0.8 >

< 𝑥2 , ¬𝑐 𝑀1 , 0.6 >

∗ (0.8 ∗ 𝑝𝑜𝑤 2, 𝑥2)
∗ (0.6 ∗ 𝑝𝑜𝑤 2, 𝑥1)

∗ 𝑝𝑜𝑤(2, 𝑥2)

Z < 𝑥1 , 𝑟 𝑥1, 𝑀1 , 0.8 > Z < 𝑥2 , ¬𝑐 𝑀1 , 0.6 >

*
Decomposition

Calculating Z by Knowledge Compilation

Compiling to Data Structures Compiling to C++ Programs

To the power

of |m|

|m| = 5, |x| = 5

Lifted case

analysis with

(|x|+1) branches

i-th branch

*

𝑝𝑜𝑤 2, 𝑥 − 𝑖

*

pop_m = 5;

pop_x = 5;

C++ code which stores Z of the sub-graph in v2

v1 = pow(v2, pop_m);

v2 = 0;

for(int i = 0; i <= pop_x; i++){

 C++ code which stores Z of the i-th sub-graph in v3

 v2 += choose(pop_x, i) * v3;

}

C++ code which stores Z of the rightmost sub-graph in v4

 v3 = (0.8 * pow(2, pop_x - i)) *

 (0.6 * pow(2, i)) * pow(2, pop_x - i) * v4;

C++ code which stores Z of the leftmost sub-graph in v5

C++ code which stores Z of the rightmost sub-graph in v6

v4 = v5 * v6;

…

…

…

… …

< 𝑥, 𝑚 , ¬𝑙 𝑥, 𝑚 ∨ 𝑟 𝑥, 𝑚 , 0.8 >

< 𝑥, 𝑚 , ¬𝑐 𝑚 ∨ 𝑙 𝑥, 𝑚 , 0.6 >

Logical variables A first-order clause Weight

Comparing the Three Approaches (From KR-2016)

PTP uses lifted search

https://code.google.com/archive/p/alchemy-2/

WFOMC compiles to data structures

https://code.google.com/archive/p/alchemy-2/

L2C (our compiler) compiles to C++ programs

http://github.com/Mehran-k/L2C

0.1

1

10

100

10 100 1000 10000T
im

e
in

 s
ec

o
n

d
s

Population size

L2C WFOMC PTP

0.1

1

10

100

1000

10 100 1000 10000

T
im

e
in

 s
ec

o
n

d
s

Population size

L2C WFOMC PTP

0.1

1

10

100

1000

10 100 1000 10000

T
im

e
in

 s
ec

o
n

d
s

Population size

L2C WFOMC PTP

0.1

1

10

100

1000

10 100 1000 10000

T
im

e
in

 s
ec

o
n

d
s

Population size

L2C WFOMC PTP

0.1

1

10

100

1000

10 100 1000 10000 100000

T
im

e
in

 s
ec

o
n

d
s

Population size

L2C WFOMC PTP

𝑔𝑜𝑜𝑑𝑃𝑟𝑜𝑓 𝑥 ∧ 𝑔𝑜𝑜𝑑𝑆𝑡𝑢 𝑦
∧ 𝑎𝑑𝑣𝑖𝑠𝑒𝑠 𝑥, 𝑦 ⇒ 𝑓𝑢𝑡𝑢𝑟𝑒𝑃𝑟𝑜𝑓 𝑦

 𝑐𝑜𝑎𝑢𝑡ℎ 𝑥, 𝑦 ⇒ 𝑎𝑑𝑣𝑖𝑠𝑒𝑠 𝑥, 𝑦 , varying |y|

Similar to the first benchmark but

varying |x| and |y| at the same time
𝑎 𝑥 ∧ 𝑏 𝑦 𝑎 𝑥 ∧ 𝑐 𝑥 𝑏 𝑦 ∧ 𝑑 𝑦

𝑐 𝑥 ∧ 𝑑 𝑦 𝑒 ∧ 𝑑 𝑦 , varying |y|

Similar to the third benchmark but varying

|x| and |y| at the same time

𝑎 𝑥 ∧ 𝑏 𝑥 ∧ 𝑐 𝑥, 𝑦 ∧ 𝑑 𝑦 ∧ 𝑒 𝑦 ∧ 𝑓

varying |x| and |y| at the same time

Why is Compiling to Low-Level Languages more Efficient?

For a theory, lifted inference requires the same operations using lifted search

(LS), compile to a data structure (DS), or to a low-level program (LP).

Question: Why are the runtimes so different if the operations are the same?

Here’s how the three approaches can be viewed:

LS:

DS:

LP:

Hypothesis: The extra compilation & optimization steps speedup the reasoning

Validation: Suppose for the LP we run the C++ programs using an interpreted

instead of a compiler:

If the extra compilation & optimization steps are the reason behind the speedup,

interpreting the C++ programs must perform similarly as compiling to data

structures.

Test: See the results on the right.

Operations Result

Operations

Interpreter

Compiler Low-level

operations
Result

Interpreter

Operations
Compiler Low-level

operations

Compiler

Optimizer

More

Low-level

and

optimized

operations

Result
Execute

The data structure

The C++ program Machine code

• Comparing 4 approaches: 1- compile to C++, then compile and optimize the C++ programs (-O3 is the optimizer)

 2- compile to C++, then compile the C++ programs without optimization

 3- compile to C++, then interpret the C++ programs

 4- compiling to data structures and executing the data structure (WFOMC).

• Compilation into target circuits/programs takes approximately the same time, so is excluded.

• For the above three benchmarks:

• Compiling the compiled operations offers an average of 175x speedup compared to interpreting them.

• Compiling & optimizing the compiled operations offers an average of 2.3x speedup compared to only compiling

the compiled operations.

0.01

0.1

1

10

100

1000

10 100 1000 10000

T
im

e
in

 s
ec

o
n

d
s

Population size

Compile with -O3 Compile without -O3

Interpret WFOMC

0.001

0.01

0.1

1

10

100

1000

10 100 1000 10000

T
im

e
in

 s
ec

o
n

d
s

Population size

Compile with -O3 Compile without -O3

Interpret WFOMC

𝑎 𝑥 ∧ 𝑏 𝑦 𝑎 𝑥 ∧ 𝑐 𝑥 𝑏 𝑦 ∧ 𝑑 𝑦

𝑐 𝑥 ∧ 𝑑 𝑦 𝑒 ∧ 𝑑 𝑦 , varying |x| and |y|
𝑎 𝑥 ∧ 𝑏 𝑥 ∧ 𝑐 𝑥, 𝑦 ∧ 𝑑 𝑦 ∧ 𝑒 𝑦 ∧ 𝑓

varying |x| and |y| at the same time

𝑎 𝑥 ∧ 𝑏 𝑥 ∧ 𝑐 𝑥 ∧ 𝑑 𝑥, 𝑦 ∧ 𝑒 𝑦
∧ 𝑓 𝑦 ∧ 𝑔 𝑦 ∧ ℎ

varying |x| and |y| at the same time

Operations
Compiler Low-level

operations
Result

Interpreter

The C++ program

References

1) Seyed Mehran Kazemi and David Poole. Knowledge compilation for lifted probabilistic inference: Compiling to a low-level language , In KR-2016.

2) Guy Van den Broeck, Nima Taghipour, Wannes Meert, Jesse Davis, and Luc De Raedt. Lifted probabilistic inference by first-order knowledge compilation. In

IJCAI-2011.

3) Vibhav Gogate and Pedro Domingos. Probabilistic theorem proving. In UAI-2011.

0.01

0.1

1

10

100

1000

10 100 1000 10000

T
im

e
in

 s
ec

o
n

d
s

Population size

Compile with -O3 Compile without -O3

Interpret WFOMC

When |x|=500, neither Interpret nor WFOMC

completed in 1000s.

