

Domain Recursion for Lifted Inference with Existential Quantifiers

Weighted Model Counting (WMC)

Rules *R* for efficient WMC:

 $A \lor B \lor C$ $C \lor D \lor E$ w(A=True) = 0.2w(A=False) = 0.6w(B=True) = 1.1w(B=False) = 1w(C=True) = 0.1w(C=False) = 0.7w(D=True) = 2.2w(D=False) = 0.5 $A \lor B$ w(E=True) = 1.5w(E=False) = 2

Domain Recursion Rule

- Domain recursion (DR) for a theory T:
- Reveal/separate one object A from a population and get T'
- Apply rules in \mathbf{R} to T' until A is entirely removed and get T"
- Call domain recursion for T"
- DR is **bounded** if T" is identical to T, but over a reduced population
- DR is bounded for $T \Rightarrow$ Compute WMC(T) using dynamic prog.

Theory T

Previously Known Results

• Previously proved (without domain recursion)

- FO^2 is liftable.
- *RU* is liftable.
- Not every $T \in FO^3$ is liftable.
- *S4* is liftable, but the rules in *R* fail on it.

• **Definitions:** A theory is **liftable** if calculating its WMC is polynomial in sizes of the populations. A class C is **liftable** if every $T \in C$ is liftable. A theory T is in **FOⁱ** class if its sentences have up to *i* variables. A theory T is *recursively* unary (RU) if for every theory T' resulting from exhaustively applying the rules in R except atom counting, either T' is empty or exists atom S in T' with only one logvar, and the theory resulting from applying (symbolic) atom counting on *S* is RU.

Seyed Mehran Kazemi, Angelika Kimmig, Guy Van den Broeck & David Poole

Kazemi et al. 2016 Results + Two New Conjectures

• Let $R^D = R + BDR$

- $S^2 F O^2$ and $S^2 R U$ are liftable using R^D .
- $FO^2 \subset S^2FO^2$ and $RU \subset S^2RU$.
- Symmetric transitivity is liftable using R^{D} .
- The rules in $\mathbf{R}^{\mathbf{D}}$ are sufficient for S4 clause.
- Let BDR+RU be a class of theories identical to RU except that **R** is replaced with R^{D} .
- *Conjecture 1: BDR+RU* is the largest possible liftable class.
- Conjecture 2: R^D is a complete set of rules for lifted inference.

S²FO²: Definition and an Example

- Let $T \in FO^2$, $S(x, m) \in T$, and for any sentence $c \in T$, if $S(x,m) \in c$, all other atoms in c have at most one variable. • $\forall x, m_1, m_2: S(x, m_1) \lor S(x, m_2)$ • $\forall x, m_1, m_2: \neg S(x, m_1) \lor S(x, m_2)$ • $\forall x_1, x_2, m: S(x_1, m) \lor S(x_2, m)$ • $\forall x_1, x_2, m_1, m_2: S(x_1, m_1) \lor S(x_2, m_2)$

• T is in $S^2 F O^2$

Existential Quantifiers

- Consider theory *T1* where |c| = |p| = n $\forall c, \exists p: S(c, p)$ $\forall p, \exists c: S(c, p)$ $\forall p, c1, c2 \neq c1: \neg S(c1, p) \lor \neg S(c2, p)$
- **Current approach** (for WMC): • Remove existentials through Skolemization: $\forall c, \exists p: \neg S(c, p) \lor A(c)$ $\forall p, \exists c: \neg S(c, p) \lor B(p)$ $\forall p, c1, c2 \neq c1: \neg S(c1, p) \lor \neg S(c2, p)$
- Find WMC using the rules **R** in $O(n^2)$ • **Problem:** A and B have negative weights that are potentially inconvenient for log-space computations
- Alternative approach: Bounded domain recursion • Advantage: No negative weights.
- **Proposition 1:** WMC(T1) can be computed in time $O(n^2)$ using the rules in $\mathbf{R}^{\mathbf{D}}$ without Skolemization.

- Consider theory *T2* where |c| = |p| = n $\forall c, \exists p: S(c, p)$ $\forall p, \exists c: S(c, p)$ $\forall p, c1, c2 \neq c1: \neg S(c1, p) \lor \neg S(c2, p)$ $\forall c, p1, p2 \neq p1: \neg S(c, p1) \lor \neg S(c, p2)$
- **Current approach** (for WMC): • Remove existentials through Skolemization: $\forall c, \exists p: \neg S(c, p) \lor A(c)$ $\forall p, \exists c: \neg S(c, p) \lor B(p)$ $\forall p, c1, c2 \neq c1: \neg S(c1, p) \lor \neg S(c2, p)$ $\forall c, p1, p2 \neq p1: \neg S(c, p1) \lor \neg S(c, p2)$
- Find WMC using the rules **R** in time $O(n^3)$ • Advantages: No negative weights, lower time
- Alternative approach: Bounded domain recursion
 - complexity.

Proposition 2: WMC(T2) can be computed in time O(n) using the rules in $\mathbf{R}^{\mathbf{D}}$ without Skolemization.

UBC UCLA

KU LEUVEN

Example: Volunteers (v) & Jobs (j)

 $\forall j, v: InvolvesGas(j) \land Smokes(v) \Rightarrow \neg Assigned(j, v)$ $\vdash \in FO^2$ • Add any sentence $\alpha(S)$ to T having exactly 2 S atoms, e.g.: $\forall v1, v2: AUX(v1, v2) \Leftrightarrow Smokes(v1) \land Friends(v1, v2) \Rightarrow Smokes(v2)$ $\forall v1, v2 \neq v1, j: \neg Assigned(j, v1) \lor \neg Assigned(j, v2) \\ \forall v, j1, j2 \neq j1: \neg Assigned(j1, v) \lor \neg Assgined(j2, v) \\ \in \alpha(Assgined)$

> Clause1: Jobs involving gas are not assigned to smokers Clause2: Smokers are mostly friends with each other Clause3: Each volunteer is assigned to at most one job Clause4: At most one volunteer is assigned to any job

Take Away Messages

- Skolemization may increase the complexity of WMC.
- Skolemization introduces negative weights that are potentially inconvenient.
- Domain recursion can potentially replace Skolemization.
- Better Skolemization techniques may exist.

Future Work

- Characterizing a class of models with existential quantifiers for which domain recursion is bounded.
- Finding the properties that make theories amenable to BDR.
- Prove/disprove conjectures.