
Knowledge Compilation for Lifted Probabilistic Inference:
Compiling to a Low-Level Language

Seyed Mehran Kazemi and David Poole
The University of British Columbia

Vancouver, BC, V6T 1Z4
{smkazemi, poole}@cs.ubc.ca

Abstract

Algorithms based on first-order knowledge compilation are
currently the state-of-the-art for lifted inference. These algo-
rithms typically compile a probabilistic relational model into
an intermediate data structure and use it to answer many in-
ference queries. In this paper, we propose compiling a proba-
bilistic relational model directly into a low-level target (e.g.,
C or C++) program instead of an intermediate data structure
and taking advantage of advances in program compilation.
Our experiments represent orders of magnitude speedup com-
pared to existing approaches.

Probabilistic relational models (PRMs) (Getoor and
Taskar 2007) are forms of graphical models where there are
probabilistic dependencies among relations of individuals.
The problem of lifted inference for PRMs was first explic-
itly proposed by Poole (2003) who formulated the problem
as first-order variable elimination (FOVE). Current repre-
sentations for FOVE are not closed under all inference op-
erations. Search-based algorithms (Gogate and Domingos
2011; Poole, Bacchus, and Kisynski 2011) were proposed
as alternatives for FOVE algorithms and gained more popu-
larity.

Van den Broeck (2013) follows a knowledge compilation
approach to lifted inference by evaluating a search-based
lifted inference algorithm symbolically (instead of numer-
ically) and extracting a data structure on which many in-
ference queries can be efficiently answered. Lifted inference
by knowledge compilation offers huge speedups because the
compilation is done only once and then many queries can be
answered efficiently by reusing the compiled model. In or-
der to answer new queries in the other algorithms, however,
even though they can reuse a cache, they must reason with
the original model and repeat many of the operations.

In this paper, we propose compiling relational models into
low-level (e.g., C or C++) programs by symbolically evalu-
ating a search-based lifted inference algorithm and extract-
ing a program instead of a data structure, and taking advan-
tage of advances in program compilation. Our work is in-
spired by the work of Huang and Darwiche (2007) who turn
exhaustive search algorithms into knowledge compilers by
recording the trace of the search. Their traces can be seen
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as straight-line programs generated by searching the entire
space. In contrast, our programs have loops over the values
of the variables and result in more compact representations.
Our generated programs have similar semantics to the FO-
NNFs of Van den Broeck (2013). The inference engine for
FO-NNFs can be viewed as an interpreter that executes a
FO-NNF node-by-node, but we can compile our programs
and perform inference faster.

We focus on inference for Markov logic networks
(MLNs) (Richardson and Domingos 2006), but our ideas can
be used for other relational representations. We compile an
MLN into a low-level program by symbolic evaluation of
lifted recursive conditioning algorithm (Gogate and Domin-
gos 2011; Poole, Bacchus, and Kisynski 2011) because of
its simplicity to describe and implement. Our idea, however,
can be used for any search-based lifted inference algorithm.

Notation and Background
A population is a set of individuals and corresponds to a
domain in logic. A logical variable (LV) is written in lower
case and is typed with a population; we let ∆x represent the
population associated with x and |∆x| represent the size of
the population. A lower case letter in bold represents a tuple
of LVs. Constants, denoting individuals, are written starting
with an upper-case letter.

A parametrized random variable (PRV) is of the form
R(t1, . . . , tk) where R is a k-ary predicate symbol and each
ti is an LV or a constant. A grounding of a PRV can be
achieved by replacing each of the LVs with one of the in-
dividuals in their domains. A literal is an assignment of a
PRV to True or False. We represent R(. . .) = True by r(. . .)
and R(. . .) = False by ¬r(. . .). A world is an assignment of
truth values to each grounding of each PRV. A formula is
made up of literals connected with conjunctions and/or dis-
junctions.

A weighted formula (WF) is a triple 〈L,F,w〉, where L
is a set of LVs with |L| = ∏x∈L |∆x|, F is a formula whose
LVs are a subset of LVs in L, and w is a real-valued weight.
〈{x,y,z},g(x,y)∧¬h(y),1.2〉 is an example of a WF. For a
given WF 〈L,F,w〉 and a world ω , we let η(L,F,ω) repre-
sent the number of assignments of individuals to the LVs in
L for which F holds in ω .

A Markov logic network (MLN) is a set of WFs and



induces the following probability distribution:

Prob(ω) =
1
Z ∏
〈L,F,w〉

exp(η(L,F,ω)∗w) (1)

where ω is a world, the product is over all WFs in the MLN,
and Z =∑ω ′(∏〈L,F,w〉(exp(η(L,WF,ω ′)∗w)) is the partition
(normalization) function. It is common to assume formulae
in WFs of MLNs are in conjunctive or disjunctive form. We
assume they are in conjunctive form.

We assume input MLNs are shattered (de Salvo Braz,
Amir, and Roth 2005) based on observations. An MLN can
be conditioned on random variables by updating the WFs
based on the observed values for the variables. It can be also
conditioned on some counts (the number of times a PRV
with one LV is True or False) as in the following example:

Example 1. Suppose for an MLN containing PRV R(x) we
observe that R(x) = True for exactly 2 out of 5 individuals.
We create two new LVs x1 and x2 representing the subsets
of x having R True and False respectively, with |∆x1 | = 2
and |∆x2 | = 3. We update PRVs based on the new LVs and
replace r(x1) with True and r(x2) with False.

Lifted Recursive Conditioning
Algorithm 1 gives a high-level description of a search-based
lifted inference algorithm obtained by combining the ideas
in (Poole, Bacchus, and Kisynski 2011) and (Gogate and
Domingos 2011). Following (Poole, Bacchus, and Kisyn-
ski 2011), we call the algorithm lifted recursive conditioning
(LRC). The cache is initialized with 〈{},1〉.

Algorithm 1 LRC(MLN M)

Input: A shattered MLN M.
Output: Z(M).

if 〈M,Val〉 ∈Cache then
return Val

if ∃WF = 〈L,F,w〉 ∈M s.t. F ≡ True then
return exp(|L| ∗w)∗LRC(M \WF)

if ∃WF = 〈L,F,w〉 ∈M s.t. F ≡ False then
return 2nterv(M,WF) ∗LRC(M \WF)

if |CC = connected components(M)|> 1 then
return ∏cc∈CC LRC(cc)

if ∃x s.t. decomposer(M,x) then
return LRC(decompose(M,x))#GCC(M,x)

Select P(x) from the branching order
if P has no LVs then

sum = ∑v∈{True,False}LRC(M | P = v)
if P has one LV x then

sum = ∑
|∆x|
i=0

(|∆x|
i

)
∗LRC(M | P = True exactly i times)

Cache =Cache∪〈M,sum〉
return sum

For an input MLN M, LRC first checks a few possibilities
that can potentially save computations. If Z(M) has been
computed before, LRC returns the value from the cache.
If the formula of a WF is equivalent to True, LRC evalu-
ates the WF (exp(|L| ∗w)) and removes it from the set of

WFs. If the formula of a WF is equivalent to False, LRC re-
moves the WF. However, if there are random variables in
this WF that do not appear in any other WFs, LRC mul-
tiplies the result by 2nterv(M,WF) where nterv(M,WF) cal-
culates the number of totally eliminated random variables
from the ground MLN after removing the WF, to account
for the possible number of value assignments to these vari-
ables. If the input MLN M can be divided into more than one
connected components, Z(M) is the product of the Z of these
components. If the network consists of one connected com-
ponent but the grounding is disconnected1, the connected
components are the same in the grounding up to renaming
the constants from one or more LVs x. x is called the de-
composer of the network. In this case, LRC replaces LVs in
x by an assignment of individuals (aka decomposing the net-
work on x), calculates Z of the new model, and raises it to the
power of #GCC(M,x): number of connected components in
the grounding of M with x as the decomposer.

If none of the above cases hold, LRC proceeds by a case
analysis on one of the PRVs. If the PRV P selected for case
analysis has no LVs, Z(M) = Z(M | P = True)+Z(M | P =
False). These two Zs can be computed recursively as MLNs
are closed under conditioning (6th if). If P has one LV x, the
case analysis should sum over 2|∆x| cases: one for each as-
signment of values to the |∆x| random variables. However,
the individuals are exchangeable, i.e. we only care about the
number of times P(x) is True, not about the individuals that
make it True. Thus, we only sum over |∆x|+1 cases with the
ith case being the case where for exactly i out of |∆x| indi-
viduals P(x) is True. We also multiply the ith case by

(|∆x|
i

)
to take into account the number of different assignments to
the individuals in ∆x for which P(x) is exactly i times True.
The sum can be computed with |∆x|+1 recursive calls (7th
if). In this paper, we assume the input MLN is recursively
unary:
Definition 1. An order for the PRVs of an MLN is a re-
cursively unary order if for performing case analysis on the
PRVs with that order while recognizing disconnectedness
and decomposability, no population needs to be grounded.
Definition 2. An MLN is recursively unary if there exists at
least one recursively unary order for its PRVs.

Other MLNs can be partially grounded and turned into a
recursively unary MLN offline. There exist heuristics that
guarantee generating recursively unary orders for recur-
sively unary networks. Using such heuristics, we do not need
to consider in Algorithm 1 the case where the PRV selected
for case analysis has two or more LVs.

Compiling to a Target Program
Algorithm 1 finds the Z of the input MLN. Inspired by the
knowledge compilation approach of Van den Broeck (2013)
and its advantages, we develop Algorithm 2 which evaluates
Algorithm 1 symbolically and extracts a low-level program
instead of finding Z. We chose C++ as the low-level program
because of its efficiency, availability, and available compil-
ing/optimizing packages.

1See (Poole, Bacchus, and Kisynski 2011) for detailed analysis.



In Algorithm 2, V NG() (variable name generator) and
ING() (iterator name generator) return unique names to be
used for C++ variables and loop iterators respectively. Each
time we call LRC2CPP(M,vname), it returns a C++ code
that stores Z(M) in a variable named vname.
Example 2. Consider compiling the MLN M1 with a WF
〈{x,s}, f (x)∧g(x,s)∧h(s),1.2〉 with |∆x| = 5 and |∆s| = 8
to a C++ program by following Algorithm 2. Initially, we
call LRC2CPP(M1,"v1"). Suppose the algorithm chooses
F(x) for a case analysis. Then it generates:

v1 = 0;
f or(int i = 0; i <= 5; i++){

Code f or LRC2CPP(M2,"v2")
v1 += C(5, i)∗ v2;

}
where M2 ≡ M1 | F(x) = True exactly i times. In M2, s
is a decomposer and #GCC(M2,s) = |∆s| = 8. Therefore,
LRC2CPP(M2,"v2") generates:

Code f or LRC2CPP(M3,"v3")
v2 = pow(v3,8);

where M3 ≡ decompose(M2,s). In M3, s is replaced by an
individual, say, S. LRC2CPP(M3,"v3") may proceed by a
case analysis on H(S) and generate:

Code f or LRC2CPP(M4,"v4")
Code f or LRC2CPP(M5,"v5")
v3 = v4+ v5;

where M4≡M3 |H(S) = True and M5≡M3 |H(S) =False.
We can follow the algorithm further and generate the pro-
gram.

Caching as Needed In the compilation stage, we keep
record of the cache entries that are used in future and re-
move from the C++ program all other cache inserts.

Pruning Since our target program is C++, we can take
advantage of the available packages developed for prun-
ing/optimizing C++ programs. In particular, we use the−O3
flag when compiling our programs which optimizes the code
at compile time. Using −O3 slightly increases the compile
time, but substantially reduces the run time when the pro-
gram and the population sizes are large. We show the effect
of pruning our programs in the experiments.

MinNestedLoops Heuristic
The maximum number of nested loops (MNNL) in the C++
program is a good indicator of the time complexity and a
suitable criteria to minimize using a suitable elimination or-
dering heuristic. To do so, we start with the order taken
from the MinTableSize (MTS) heuristic (Kazemi and Poole
2014), count the MNNL in the C++ program generated when
using this order, and then perform k steps of stochastic local
search on the order to minimize the MNNL. We call this
heuristic MinNestedLoops (MNL). Note that the search is
performed only once in the compilation phase. The value
of k can be set according to how large the network is, how
large the population sizes are, how much time we want to
spend on the compilation, etc.
Proposition 1. MinNestedLoops heuristic generates recur-
sively unary orders for recursively unary networks.

Algorithm 2 LRC2CPP(MLN M, String vname)

Input: A shattered MLN M and a variable name.
Output: A C++ program storing Z(M) in vname.

if M ∈Cache then
return "{vname}= cache.at({M.id});"

if ∃WF = 〈L,F,w〉 ∈M s.t. F ≡ True then
nname = VNG()
return LRC2CPP(M\WF, nname) + "{vname} =
{nname}∗ exp(w∗ |L|);"

if ∃WF = 〈L,F,w〉 ∈M s.t. F ≡ False then
nname = VNG()
return LRC2CPP(M\WF, nname) + "{vname} =
{nname}∗ pow(2,{nterv(M,WF)});"

if |CC = connected components(M)|> 1 then
retVal = ""
for each cc ∈ CC do

nname[cc] = VNG()
retVal += LRC2CPP(cc, nname[cc])

return retVal + "{vname}= {nname. join("∗")};"
if ∃x s.t. decomposer(M,x) then

nname = VNG()
return LRC(decompose(M,x),nname) + "{vname}=
pow({nname},{#GCC(M,x)});"

Select P(x) from the branching order
if P has no LVs then

nname1 = VNG(), nname2 = VNG()
retVal = LRC2CPP(M | P = True,nname1)
retVal += LRC2CPP(M | P = False,nname2)
retVal += "{vname}= {nname1}+{nname2};"

if P has one LV x then
retVal = "{vname}= 0;"
i = ING(), nname = VNG()
retVal += "for(int {i}=0; {i} <= {|∆x|}; {i}++){"
retVal += LRC2CPP(M | P=True exactly i times,
nname)
retVal += "{vname} += C({|∆x|},{i}) * {nname};"
retVal += "}"

retVal += "cache.insert({M.id},{vname});"
Cache =Cache∪M
return retVal

Experiments and Results
We implemented Algorithm 2 in Ruby and did our experi-
ments using Ruby 2.1.5 on a 2.8GH core with 4GB RAM
under MacOSX. We used the g++ compiler with −O3 flag
to compile and optimize the C++ programs.

We compared our results with weighted first-order model
counting (WFOMC)2 and probabilistic theorem proving
(PTP)3, the state-of-the-art lifted inference algorithms. We
allowed at most 1000 seconds for each algorithm. All
queries were ran multiple times and the average was re-
ported. When using MNL as our heuristic, we did 25 iter-
ations of local search.

Fig. 1 represents the overall running times of LRC2CPP

2Available at: https://dtai.cs.kuleuven.be/software/wfomc
3Available in Alchemy-2 (Kok et al. 2005)
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Figure 1: Run-times for LRC2CPP using MTS and MNL heuristics, WFOMC, and PTP on several benchmarks.
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Figure 2: (a) Time spent for each step of Algorithm 2. (b)
Compile + run time with and without −O3.

with MTS and with MNL as well as the running times of
WFOMC and PTP for: a) competing workshops network
with 50 workshops and varying #people, b) link prediction
network taken from the second experiment in (Gogate and
Domingos 2011) using conjunctive formulae and querying
FuturePro f (S) with 50 professors and varying #students, c)
similar to (b) but with 50 students and varying #professors,
d) similar to (b) and (c) but with varying #students and #pro-
fessors at the same time, e) a network similar to the first ex-
periment in (Gogate and Domingos 2011) with weighted for-
mulae: {a(x) ∧ b(y)},{a(x) ∧ c(x)},{b(y) ∧ d(y)},{c(x) ∧
d(y)},{e∧ d(y)} querying E with |∆x| = 100 and varying
|∆y|, and f) similar to (e) but changing both |∆x| and |∆y|
at the same time. The obtained results show that LRC2CPP
(using either of the two heuristics) outperforms WFOMC
and PTP by an order of magnitude on different networks.

Answering queries in our settings consists of: 1) generat-
ing the program, 2) compiling it, and 3) running it. Fig. 2(a)
represents the amount of time spent for each step of the al-
gorithm for the network in Fig. 1(f) (using MNL). Fig. 2(b)
compares the time spent on compiling and running for this
network with and without using −O3. The increase in the
compile time caused by −O3 becomes negligible as the size
of the population grows.

Conclusion
We presented an algorithm to compile a relational network
into a C++ program. Compiling to C++ obviates the need to
work with intermediate data structures, thus inference only
requires summations and additions, and enables taking ad-
vantage of advances in program compilation. Obtained re-
sults represent orders of magnitude speed-up over the state-
of-the-art lifted inference techniques on several benchmarks.
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