Graphical Models

Markov Chain Monte Carlo Inference

Siamak Ravanbakhsh

Winter 2018

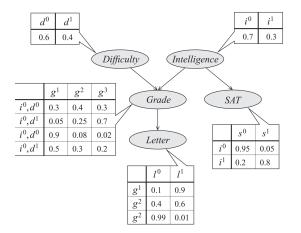
Learning objectives

- Markov chains
- the idea behind Markov Chain Monte Carlo (MCMC)
- two important examples:
 - Gibbs sampling
 - Metropolis-Hastings algorithm

Problem with likelihood weighting

Recap

- use a topological ordering
- sample conditioned on the parents
- if observed:
 - keep the observed value
 - update the weight



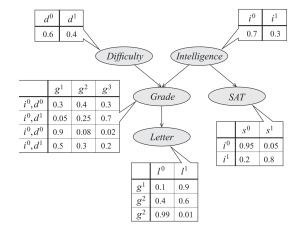
Problem with likelihood weighting

Recap

- use a topological ordering
- sample conditioned on the parents
- if observed:
 - keep the observed value
 - update the weight

Issues

- observing the child does not affect the parent's assignment
- only applies to Bayes-nets



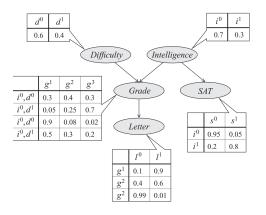
Gibbs sampling

Idea

• iteratively sample each var. condition on its Markov blanket

 $X_i \sim p(x_i \mid X_{MB(i)})$

• if X_i is observed: keep the observed value

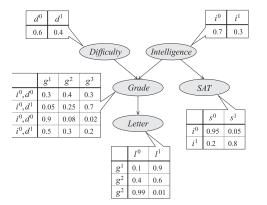


Gibbs sampling

Idea

• iteratively sample each var. condition on its Markov blanket

 $X_i \sim p(x_i \mid X_{MB(i)})$



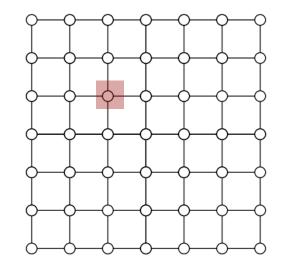
• if X_i is observed: keep the observed value

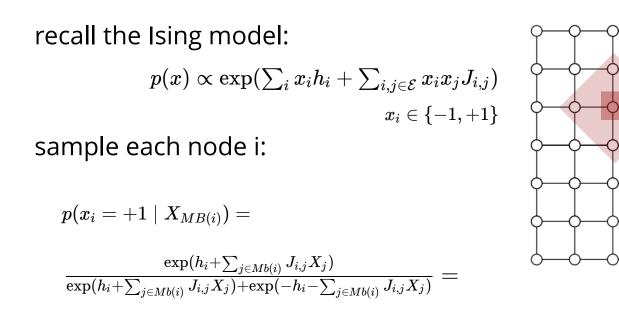
equivalent to

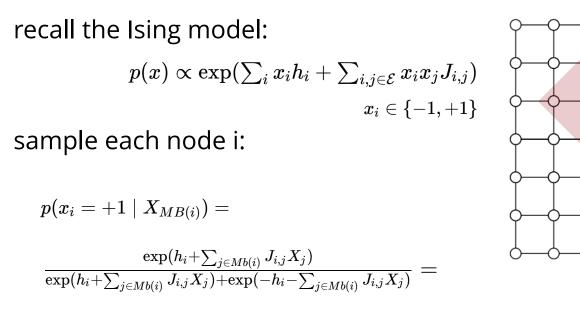
- first simplifying the model by removing observed vars
- sampling from the simplified Gibbs dist.
- after many Gibbs sampling iterations $X \sim P$

recall the Ising model:

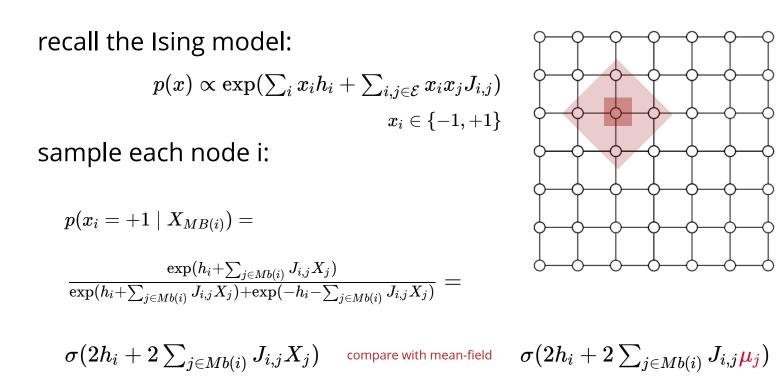
 $p(x) \propto \exp(\sum_i x_i h_i + \sum_{i,j \in \mathcal{E}} x_i x_j J_{i,j})
onumber \ x_i \in \{-1,+1\}$







 $\sigma(2h_i+2\sum_{j\in Mb(i)}J_{i,j}X_j)$



Markov Chain

a sequence of random variables with Markov property

$$P(X^{(t)}|X^{(1)},\ldots,X^{(t-1)})=P(X^{(t)}|X^{(t-1)})$$

its graphical model

many applications:

- language modeling: X is a word or a character
- **physics:** with correct choice of X, the world is Markov

Transition model

we assume a homogeneous chain: $P(X^{(t)}|X^{(t-1)}) = P(X^{(t+1)}|X^{(t)}) \quad \forall t$ cond. probabilities remain the same across time-steps

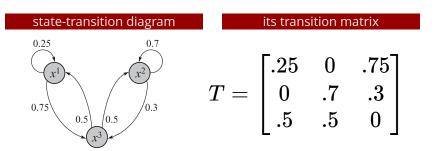
notation: conditional probability $P(X^{(t)} = x | X^{(t-1)} = x') = T(x,x')$

is called the **transition model** think of this as a matrix T

Transition model

we assume a homogeneous chain: $P(X^{(t)}|X^{(t-1)}) = P(X^{(t+1)}|X^{(t)}) \quad \forall t$ cond. probabilities remain the same across time-steps

notation: conditional probability $P(X^{(t)} = x | X^{(t-1)} = x') = T(x,x')$



is called the **transition model** think of this as a matrix T

Transition model

we assume a homogeneous chain: $P(X^{(t)}|X^{(t-1)}) = P(X^{(t+1)}|X^{(t)}) \quad \forall t$ cond. probabilities remain the same across time-steps

is called the **transition model**

notation: conditional probability $P(X^{(t)} = x | X^{(t-1)} = x') = T(x,x')$

 state-transition diagram
 its transition matrix
 think of this as a matrix T

 0.25 0.7 0.7 0.7

 0.75 0.5 0.3 $T = \begin{bmatrix} .25 & 0 & .75 \\ 0 & .7 & .3 \\ .5 & .5 & 0 \end{bmatrix}$

evolving the distribution $P(X^{(t+1)} = x) = \sum_{x' \in Val(X)} P(X^{(t)} = x')T(x', x)$

Example state-transition diagram for grasshopper random walk 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.5 0.5 0.5 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

initial distribution $P^{(0)}(X=0)=1$

Example state-transition diagram for grasshopper random walk 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25/ 0.25 0.5 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

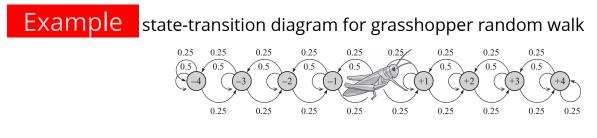
initial distribution $P^{(0)}(X=0)=1$

after t=50 steps, the distribution is almost uniform $P^t(x) \approx rac{1}{9} \quad orall x$

Example state-transition diagram for grasshopper random walk 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

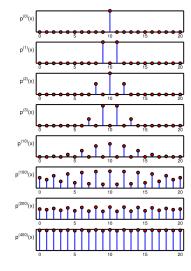
initial distribution $P^{(0)}(X=0)=1$

after t=50 steps, the distribution is almost uniform $P^t(x) \approx \frac{1}{9} \quad \forall x$ use the chain to sample from the uniform distribution $P^t(X) \approx \frac{1}{9}$

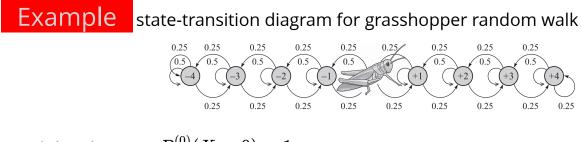


initial distribution $P^{(0)}(X=0)=1$

after t=50 steps, the distribution is almost uniform $P^t(x) \approx \frac{1}{9} \quad \forall x$ use the chain to sample from the uniform distribution $P^t(X) \approx \frac{1}{9}$



why is it uniform?



initial distribution $P^{(0)}(X=0)=1$

after t=50 steps, the distribution is almost uniform $P^t(x) \approx \frac{1}{9} \quad \forall x$ use the chain to sample from the uniform distribution $P^t(X) \approx \frac{1}{9}$

MCMC

generalize this idea beyond uniform dist.

- we want to sample from P^*
- pick the transition model such that $P^{\infty}(X) = P^{*}(X)$

(mixing image: Murphy's book)

why is it uniform?

Stationary distribution

given a transition model $T(x,x^\prime)$ if the chain converges:

global balance equation

$$P^{(t)}(x)pprox P^{(t+1)}(x)=\sum_{x'}P^{(t)}(x')T(x',x)$$

Stationary distribution

given a transition model $T(x,x^\prime)$ if the chain converges:

global balance equation

$$P^{(t)}(x)pprox P^{(t+1)}(x)=\sum_{x'}P^{(t)}(x')T(x',x)$$

this condition defines the stationary distribution: π

$$\pi(X=x) = \sum_{x' \in Val(X)} \pi(X=x')T(x,x')$$

Stationary distribution

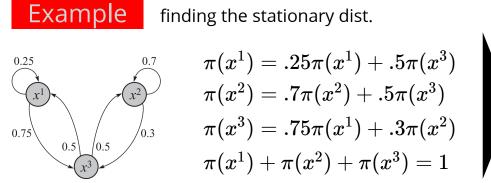
given a transition model T(x, x') if the chain converges:

global balance equation

$$P^{(t)}(x)pprox P^{(t+1)}(x) = \sum_{x'} P^{(t)}(x') T(x',x)$$

this condition defines the stationary distribution: π

$$\pi(X=x)=\sum_{x'\in Val(X)}\pi(X=x')T(x,x')$$



$$egin{aligned} & (x^1) = .25\pi(x^1) + .5\pi(x^3) \ & (x^2) = .7\pi(x^2) + .5\pi(x^3) \ & (x^3) = .7\pi(x^2) + .5\pi(x^3) \end{aligned}$$

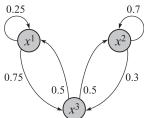
.2

.5

.3

Example

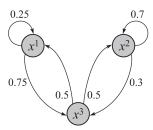
finding the stationary dist.



$$egin{aligned} \pi(x^1) &= .25\pi(x^1) + .5\pi(x^3) \ \pi(x^2) &= .7\pi(x^2) + .5\pi(x^3) \ \pi(x^3) &= .75\pi(x^1) + .3\pi(x^2) \ \pi(x^1) + \pi(x^2) + \pi(x^3) &= 1 \end{aligned} egin{aligned} \pi(x^1) &= .2 \ \pi(x^1) &= .2 \ \pi(x^2) &= .5 \ \pi(x^2) &= .5 \ \pi(x^3) &= .3 \ \pi(x^3) &= .3 \end{aligned}$$

Example

finding the stationary dist.



$$egin{aligned} \pi(x^1) &= .25\pi(x^1) + .5\pi(x^3) \ \pi(x^2) &= .7\pi(x^2) + .5\pi(x^3) \ \pi(x^3) &= .75\pi(x^1) + .3\pi(x^2) \ \pi(x^1) + \pi(x^2) + \pi(x^3) &= 1 \end{aligned}$$
 $\pi(x^1) = .2$

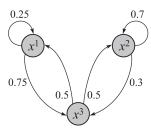
viewing T(.,.) as a matrix and $P^t(x)$ as a vector

- evolution of dist $P^t(x) : P^{(t+1)} = T^{\mathsf{T}} P^{(t)}$
- multiple steps: $P^{(t+m)} = (T^{\mathsf{T}})^m P^{(t)}$

$[.25]{0}$	0 .7 .3	.5 5	$\begin{bmatrix} .2\\ 5 \end{bmatrix}$	 $\begin{bmatrix} .2 \\ .5 \\ .3 \end{bmatrix}$
.75	.1	0	.3	 .3
	T^{T}		π	π

Example

finding the stationary dist.



$$\pi(x^1) = .25\pi(x^1) + .5\pi(x^3)$$

 $\pi(x^2) = .7\pi(x^2) + .5\pi(x^3)$
 $\pi(x^3) = .75\pi(x^1) + .3\pi(x^2)$
 $\pi(x^1) + \pi(x^2) + \pi(x^3) = 1$
 $\pi(x^1) = .2$
 $\pi(x^1) = .2$
 $\pi(x^2) = .5$
 $\pi(x^3) = .3$

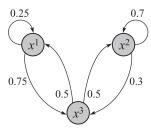
viewing T(.,.) as a matrix and $P^t(x)$ as a vector

- evolution of dist $P^t(x) : P^{(t+1)} = T^{\mathsf{T}} P^{(t)}$
- multiple steps: $P^{(t+m)} = (T^{\mathsf{T}})^m P^{(t)}$
- for stationary dist: $\pi = T^{\mathsf{T}}\pi$

	$\begin{bmatrix} .25\\ 0 \end{bmatrix}$	0 .7 .3	.5 .5	$\begin{bmatrix} .2 \\ .5 \end{bmatrix}$	_	$\begin{bmatrix} .2\\ .5\\ .3 \end{bmatrix}$	
	.75	.3	0	.3		.3	
T^{T}		π			π		

Example

finding the stationary dist.



$$\pi(x^1) = .25\pi(x^1) + .5\pi(x^3)$$

 $\pi(x^2) = .7\pi(x^2) + .5\pi(x^3)$
 $\pi(x^3) = .75\pi(x^1) + .3\pi(x^2)$
 $\pi(x^1) + \pi(x^2) + \pi(x^3) = 1$
 $\pi(x^1) = .2$
 $\pi(x^1) = .2$
 $\pi(x^2) = .5$
 $\pi(x^3) = .3$

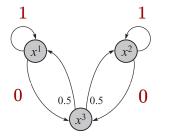
viewing T(.,.) as a matrix and $P^t(x)$ as a vector

- evolution of dist $P^t(x) : P^{(t+1)} = T^{\mathsf{T}} P^{(t)}$
- multiple steps: $P^{(t+m)} = (T^{\mathsf{T}})^m P^{(t)}$
- for stationary dist: $\pi = T^{\mathsf{T}}\pi$
- π is an eigenvector of T^{T} with eigenvalue 1 (produce it using the power method)
- $\begin{bmatrix} .25 & 0 & .5 \\ 0 & .7 & .5 \\ .75 & .3 & 0 \end{bmatrix} \begin{bmatrix} .2 \\ .5 \\ .3 \end{bmatrix} = \begin{bmatrix} .2 \\ .5 \\ .3 \end{bmatrix}$ $T^{\mathsf{T}} \qquad \pi \qquad \pi$

Stationary distribution: existance & uniqueess

irreducible

- we should be able to reach any x' from any x
- otherwise, π is not unique



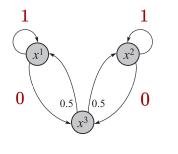
Stationary distribution: existance & uniqueess

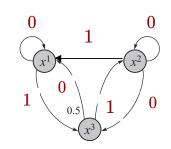
irreducible

- we should be able to reach any x' from any x
- otherwise, π is not unique

aperiodic

- the chain should not have a fixed cyclic behavior
- otherwise, the chain does not converge (it oscillates)





Stationary distribution: existance & uniquness

irreducible

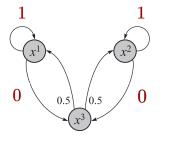
- we should be able to reach any x' from any x
- otherwise, $\,\pi\,$ is not unique

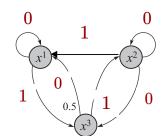
aperiodic

- the chain should not have a fixed cyclic behavior
- otherwise, the chain does not converge (it oscillates)

every aperiodic and irreducible chain (with a finite domain) has a unique limiting distribution $\,\pi$

such that $\pi(X=x)=\sum_{x'\in Val(X)}\pi(X=x')T(x,x')$





Stationary distribution: existance & uniquness

irreducible

- we should be able to reach any x' from any x
- otherwise, π is not unique

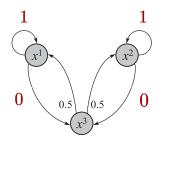
aperiodic

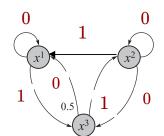
- the chain should not have a fixed cyclic behavior
- otherwise, the chain does not converge (it oscillates)

every aperiodic and irreducible chain (with a finite domain) has a unique limiting distribution π

such that
$$\pi(X=x)=\sum_{x'\in Val(X)}\pi(X=x')T(x,x')$$

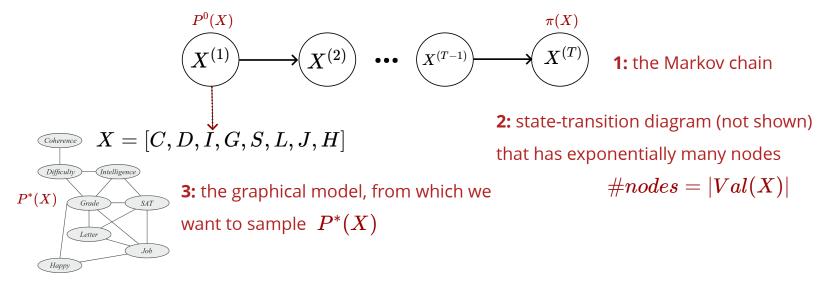
regular chain a sufficient condition: there exists a K, such that the probability of reaching any destination from any source in K steps is positive (applies to discrete & continuous domains)





MCMC in graphical models

distinguishing the "graphical models" involved



MCMC in graphical models

distinguishing the "graphical models" involved



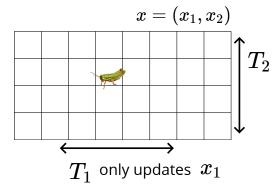
objective: design the Markov chain transition so that $\pi(X) = P^*(X)$

Multiple transition models

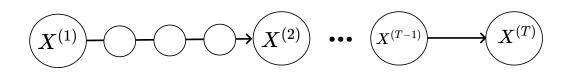
idea

aka, **kernels** have multiple transition models $T_1(x, x'), T_2(x, x'), \ldots, T_n(x, x')$

each making local changes to x



using a single kernel we may not be able to visit all the states while their combination is "ergodic"



Multiple transition models

idea

aka, **kernels** have multiple transition models $T_1(x,x'), T_2(x,x'), \ldots, T_n(x,x')$

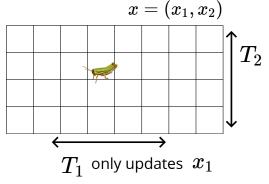
each making local changes to x

if
$$\pi(X=x) = \sum_{x' \in Val(X)} \pi(X=x') T_{k}(x,x')$$
 $orall k$

then we can combine the kernels:

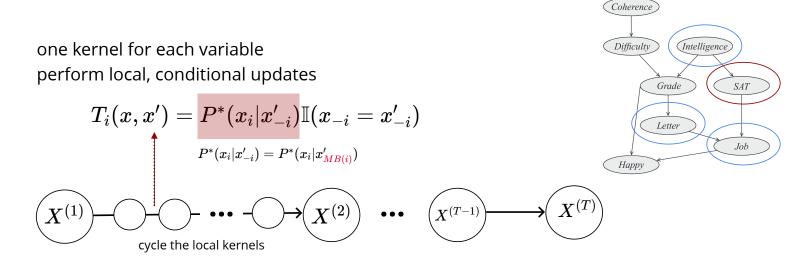
- mixing them $T(x, x') = \sum_k \frac{p(k)T_k(x, x')}{p(k)T_k(x, x')}$
- cycling them $T(x,x') = \int_{x^{[1]},x^{[2]},\ldots,x^{[n]}} T_1(x,x^{[1]}) T_2(x^{[1]},x^{[2]}),\ldots T_n(x^{[n-1]},x') \mathrm{d}x^{[1]} \mathrm{d}x^{[2]}\ldots \mathrm{d}x^{[n]}$

$$\overbrace{X^{(1)}}^{} - \overbrace{}^{} - \overbrace{}^{} X^{(2)} \cdots \overbrace{X^{(T-1)}}^{} - \overbrace{}^{} X^{(T)}$$



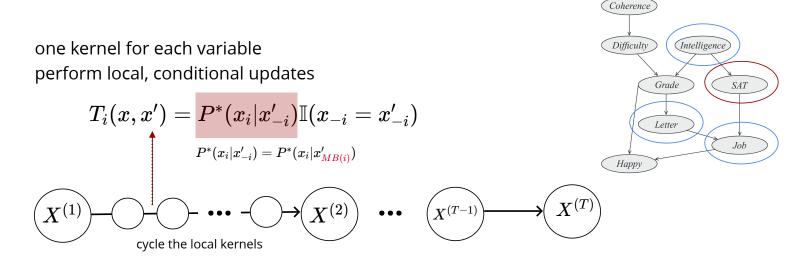
using a single kernel we may not be able to visit all the states while their combination is "ergodic"

Revisiting Gibbs sampling



 $\pi(X) = P^*(X)$ is the stationary dist. for this Markov chain

Revisiting Gibbs sampling

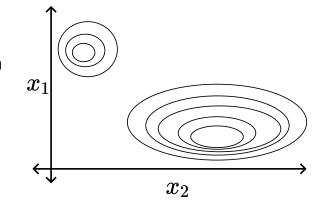


 $\pi(X) = P^*(X)$ is the stationary dist. for this Markov chain

if $P^*(x) > 0$ $\forall x$ then this chain is regular *i.e., converges to its unique stationary dist.*

Block Gibbs sampling

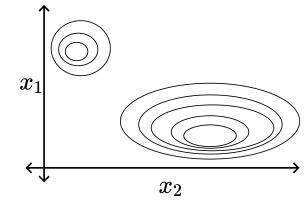
local moves can get stuck in modes of $P^*(X)$ updates using $P(x_1 | x_2), P(x_2 | x_1)$ will have problem exploring these modes



Block Gibbs sampling

local moves can get stuck in modes of $P^*(X)$ updates using $P(x_1 | x_2), P(x_2 | x_1)$ will have problem exploring these modes

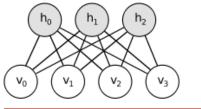
idea: each kernel updates a block of variables



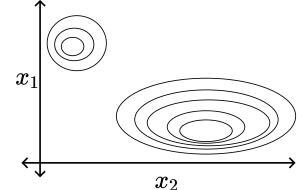
Block Gibbs sampling

local moves can get stuck in modes of $P^*(X)$ updates using $P(x_1 | x_2), P(x_2 | x_1)$ will have problem exploring these modes

idea: each kernel updates a block of variables



Restricted Boltzmann Machine (RBM)



- update h given v $P(h_0, h_1, h_2 | v_0, \dots, v_3) = P(h_0 \mid v) \dots P(h_2 | v)$
- update v given h $P(v_0,\ldots,v_3|h_0,h_1,h_2) = P(v_0|h)\ldots P(v_3|h)$

A Markov chain is reversible if for a unique π

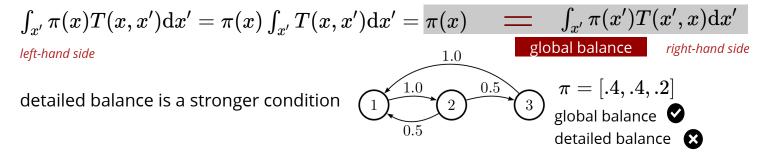
detailed balance $\pi(x)T(x,x') = \pi(x')T(x',x) \quad orall x,x'$ same frequency in both directions

A Markov chain is reversible if for a unique π

detailed balance $\pi(x)T(x,x') = \pi(x')T(x',x) \quad orall x,x'$ same frequency in both directions

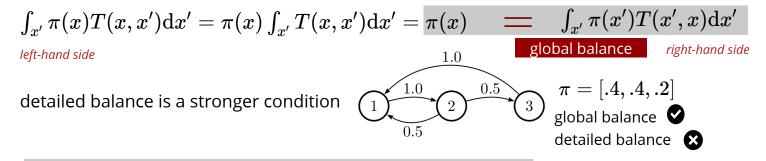
A Markov chain is reversible if for a unique π

detailed balance $\pi(x)T(x,x')=\pi(x')T(x',x)$ orall x,x' same frequency in both directions



A Markov chain is reversible if for a unique π

detailed balance $\pi(x)T(x,x') = \pi(x')T(x',x) \quad orall x,x'$ same frequency in both directions

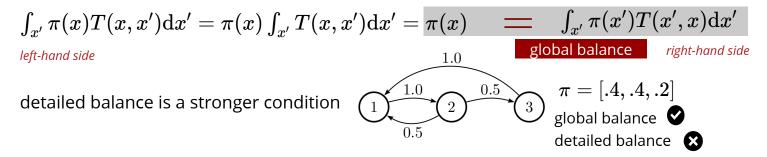


if Markov chain is regular and $\,\pi$ satisfies detailed balance, then $\,\pi$ is the unique stationary distribution

(example: Murphy's book)

A Markov chain is reversible if for a unique π

detailed balance $\pi(x)T(x,x')=\pi(x')T(x',x)$ orall x,x' same frequency in both directions

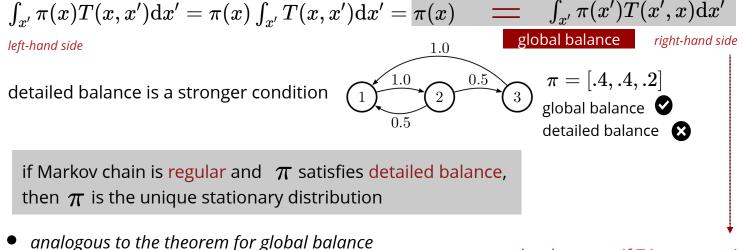


if Markov chain is regular and $\,\pi$ satisfies detailed balance, then $\,\pi$ is the unique stationary distribution

- analogous to the theorem for global balance
- checking for detailed balance is easier

A Markov chain is reversible if for a unique $\,\pi$

detailed balance $\pi(x)T(x,x') = \pi(x')T(x',x)$ $\forall x,x'$ same frequency in both directions $\pi(x)T(x,x')dx' = \pi(x)\int_{0}^{\infty}T(x,x')dx' = \pi(x) = \int_{0}^{\infty}\pi(x')dx'$



• checking for detailed balance is easier

what happens if T is symmetric?

(example: Murphy's book)

Using a proposal for the chain

Given P^* design a chain to sample from P^*

Using a proposal for the chain

Given P^* design a chain to sample from P^*

idea

- use a proposal transition $T^q(x, x')$
- we can sample from $T^q(x, \cdot)$
- $T^q(x,x')$ is a regular chain (reaching every state in K steps has a non-zero probability)

Using a proposal for the chain

Given P^* design a chain to sample from P^*

idea

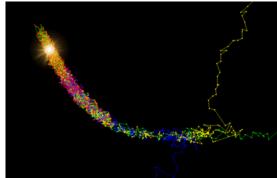
- use a proposal transition $T^q(x, x')$
- we can sample from $T^q(x, \cdot)$
- $T^q(x, x')$ is a regular chain (reaching every state in K steps has a non-zero probability)
- accept the proposed move with probability A(x, x')
 - to achieve detailed balance

Metropolis algorithm

- use a proposal transition $T^q(x, x')$
- we can sample from $T^q(x, \cdot)$
- $T^q(x, x')$ is a regular chain (reaching every state in K steps has a non-zero probability)
- accept the proposed move with probability A(x, x')
 - to achieve detailed balance
- proposal is symmetric T(x, x') = T(x', x)

 $A(x,x') riangleq \min(1,rac{p(x')}{p(x)})$

accepts the move if it increases *P** **may** accept it otherwise



if the proposal is NOT symmetric, then $A(x, x') \triangleq \min(1, \frac{p(x')T^q(x', x)}{p(x)T^q(x, x')})$

if the proposal is NOT symmetric, then $A(x, x') \triangleq \min(1, \frac{p(x')T^q(x',x)}{p(x)T^q(x,x')})$ why does it sample from P^* ?

if the proposal is NOT symmetric, then $A(x, x') \triangleq \min(1, \frac{p(x')T^q(x',x)}{p(x)T^q(x,x')})$ why does it sample from P^* ?

 $T(x,x')=T^q(x,x')A(x,x') \hspace{1em} orall x
eq x' \hspace{1em}$ move to a different state is accepted

if the proposal is NOT symmetric, then $A(x, x') \triangleq \min(1, \frac{p(x')T^q(x',x)}{p(x)T^q(x,x')})$ why does it sample from P^* ?

 $T(x,x') = T^q(x,x')A(x,x') \quad \forall x \neq x'$ move to a different state is accepted $T(x,x) = T^q(x,x) + \sum_{x \neq x'} (1 - A(x,x'))T(x,x')$ proposal to stay is always accepted move to a new state is rejected

if the proposal is NOT symmetric, then $A(x, x') \triangleq \min(1, \frac{p(x')T^q(x',x)}{p(x)T^q(x,x')})$ why does it sample from P^* ?

 $T(x,x') = T^q(x,x')A(x,x') \quad \forall x \neq x'$ move to a different state is accepted $T(x,x) = T^q(x,x) + \sum_{x \neq x'} (1 - A(x,x'))T(x,x')$ proposal to stay is always accepted move to a new state is rejected

substitute this into detailed balance (does it hold?)

if the proposal is NOT symmetric, then $A(x, x') \triangleq \min(1, \frac{p(x')T^q(x',x)}{p(x)T^q(x,x')})$ why does it sample from P^* ?

 $T(x,x') = T^q(x,x')A(x,x') \quad \forall x \neq x'$ move to a different state is accepted $T(x,x) = T^q(x,x) + \sum_{x \neq x'} (1 - A(x,x'))T(x,x')$ proposal to stay is always accepted move to a new state is rejected

substitute this into detailed balance (does it hold?)

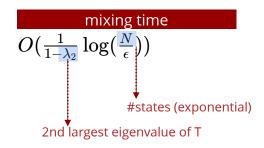
$$\pi(x)T^{q}(x,x')A(x,x') \stackrel{?}{=} \pi(x')T^{q}(x',x)A(x',x) \\ \min(1,\frac{\pi(x')T^{q}(x',x)}{\pi(x)T^{q}(x,x')}) \qquad \min(1,\frac{\pi(x)T^{q}(x,x')}{\pi(x')T^{q}(x',x)})$$

Gibbs sampling is a special case, with A(x, x') = 1 all the time!

Sampling from the chain

at the limit $\, T o \infty$, $\, P^\infty = \pi = P^* \,$

how long should we wait for $D(P^T, \pi) < \epsilon$?

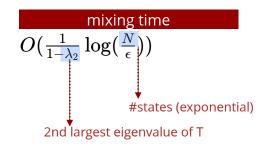


Sampling from the chain

at the limit $\, T o \infty$, $\, P^\infty = \pi = P^* \,$

how long should we wait for $D(P^T, \pi) < \epsilon$?

- run the chain for a burn-in period (T steps)
- collect samples (few more steps)
- multiple restarts can ensure a better coverage



Sampling from the chain

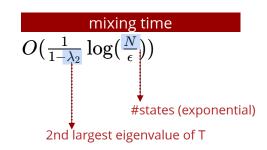
at the limit $\, T o \infty$, $\, P^\infty = \pi = P^* \,$

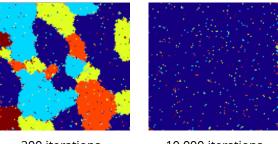
how long should we wait for $D(P^T, \pi) < \epsilon$?

- run the chain for a burn-in period (T steps)
- collect samples (few more steps)
- multiple restarts can ensure a better coverage

Example Potts model

- model $p(x) \propto \exp(\sum_i h(x_i) + \sum_{i,j \in \mathcal{E}} .66\mathbb{I}(x_j = x_j))$
- |Val(X)| = 5 different colors
- 128x128 grid
- Gibbs sampling





200 iterations

10,000 iterations image : Murphy's book

Diagnosing convergence

- heuristics for diagnosing non-convergence
- difficult problem
- run multiple chains (compare sample statistics)
- auto-correlation within each chain

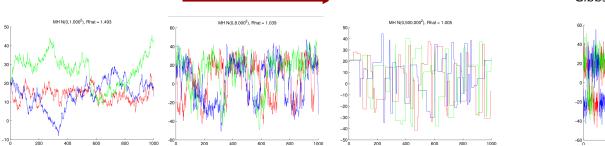
Diagnosing convergence

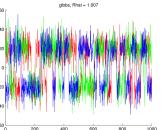
- heuristics for diagnosing non-convergence
- difficult problem
- run multiple chains (compare sample statistics)
- auto-correlation within each chain

metropolis-hastings (MH) with increasing step sizes for the proposal

example

sampling from a mixture of two 1D Gaussians (3 chains: colors)





Summary

Markov Chain:

- can model the "evolution" of an initial distribution
- converges to a stationary distribution

Summary

Markov Chain:

- can model the "evolution" of an initial distribution
- converges to a stationary distribution

Markov Chain Monte Carlo:

- design a Markov chain: stationary dist. is what we want to sample
- run the chain to produce samples

Summary

Markov Chain:

- can model the "evolution" of an initial distribution
- converges to a stationary distribution

Markov Chain Monte Carlo:

- design a Markov chain: stationary dist. is what we want to sample
- run the chain to produce samples

Two MCMC methods:

- Gibbs sampling
- Metropolis-Hastings