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Learning objectives

e Markov chains
e the idea behind Markov Chain Monte Carlo (MCMC)
e two important examples:

m Gibbs sampling

= Metropolis-Hastings algorithm
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Problem with likelihood weighting

Recap - dn& I

e use a topological ordering
e sample conditioned on the parents P e
e if observed:

= keep the observed value e
= ypdate the weight &[0 Los
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e observing the child does not affect the parent's assignment
e only applies to Bayes-nets
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Gibbs sampling
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e iteratively sample each var. condition on

its Markov blanket oo
Xi ~ p(zi | Xmp()) ioe s
e if X;is observed: keep the observed value

e after many Gibbs sampling iterations X ~ P



Gibbs sampling
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e iteratively sample each var. condition on

its Markov blanket T oy
Xz ~ p(x’l | XMB(Z)) i::d‘]’ 0.9 0:08 |
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e if X;is observed: keep the observed value ot o

g% (099 0.01

e first simplifying the model by removing observed vars
e sampling from the simplified Gibbs dist.

e after many Gibbs sampling iterations X ~ P



Example: Ising model
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Example: Ising model

recall the Ising model: Q—O—0—0—0—0—0
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Example: Ising model

recall the Ising model:

p(z) o< exp(D_; Tihi + 2, jeg TiTj i)
z; € {—1,+1}
sample each node i;

p(zi = +1 | Xypw)) =

eXp(hi+ZjeMb(i) Ji i X;) L
eXP(hi+ZjeMb(i) Jij Xj)+exp(—hi _ZjeMb(i) Jij X;)

O'(th + 2 ZjGMb(i) Ji, XJ) compare with mean-field
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Markov Chain

a sequence of random variables with Markov property

P(X® 1 xM  xt-1D) = p(x®|xt-1)

its graphical model @—>@

many applications:

i Ianguage modeling: Xis a word or a character
d phySiCSZ with correct choice of X, the world is Markov



Transition model

we assume a homogeneous chain: p(x®|xt1y = p(xtD|x®) v¢

cond. probabilities remain the same across time-steps

notation: conditional probability P(X® = z| XV = 2/ = T(x, ')

is called the transition model
think of this as a matrix T
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Transition model

we assume a homogeneous chain: p(x®|xt1y = p(xtD|x®) v¢

cond. probabilities remain the same across time-steps

notation: conditional probability P(X® = z| XV = 2/ = T(, 2')

is called the transition model

think of this as a matrix T
0.25 0.7
25 0 .75
T=|(0 .7 .3
I R 0

evolving the distribution P(X®" = z) = Y eyuisy P(XY = )T (', z)



Markov Chain Monte Carlo (MCMC(C)

Example state-transition diagram for grasshopper random walk
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Markov Chain Monte Carlo (MCMC(C)

Example state-transition diagram for grasshopper random walk
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oo Recies

initial distribution P®(X =0) =1
after t=50 steps, the distribution is almost uniform Pi(z) ~ 1 Vz

use the chain to sample from the uniform distribution P!(X



Markov Chain Monte Carlo (MCMC(C)

Example state-transition diagram for grasshopper random walk ,,m,mg I |
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initial distribution P®(X =0) =1

after t=50 steps, the distribution is almost uniform P'(z) ~ 1 Vz
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why is it uniform?

use the chain to sample from the uniform distribution P!(X

(mixing image: Murphy's book)



Markov Chain Monte Carlo (MCMC(C)

Example state-transition diagram for grasshopper random walk ,,m,wg l |
025 025 0.25 0.25 025 023 0.25 0.25 0.25 p%| l l |
(05) /05 0.5 0.5 : i I b
@ @ @ (= AR
0.25 0.25 0.25 P ? I I ? |
p"%x)
initial distribution P(X =0) =1 - AN RRI |

S BNARARNER

after t=50 steps, the distribution is almost uniform Pi(z) ~ 1 Vz

g BRI

use the chain to sample from the uniform distribution P!(X

p“%x)
0 5 10 15 20

VI@\[68 ceneralize this idea beyond uniform dist.

e we want to sample from P~

why is it uniform?

e pick the transition model such that P*(X) = P*(X)

(mixing image: Murphy's book)
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Stationary distribution

given a transition model T(QZ, CL”) if the chain converges:
PW(z) ~ PU () =Y, PY(2)T (2, z)
this condition defines the stationary distribution: 7T
(X =2) =3 peyax ™(X =2')T(z,2')

Example finding the stationary dist.

r(z') = 257 (2)) + 5 (a?) m(z!) = .2
n(z?) = .Tr(2?) + .5m(z?) m(xz?) = .5
n(z®) = .757(z") + .37 (z?) m(z®) = .3
m(z!) + w(z?) + 7(23) =




Stationary distribution as an eigenvector
finding the stationary dist.

n(z') = .25m(zt) + .5r(x?) n(z') = .2
m(x?) = .Tm(x?) + .5r(z®) n(z®) = .5
n(x?) = .75m(z") + .37 (z?) n(z®) = .3
m(z!) + m(z?) + m(z°) =1




Stationary distribution as an eigenvector
finding the stationary dist.
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viewing T(.,.) as a matrixand P'(z) as a vector

25 0 5.2
® cvolution of dist P'(z) : P+ = 7T p®) o 7 5|5
® multiple steps: pt+tm) — (7T)mp(t) 3 0]].3



Stationary distribution as an eigenvector
finding the stationary dist.

0.7 n(z') = .25m(zh) + .5m(x?) n(z') = .2
m(x?) = .Tm(x?) + .5r(z®) n(z®) = .5

. n(x?) = .75m(z") + .37 (z?) 7(z®) = .3
m(zt) + m(z?) +w(z?) =1

viewing T(.,.) as a matrixand P'(z) as a vector
25 0 5.2

® cvolution of dist P(z) : P+ = 7T p®) 0 .7 5[5
® multiple steps: pt+m) — (7T)mp(t) 3 0]].3

® for stationary dist: 7 =T"'m



Stationary distribution as an eigenvector
finding the stationary dist.

0.7 n(z') = .25m(zt) + .5r(x?) n(z') = .2
n(z?) = .7 (z?) + 5w (x?) n(z®) = .5

. n(z®) = . 757 (") + .37(x?) n(z®) = .3
m(zl) + w(x?) + n(z3) =1

viewing T(.,.) as a matrixand P'(z) as a vector

25 0 5.2

® cvolution of dist P'(z) : P+ = 7T p®) o 7 5|5

® multiple steps: pt+tm) — (7T)mp(t) 3 0]].3
® for stationary dist: 71 =T"'x

® T is an eigenvector of TT with eigenvalue 1 (produce it using the power method)



Stationary distribution: existance & uniquness
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® we should be able to reach any x' from any x
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Stationary distribution: existance & uniquness

1 1
O
® we should be able to reach any x' from any x ()
® otherwise, 7T is not unique 0 05 0

1
® the chain should not have a fixed cyclic behavior ( 0

® otherwise, the chain does not converge (it oscillates) 0.5

every aperiodic and irreducible chain (with a finite domain) has a unique limiting distribution 4t

such that 7r(X = ,’1:) — Zx’EVal(X) 7T(X = a:')T(zc, :13,)

a sufficient condition: there exists a K, such that the probability of reaching

any destination from any source in K steps is positive wppies o discrete & continuous domains)



MCMC in graphical models

distinguishing the "graphical models" involved

P(X) m(X)

@—)@ ) 1: the Markov chain

2: state-transition diagram (not shown)
that has exponentially many nodes

3: the graphical model, from which we #nodes = |Val(X)|
want to sample P*(X)




MCMC in graphical models

distinguishing the "graphical models" involved

P'(X) m(X)

@—)@ ) 1: the Markov chain

2: state-transition diagram (not shown)
that has exponentially many nodes

3: the graphical model, from which we #nodes = |Val(X)|
want to sample P*(X)

objective: design the Markov chain transition so that =(X) = P*(X)



Multiple transition models

__idea z = (21,2)

aka, kernels
have multiple transition models T} (z, z'), Ty (z, z'), . .., Tn(z, ')

each making local changesto «

ya AN
N 4

Ty only updates 1

using a single kernel we may not be able to visit
all the states while their combination is "ergodic"

EOHO-O-COr(xe) -



Multiple transition models

___idea 2 = (21,22)

aka, kernels
have multiple transition models T;(z, z'), Ty (z, z'), . .., Tn(z, ')

each making local changesto «

ya AN
N 4

. . . o /
if (X =2)=>pevax) T(X =2 )Ti(z,2') VE T only updates 1

using a single kernel we may not be able to visit

then we can combine the kernels: all the states while their combination is "ergodic"

® mixing them T(z,z') = >, p(k)Tk(z,z")
® cycling them T(z,z') = fxm,xm,...,m["J Tl(a:,a:m)Tz(w[”,a:m), . .Tn(a:["*ﬂ,q;’)dm[”dmm . dz

EOHO-O-COr(xe) -



Revisiting Gibbs sampling

one kernel for each variable
perform local, conditional updates

Ti(z,z') = P*(a;|2)(z—; = ;)
4
‘ (zilzl;) = P*(zi|z)y 5

cycle the local kernels

m(X) = P*(X) is the stationary dist. for this Markov chain



Revisiting Gibbs sampling

one kernel for each variable
perform local, conditional updates

T(z,2') = P*(@ilal ) (= = ')

4

(i]x! ;) = P*($i|"£erBz‘

cycle the local kernels

m(X) = P*(X) is the stationary dist. for this Markov chain

if P*(z) >0 Vz then this chainis regular

i.e., converges to its unique stationary dist.



Block Gibbs sampling

local moves can get stuck in modes of P*(X)
updates using P(z; | z2), P(x2|z1) will have problem

exploring these modes

/
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Block Gibbs sampling

local moves can get stuck in modes of P*(X)
updates using P(z; | z2), P(x2|z1) will have problem

exploring these modes

idea: each kernel updates a block of variables

/

L1

N

<N
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Block Gibbs sampling

N

local moves can get stuck in modes of P*(X)
updates using P(z; | z2), P(x2|z1) will have problem

L1

exploring these modes .l

idea: each kernel updates a block of variables T

<N
A\ 4

® update h givenv  P(hg, hi, halvg, . ..,v3) = P(ho | v) ... P(hs|v)
P g

Restricted Boltzmann Machine (RBM) ® update v given h P(vo,...,v3|hg, h1, ha) = P(wlh) ... P(vs|h)
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A Markov chain is reversible if for a unique 7T

P ()T (¢, ') = 7(2))T(a,z) Va,a

same frequency in both directions

/
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then 7T is the unique stationary distribution

(example: Murphy's book)



Detailed balance

A Markov chain is reversible if for a unique 7T

P ()T (¢, ') = 7(2))T(a,z) Va,a

same frequency in both directions

/

[, m(@)T(z,2")dz' = 7(z) [, T(z,2)dz’ = n(z) = [, 7(z")T(z',z)da’

1.0 global balance right-hand side

left-hand side
: : ” 1.0 0.5 T =|4,.4,.2
detailed balance is a stronger condition @:ﬁ/\ 44,2
global balance O
05 detailed balance Q

if Markov chain is regular and 7T satisfies detailed balance,
then 7T is the unique stationary distribution

® analogous to the theorem for global balance
® checking for detailed balance is easier
(example: Murphy's book)



Detailed balance

A Markov chain is reversible if for a unique 7T

P ()T (¢, ') = 7(2)T(a,z) Va,a

same frequency in both directions

!

[, m(@)T(z,2")dz' = 7(z) [, T(z,2)dz’ = n(z) = [, 7(z")T(z',z)da’

global balance right-hand side

left-hand side 1.0
: : ” 1.0 0.5 T =|4,.4,.2
detailed balance is a stronger condition @:ﬁ/\ 44,2
global balance O
05 detailed balance Q

if Markov chain is regular and 7T satisfies detailed balance,
then 77 is the unique stationary distribution
v
® analogous to the theorem for global balance L _
, , , , what happens if T is symmetric?
® checking for detailed balance is easier
(example: Murphy's book)
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Given p* design a chain to sample from p*



Using a proposal for the chain

Given p* design a chain to sample from p*

e use a proposal transition T%(z,z’)
e we can sample from 79(z,-)
® Tq(l',il?/) iS d regUIar Chain (reaching every state in K steps has a non-zero probability)



Using a proposal for the chain

Given p* design a chain to sample from p*

e use a proposal transition T%z,z’)

e we can sample from 79(z,-)

o Tz,z') is aregular chain (eachingevery state in k steps has a non-zero probabilty)
e accept the proposed move with probability A(z,z")

m to achieve detailed balance



Metropolis algorithm

use a proposal transition T9(z,z')
we can sample from T9(z, )

T9(z,2') is a regular chain (eaching every state in k steps has a non-zero probabiliy)
accept the proposed move with probability A(z, z')

m to achieve detailed balance
proposal is symmetric T(z,z') = T(z', z)
A(z,z') £ min(1, i')((—f;)))
accepts the move if it increases P*

may accept it otherwise

(image: Wikipedia)



Metropolis-Hastings algorithm

if the proposal is NOT symmetric, then A(z,z') £ min(1, 22 a
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Metropolis-Hastings algorithm

if the proposal is NOT symmetric, then A(z,z') = min(1, i’,((f;)quq(x m/))

why does it sample from pP*?

T(z,z') =Tz, 2" )A(z,z') VYV #a I move to a different state is accepted

roposal to stay is always accepted
T(z,z) =Tz, 2) + Zw#w’(l — A(z,2"))T (2, 2') I PnO\F/)e to a newztate is r>(/ajectedIO



Metropolis-Hastings algorithm

if the proposal is NOT symmetric, then A(z,z') = min(1, i’,(x)Tq(x,x/))

why does it sample from pP*?

T(z,z') =Tz, 2" )A(z,z') VYV #a I move to a different state is accepted

roposal to stay is always accepted
T(z,z) =Tz, 2) + Zw#w’(l — A(z,2"))T (2, 2') I PnO\F/)e to a newztate is r></ajectedIO

substitute this into detailed balance (does it hold?)

?
()T z, 2" YA(z,2") = =w(2")TY2',z)A(z',x)

7(z)T(x,x)

7(2 )T (z ,x)) min(l, m)

min(1, (@) T9(z,2)



Metropolis-Hastings algorithm

if the proposal is NOT symmetric, then A(z,z') = min(1, Z(w)Tq(x,x/))

why does it sample from pP*?

T(z,z') =Tz, 2" )A(z,z') VYV #a I move to a different state is accepted
proposal to stay is always accepted

T(z,2) = T(z,2) + Zw#w’(l — Az, ")) T(z,z') I move to a new state is rejected
substitute this into detailed balance (does it hold?)
?
()T z, 2" YA(z,2") = w(2")TY2',z)A(z',x)
w(x/)Tq(ac/,x)) 7(z)T(x,x)

min(1, T min(l, Gt L))

Gibbs sampling is a special case, with A(z,2') =1 all the time!



Sampling from the chain

atthe limit T — oo, p> = 5 = p*

how long should we wait for D(P*,r) < €?
0(1—1>_\2 10%(%))

v
#states (exponential)

v
2nd largest eigenvalue of T
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0(1—1>_\2 10%(%?)

® collect samples (few more steps) v
: #states (exponential)

® run the chain for a burn-in period (T steps)

® multiple restarts can ensure a better coverage an*largest eigenvalue of T



Sampling from the chain

atthelimit T — oo, p> =5 = p*

how long should we wait for D(P*,r) < €?
0(1—1>_\2 10%(%?)

® run the chain for a burn-in period (T steps)
® collect samples (few more steps) v
#states (exponential)

® multiple restarts can ensure a better coverage an*largest eigenvalue of T

Potts model

® model p(z) o< exp(D; h(w:i) + ; ice -661(z; = x;))
® |Val(X)| =5 different colors

® 128x128 grid

. . . - «" 4 - ¢ ‘n
Gibbs Samp“ng 200 iterations 10,000 iterations
image : Murphy's book



Diagnosing convergence

heuristics for diagnosing non-convergence
difficult problem

run multiple chains (compare sample statistics)
auto-correlation within each chain



Diagnosing convergence

e heuristics for diagnosing non-convergence
e difficult problem

® run muItipIe chains (compare sample statistics)

e guto-correlation within each chain

example sampling from a mixture of two 1D Gaussians (3 chains: colors)

metropolis-hastings (MH) with increasing step sizes forihe proposal Gibbs sampling

MH N(0,8.000%), Rhat = 1.039

oo Tkl W'f [ " "
: ’4337”‘?;’\'% ‘,W*ﬁ y i i ) .\‘if‘ WW‘WJJL M* “ﬂ W l ﬂ [W Mh m d! ) M}Y ‘ M 14l W W
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Markov Chain:
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e converges to a stationary distribution
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Summary

Markov Chain:
e can model the "evolution" of an initial distribution
e converges to a stationary distribution

Markov Chain Monte Carlo:

e design a Markov chain: stationary dist. is what we want to sample
e run the chain to produce samples

Two MCMC methods:

e Gibbs sampling
e Metropolis-Hastings



