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Learning objectivesLearning objectives

the relationship between sampling and inference
sampling from univariate distributions
Monte Carlo sampling in graphical models
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Mote CarloMote Carlo inference inference

calculating marginals  p(x = ) = p( ,x ,… ,x )1 x̄1 ∑x ,…,x2 n
x̄1 2 n

p(x = ) ≈ I(X = )1 x̄1 L
1 ∑l 1

(l)
x̄1

approximate it by sampling  X ∼ p(x)(l)

inference in exponential family
is about finding the mean parameters
using L samples (particles)

μ = E [ψ(x)]pθ

p (x) = exp(⟨θ,ψ⟩ −A(θ))θ

μ ≈ ψ(X )L
1 ∑l

(l)



Sampling from Sampling from categoricalcategorical dist. dist.

access to pseudo random number generator for

given 

X ∼ U(0, 1)

p(X = d) = p ∀1 ≤ d ≤ Dd

p1 p2 p6

0 1
generate                     and see where it fallsX ∼ U(0, 1)

use binary search O(log(D))



Transforming Transforming probability densitiesprobability densities

given a random variable  

what is the prob. density of                  ?

X ∼ pX

Y = ϕ(X)

Y ∼ p (y) = p (ϕ (y))∣ ∣Y X
−1

dy
dϕ (y)−1

corresponding x

how       changes the volume around each point y

in multivariate case:

determinant of the Jacobian matrix

(bonus)
ϕ

ϕ

image: wikipedia
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given a density      

let       be its CDF
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Inverse transformInverse transform sampling sampling

let       be uniform

given a density      

let       be its CDF

transform X using 

what is the density of                  ?

X p = U(0, 1)X

ϕ(X) = F (X)Y
−1

pY

F (y) = P (Y < y)YFY

images: work.thaslwanter.at, Murphy's book

Y = ϕ(X)

Y ∼ p (ϕ (y))∣ ∣ = p (F (y))∣ ∣X
−1

dy
dϕ (y)−1

X dy
dF (y)

constant: p (y)Y
p = U(0, 1)X

X

Y

FY



Inverse transform sampling: Inverse transform sampling: exampleexample

Expoenential distribution

image:wikipedia

p(y) = λe−λy

F (y) = 1 − eY
−λy

p
(y
)

y

calculate the inverse CDF:

F (x) = − ln(1 − x)Y
−1

λ
1 y

x

FY
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Sampling in graphical modelsSampling in graphical models

ancestral sampling for Bayes-nets

find a topological ordering
e.g., D,I,G,S,L or I,S,D,G,L

sample by conditioning on parents

G ∼ P (g ∣ I,D)

(how?)
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what if we have an evidence

E.g., how to sample from the posterior?
p(D, I,S,L ∣ G = g )0



Introducing evidenceIntroducing evidence

  rejection sampling

what if we have an evidence

E.g., how to sample from the posterior?

find a topological ordering
sample by conditioning on parents
only keep samples compatible with evidence

wasteful if evidence has a low probability

p(D, I,S,L ∣ G = g )0

(G = g )0



Rejection samplingRejection sampling general form

p(x) = (x)
Z
1 p~to sample from

use a proposal distribution
such that                    everywhere
sample
accept the sample with probability 

q(x)

Mq(x) > (x)p~

X ∼ q(x)

Mq(x)
(x)p~
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p(x) = (x)
Z
1 p~to sample from

use a proposal distribution
such that                    everywhere
sample
accept the sample with probability 

q(x)

Mq(x) > (x)p~

X ∼ q(x)

Mq(x)
(x)p~

image: Murphy's book

what is the probability of acceptance?
for high-dimensional dists.       becomes small!

rejection sampling becomes wasteful

q(x) dx =∫
x Mq(x)

(x)p~

M
Z

M
Z



Likelihood weightingLikelihood weighting

what if we have an evidence?

E.g., how to sample from the posterior?
p(D, I,S,L ∣ G = g )0

find a topological ordering
assign a weight to each particle
sample by conditioning on parents
when sampling an observed variable

set it to its observed value 
update the sample's  weight

w ← 1(l)

G = g1

w ← w × p(G = g ∣ D = d , I = i )(l) (l) 1 (l) (l)

current assignments to parents
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Likelihood weightingLikelihood weighting

what if we have an evidence?

E.g., how to sample from the posterior?
p(D, I,S,L ∣ G = g )0

using weighted particles for inference:

p(S = s ∣ G = g ) =0 1
w∑l l

w I(S =s )∑l l
(l) 0

special case of importance sampling
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UnnormalizedUnnormalized importance sampling importance sampling

Objective: Monte Carlo estimate

difficult to sample from p (yet easy to evaluate)

use a proposal distribution q :

E [f(x)]p

E [f(x)] = p(x)f(x)dx = q(x) f(x)dx = E [ f(x)]p ∫
x

∫
x q(x)

p(x)
q q(x)

p(x)

sample 
assign an importance sampling weight

since

X ∼ q(x)l

w(X ) =(l)
q(X )(l)
p(X )(l)

E [f(x)] ≈ w(X )f(X )p L
1 ∑l

(l) (l)

p(x) > 0 ⇒ q(x) > 0

is an unbiased estimator

p(x) q(x)
f(x)

x

image: Bishop's book
can be more efficient than sampling from p itself! (why?)



normalizednormalized importance sampling importance sampling

What if we can evaluate p, up to a constant?
Ex

am
pl

es posterior in directed models

prior in undirected models

p(x ∣ E = e) = p(x, e)p(e)
1

p(x) = ϕ (x )Z
1 ∏I I I

p(x) = (x)
Z
1 p~



normalizednormalized importance sampling importance sampling

E [f(x)] = p(x)f(x)dx = q(x) f(x)dx = E [w(x)f(x)] =p ∫
x Z

1 ∫
x q(x)

(x)p~

Z
1

q E [w(x)]q

E [w(x)f(x)]q

define E [w(x)] = (x)dx = Zq ∫
x
p~
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1 ∏I I I

p(x) = (x)
Z
1 p~

w(x) =
q(x)
(x)p~ then

since



normalizednormalized importance sampling importance sampling

E [f(x)] = p(x)f(x)dx = q(x) f(x)dx = E [w(x)f(x)] =p ∫
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1 ∫
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(x)p~

Z
1

q E [w(x)]q

E [w(x)f(x)]q

define E [w(x)] = (x)dx = Zq ∫
x
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What if we can evaluate p, up to a constant?
Ex

am
pl

es posterior in directed models

prior in undirected models

p(x ∣ E = e) = p(x, e)p(e)
1

p(x) = ϕ (x )Z
1 ∏I I I

p(x) = (x)
Z
1 p~

w(x) =
q(x)
(x)p~ then

since

sample 

assign an importance sampling weight

X ∼ q(x)(l)

w(X ) =(l)
q(X )(l)
(X )p~ (l)

E [f(x)] ≈p w(X )∑l
(l)

w(X )f(X )∑l
(l) (l)

is a biased estimator (e.g., consider L=1)
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Revisiting likelihood weighting Revisiting likelihood weighting 

likelihood weighting:
p(S = s ∣ G = g , I = i ) =0 2 1

w∑l l

w I(S =s )∑l l
(l) 0

mutilated Bayes-net as proposal q

w = = p(G = g ∣ I = i ,D = d ) × P (I = i )l q(X)
(X)p~ 2 (l) (l) 1

equivalent to:

similar to initial algorithm for likelihood weighting

evidence only affects sampling for the descendants

what if all evidence appears at leaf nodes?



SummarySummary

Monte-carlo sampling for approximate inference:

sampling from univariates:
categorical distribution

inverse transform sampling

marginals in directed models:
ancestral sampling

more sophisticated: (incorporating evidence)

rejection sampling

importance sampling (likelihood weighting) 

 


