Graphical Models

Monte-Carlo Inference

Siamak Ravanbakhsh

Winter 2018

Learning objectives

- the relationship between sampling and inference
- sampling from univariate distributions
- Monte Carlo sampling in graphical models

Mote Carlo inference

• calculating marginals $p(x_1 = ar{x}_1) = \sum_{x_2, \dots, x_n} p(ar{x}_1, x_2, \dots, x_n)$

Mote Carlo inference

- calculating marginals $p(x_1=ar{x}_1)=\sum_{x_2,\ldots,x_n}p(ar{x}_1,x_2,\ldots,x_n)$
- approximate it by sampling $X^{(l)} \sim p(x)$

$$p(x_1=ar{x}_1)pprox rac{1}{L}\sum_l \mathbb{I}(X_1^{(l)}=ar{x}_1)$$

Mote Carlo inference

- calculating marginals $p(x_1 = ar{x}_1) = \sum_{x_2, \dots, x_n} p(ar{x}_1, x_2, \dots, x_n)$
- approximate it by sampling $X^{(l)} \sim p(x)$

$$p(x_1=ar{x}_1)pprox rac{1}{L}\sum_l \mathbb{I}(X_1^{(l)}=ar{x}_1)$$

- inference in exponential family $p_{\theta}(x) = \exp(\langle \theta, \psi \rangle A(\theta))$
 - is about finding the mean parameters $\mu = \mathbb{E}_{p_{ heta}}[\psi(x)]$
 - using L samples (particles) $\mu \approx \frac{1}{L} \sum_{l} \psi(X^{(l)})$

Sampling from categorical dist.

- access to *pseudo* random number generator for $X \sim U(0,1)$
- given $p(X = d) = p_d$ $\forall 1 \le d \le D$

Transforming probability densities

- given a random variable $X \sim p_X$
- what is the prob. density of $Y = \phi(X)$?

image: wikipedia

- let X be uniform $p_X = U(0,1)$
- given a density p_Y

- let X be uniform $p_X = U(0,1)$
- given a density p_Y
- let F_Y be its CDF $F_Y(y) = P(Y < y)$

- let X be uniform $p_X = U(0,1)$
- given a density p_Y
- let F_Y be its CDF $F_Y(y) = P(Y < y)$
- transform X using $\phi(X) = F_Y^{-1}(X)$
- what is the density of $Y = \phi(X)$?

- let X be uniform $p_X = U(0,1)$
- given a density p_Y
- let F_Y be its CDF $F_Y(y) = P(Y < y)$
- transform X using $\phi(X) = F_Y^{-1}(X)$
- what is the density of $Y = \phi(X)$?

$$|Y\sim p_X(\phi^{-1}(y))|rac{\mathrm{d}\phi^{-1}(y)}{\mathrm{d}y}|= p_X(F(y))|rac{\mathrm{d}F(y)}{\mathrm{d}y}|
onumber \ ext{constant:} \ p_Y(y)
onumber \ p_X=U(0,1)$$

images: work.thaslwanter.at, Murphy's book

Inverse transform sampling: example

image:wikipedia

Sampling in graphical models

 i^0 d^0 i^1 d^1 0.6 0.7 0.3 0.4 Difficulty Intelligence g^1 g^2 g^3 Grade SAT i^{0}, d^{0} i^{0}, d^{1} i^{0}, d^{0} 0.3 0.4 0.3 0.05 0.25 0.7 s^0 s^1 0.9 0.08 0.02 Letter i^{0}, d^{1} 0.3 0.2 i^0 0.95 0.05 0.5 i^1 0.2 0.8 1^{0} 1^{1} $\frac{g^1}{g^2}$ 0.9 0.1 0.6 0.4 g^2 0.99 0.01

Sampling in graphical models

ancestral sampling for Bayes-nets

- find a *topological ordering* (how?)
 - e.g., D,I,G,S,L or I,S,D,G,L
- sample by conditioning on parents

 $G \sim P(g \mid I, D)$

Introducing evidence

Introducing evidence

- sample by conditioning on parents
- only keep samples compatible with evidence $(G = g^0)$
 - wasteful if evidence has a low probability

Rejection sampling general form

to sample from $p(x) = \frac{1}{Z}\tilde{p}(x)$

use a **proposal** distribution q(x)such that $Mq(x) > \tilde{p}(x)$ everywhere sample $X \sim q(x)$ **accept** the sample with probability \overline{p}

Rejection sampling general form

to sample from $p(x) = \frac{1}{Z}\tilde{p}(x)$

use a **proposal** distribution q(x)such that $Mq(x) > \tilde{p}(x)$ everywhere sample $X \sim q(x)$ **accept** the sample with probability

what is the probability of acceptance? $\int_x q(x) \frac{\tilde{p}(x)}{Mq(x)} dx = \frac{Z}{M}$ for high-dimensional dists. $\frac{Z}{M}$ becomes small!

• rejection sampling becomes wasteful

Likelihood weighting

what if we have an evidence?

- E.g., how to sample from the posterior? $p(D, I, S, L | G = g^0)$
- find a topological ordering
- assign a weight to each particle $w^{(l)} \leftarrow 1$
- sample by conditioning on parents
- when sampling an observed variable
 - set it to its observed value $G = g^1$
 - update the sample's weight $w^{(l)} \leftarrow w^{(l)} \times p(G = g^1 \mid D = d^{(l)}, I = i^{(l)})$

current assignments to parents

Likelihood weighting

what if we have an evidence?

• E.g., how to sample from the posterior? $p(D, I, S, L | G = g^0)$

using weighted particles for inference:

$$p(S=s^0 \mid G=g^1) = rac{\sum_l w_l \mathbb{I}(S^{(l)}=s^0)}{\sum_l w_l}$$
 .

Likelihood weighting

what if we have an evidence?

• E.g., how to sample from the posterior? $p(D, I, S, L | G = g^0)$

using weighted particles for inference:

$$p(S=s^0 \mid G=g^1) = rac{\sum_l w_l \mathbb{I}(S^{(l)}=s^0)}{\sum_l w_l}$$

special case of importance sampling

Objective: Monte Carlo estimate $\mathbb{E}_p[f(x)]$

- difficult to sample from p (yet easy to evaluate)
- use a proposal distribution $q: p(x) > 0 \Rightarrow q(x) > 0$

Objective: Monte Carlo estimate $\mathbb{E}_p[f(x)]$

- difficult to sample from p (yet easy to evaluate)
- use a proposal distribution $q: p(x) > 0 \Rightarrow q(x) > 0$

Since
$$\mathbb{E}_p[f(x)] = \int_x p(x)f(x)\mathrm{d}x = \int_x q(x)rac{p(x)}{q(x)}f(x)\mathrm{d}x = \mathbb{E}_q[rac{p(x)}{q(x)}f(x)]$$

Objective: Monte Carlo estimate $\mathbb{E}_p[f(x)]$

- difficult to sample from p (yet easy to evaluate)
- use a proposal distribution $q: p(x) > 0 \Rightarrow q(x) > 0$

Since
$$\mathbb{E}_p[f(x)] = \int_x p(x)f(x)\mathrm{d}x = \int_x q(x)rac{p(x)}{q(x)}f(x)\mathrm{d}x = \mathbb{E}_q[rac{p(x)}{q(x)}f(x)]$$

sample $X^l \sim q(x)$ assign an importance sampling weight $w(X^{(l)}) = rac{p(X^{(l)})}{q(X^{(l)})}$

image: Bishop's book

Objective: Monte Carlo estimate $\mathbb{E}_p[f(x)]$

- difficult to sample from p (yet easy to evaluate)
- use a proposal distribution $q: p(x) > 0 \Rightarrow q(x) > 0$

since
$$\mathbb{E}_p[f(x)] = \int_x p(x)f(x)\mathrm{d}x = \int_x q(x) rac{p(x)}{q(x)}f(x)\mathrm{d}x = \mathbb{E}_q[rac{p(x)}{q(x)}f(x)]$$

sample $X^l \sim q(x)$ assign an importance sampling weight $w(X^{(l)}) = \frac{p(X^{(l)})}{q(X^{(l)})}$ $\mathbb{E}_p[f(x)] \approx \frac{1}{L} \sum_l w(X^{(l)}) f(X^{(l)})$ is an unbiased estimator

can be more efficient than sampling from p itself! (why?)

What if we can evaluate p, up to a constant? $p(x) = \frac{1}{Z}\tilde{p}(x)$

Examples

- posterior in directed models $\ p(x \mid E=e) = rac{1}{p(e)} p(x,e)$ prior in undirected models $\ p(x) = rac{1}{Z} \prod_I \phi_I(x_I)$

What if we can evaluate p, up to a constant? $p(x) = \frac{1}{Z}\tilde{p}(x)$

posterior in directed models $p(x \mid E = e) = rac{1}{p(e)} p(x,e)$ prior in undirected models $p(x) = rac{1}{Z} \prod_{I} \phi_{I}(x_{I})$

define $w(x) = rac{ ilde{p}(x)}{q(x)}$ then $\mathbb{E}_q[w(x)] = \int_x ilde{p}(x) \mathrm{d}x = Z$

since $\mathbb{E}_p[f(x)] = \int_x p(x)f(x)\mathrm{d}x = rac{1}{Z}\int_x q(x)rac{ ilde{p}(x)}{q(x)}f(x)\mathrm{d}x = rac{1}{Z}\mathbb{E}_q[w(x)f(x)] = rac{\mathbb{E}_q[w(x)f(x)]}{\mathbb{E}_q[w(x)]}$

What if we can evaluate p, up to a constant? $p(x) = \frac{1}{Z}\tilde{p}(x)$

posterior in directed models $p(x \mid E = e) = rac{1}{p(e)} p(x,e)$ prior in undirected models $p(x) = rac{1}{Z} \prod_{I} \phi_{I}(x_{I})$

define $w(x) = \frac{\tilde{p}(x)}{q(x)}$ then $\mathbb{E}_q[w(x)] = \int_x \tilde{p}(x) dx = Z$ since $\mathbb{E}_p[f(x)] = \int_x p(x)f(x) dx = \frac{1}{Z} \int_x q(x) \frac{\tilde{p}(x)}{q(x)} f(x) dx = \frac{1}{Z} \mathbb{E}_q[w(x)f(x)] = \frac{\mathbb{E}_q[w(x)f(x)]}{\mathbb{E}_q[w(x)]}$

sample $X^{(l)} \sim q(x)$

assign an importance sampling weight $w(X^{(l)}) = rac{ ilde{p}(X^{(l)})}{q(X^{(l)})}$

 $\mathbb{E}_p[f(x)] pprox rac{\sum_l w(X^{(l)}) f(X^{(l)})}{\sum_l w(X^{(l)})}$ is a biased estimator (e.g., consider L=1)

likelihood weighting: $p(S=s^0 \mid G=g^2, I=i^1) = rac{\sum_l w_l \mathbb{I}(S^{(l)}=s^0)}{\sum_l w_l}$

equivalent to:

likelihood weighting:

$$p(S=s^0 \mid G=g^2, I=i^1) = rac{\sum_l w_l \mathbb{I}(S^{(l)}=s^0)}{\sum_l w_l}$$

equivalent to:

mutilated Bayes-net as proposal q

likelihood weighting:

$$p(S=s^0 \mid G=g^2, I=i^1) = rac{\sum_l w_l \mathbb{I}(S^{(l)}=s^0)}{\sum_l w_l}$$

equivalent to:

mutilated Bayes-net as proposal q

$$w_l = rac{ ilde{p}(X)}{q(X)} = p(G = g^2 \mid I = i^{(l)}, D = d^{(l)}) imes P(I = i^1)$$

similar to initial algorithm for likelihood weighting

likelihood weighting:

$$p(S=s^0 \mid G=g^2, I=i^1) = rac{\sum_l w_l \mathbb{I}(S^{(l)}=s^0)}{\sum_l w_l}$$

equivalent to:

mutilated Bayes-net as proposal q

$$w_l = rac{ ilde{p}(X)}{q(X)} = p(G = g^2 \mid I = i^{(l)}, D = d^{(l)}) imes P(I = i^1)$$

similar to initial algorithm for likelihood weighting

- evidence only affects sampling for the descendants
- what if all evidence appears at leaf nodes?

Summary

Monte-carlo sampling for approximate inference:

- sampling from univariates:
 - categorical distribution
 - inverse transform sampling
- marginals in directed models:
 - ancestral sampling
- more sophisticated: (incorporating evidence)
 - rejection sampling
 - importance sampling (likelihood weighting)