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Learning objectivesLearning objectives

Markov chains
the idea behind Markov Chain Monte Carlo (MCMC)
two important examples:

Gibbs sampling 
Metropolis-Hastings algorithm



Problem with Problem with likelihood weightinglikelihood weighting

use a topological ordering
sample conditioned on the parents
if observed: 

keep the observed value
update the weight

Recap



Problem with Problem with likelihood weightinglikelihood weighting

use a topological ordering
sample conditioned on the parents
if observed: 

keep the observed value
update the weight

Recap

observing the child does not affect the parent's assignment
only applies to Bayes-nets

Issues



Gibbs samplingGibbs sampling

iteratively sample each var. condition on
its Markov blanket

 

if      is observed: keep the observed value

Idea

X ∼ p(x ∣ X )i i MB(i)

Xi

after many Gibbs sampling iterations X ∼ P



Gibbs samplingGibbs sampling

iteratively sample each var. condition on
its Markov blanket

 

if      is observed: keep the observed value

Idea

equivalent to

X ∼ p(x ∣ X )i i MB(i)

first simplifying the model by removing observed vars
sampling from the simplified Gibbs dist.

Xi

after many Gibbs sampling iterations X ∼ P
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p(x) ∝ exp( x h + x x J )∑i i i ∑i,j∈E i j i,j

recall the Ising model:

x ∈ {−1,+1}i
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Example: Example: Ising modelIsing model

sample each node i:

p(x) ∝ exp( x h + x x J )∑i i i ∑i,j∈E i j i,j

recall the Ising model:

x ∈ {−1,+1}i

p(x = +1 ∣ X ) =i MB(i)

=exp(h + J X )+exp(−h − J X )i ∑j∈Mb(i) i,j j i ∑j∈Mb(i) i,j j

exp(h + J X )i ∑j∈Mb(i) i,j j

σ(2h + 2 J X )i ∑j∈Mb(i) i,j j compare with mean-field σ(2h + 2 J μ )i ∑j∈Mb(i) i,j j



Markov ChainMarkov Chain

a sequence of random variables with Markov property

P (X ∣X ,… ,X ) = P (X ∣X )(t) (1) (t−1) (t) (t−1)

its graphical model  ...X(1) X(T )

many applications:

language modeling: X is a word or a character

physics: with correct choice of X, the world is Markov

X(2) X(T−1)



Transition modelTransition model

P (X = x∣X = x ) = T (x,x )(t) (t−1) ′ ′

is called the transition model
think of this as a matrix T

notation: conditional probability

we assume a homogeneous chain: P (X ∣X ) = P (X ∣X ) ∀t(t) (t−1) (t+1) (t)

cond. probabilities remain the same across time-steps
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Transition modelTransition model

P (X = x∣X = x ) = T (x,x )(t) (t−1) ′ ′

is called the transition model
state-transition diagram think of this as a matrix T

T = ⎣
⎡.25
0
.5

0
.7
.5

.75
.3
0 ⎦
⎤

evolving the distribution P (X = x) = P (X = x )T (x ,x)(t+1) ∑x ∈V al(X)′
(t) ′ ′

notation: conditional probability

its transition matrix

we assume a homogeneous chain: P (X ∣X ) = P (X ∣X ) ∀t(t) (t−1) (t+1) (t)

cond. probabilities remain the same across time-steps
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P (X = 0) = 1(0)initial distribution
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Markov Chain Monte Carlo (Markov Chain Monte Carlo (MCMCMCMC))

Example state-transition diagram for grasshopper random walk

P (X = 0) = 1(0)initial distribution

after t=50 steps, the distribution is almost uniform P (x) ≈ ∀xt
9
1

use the chain to sample from the uniform distribution P (X) ≈t
9
1

MCMC generalize this idea beyond uniform dist.

we want to sample from
pick the transition model such that  P (X) = P (X)∞ ∗

P ∗

why is it uniform?

(mixing image: Murphy's book)



Stationary distributionStationary distribution

given a transition model                         if the chain converges:T (x,x )′

P (x) ≈ P (x)(t) (t+1) = P (x )T (x ,x)∑x′
(t) ′ ′global balance equation
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Stationary distributionStationary distribution

given a transition model                         if the chain converges:T (x,x )′

P (x) ≈ P (x)(t) (t+1) = P (x )T (x ,x)∑x′
(t) ′ ′

this condition defines the stationary distribution:
π(X = x) = π(X = x )T (x,x )∑x ∈V al(X)′

′ ′

π

Example finding the stationary dist.

π(x ) = .25π(x ) + .5π(x )1 1 3

π(x ) = .7π(x ) + .5π(x )2 2 3

π(x ) = .75π(x ) + .3π(x )3 1 2

π(x ) + π(x ) + π(x ) = 11 2 3

π(x ) = .21

π(x ) = .52

π(x ) = .33

global balance equation



Stationary distribution Stationary distribution as an eigenvectoras an eigenvector

Example finding the stationary dist.
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Stationary distribution Stationary distribution as an eigenvectoras an eigenvector

viewing              as a matrix and              as a vector

evolution of dist             :

multiple steps:

T (., .) P (x)t

Example finding the stationary dist.

π(x ) = .25π(x ) + .5π(x )1 1 3

π(x ) = .7π(x ) + .5π(x )2 2 3

π(x ) = .75π(x ) + .3π(x )3 1 2

π(x ) + π(x ) + π(x ) = 11 2 3

π(x ) = .21
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π(x ) = .33
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Stationary distribution Stationary distribution as an eigenvectoras an eigenvector

viewing              as a matrix and              as a vector

evolution of dist             :

multiple steps:

T (., .) P (x)t

Example finding the stationary dist.

π(x ) = .25π(x ) + .5π(x )1 1 3

π(x ) = .7π(x ) + .5π(x )2 2 3

π(x ) = .75π(x ) + .3π(x )3 1 2

π(x ) + π(x ) + π(x ) = 11 2 3

π(x ) = .21

π(x ) = .52

π(x ) = .33

P (x)t P = T P(t+1) T (t)

P = (T ) P(t+m) T m (t)

for stationary dist: π = T πT

⎣
⎡.2
.5
.3⎦
⎤

⎣
⎡.25
0
.75

0
.7
.3

.5

.5
0⎦
⎤

TT π

= ⎣
⎡.2
.5
.3⎦
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π



    is an eigenvector of         with eigenvalue 1

Stationary distribution Stationary distribution as an eigenvectoras an eigenvector

viewing              as a matrix and              as a vector

evolution of dist             :

multiple steps:

T (., .) P (x)t

Example finding the stationary dist.

π(x ) = .25π(x ) + .5π(x )1 1 3

π(x ) = .7π(x ) + .5π(x )2 2 3

π(x ) = .75π(x ) + .3π(x )3 1 2

π(x ) + π(x ) + π(x ) = 11 2 3

π(x ) = .21

π(x ) = .52

π(x ) = .33

P (x)t P = T P(t+1) T (t)

P = (T ) P(t+m) T m (t)

for stationary dist: π = T πT

⎣
⎡.2
.5
.3⎦
⎤

⎣
⎡.25
0
.75

0
.7
.3

.5

.5
0⎦
⎤

TT π

= ⎣
⎡.2
.5
.3⎦
⎤

π

TTπ (produce it using the power method)
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Stationary distribution: Stationary distribution: existance & uniqunessexistance & uniquness

we should be able to reach any x' from any x

otherwise,        is not unique 0

1

0

1

π

irreducible

aperiodic

the chain should not have a fixed cyclic behavior

otherwise, the chain does not converge (it oscillates) 1

00

1 0
0

1

every aperiodic and irreducible chain (with a finite domain) has a unique limiting distribution

such that

π
π(X = x) = π(X = x )T (x,x )∑x ∈V al(X)′

′ ′

                               a sufficient condition: there exists a K, such that the probability of reaching

any destination from any source in K steps is positive (applies to discrete & continuous domains)

regular chain



MCMC in graphical modelsMCMC in graphical models

distinguishing the "graphical models" involved

1: the Markov chain

3: the graphical model, from which we

want to sample

X = [C,D, I,G,S,L,J ,H]
2: state-transition diagram (not shown)

that has exponentially many nodes

#nodes = ∣V al(X)∣

P (X)∗
P (X)∗

P (X)0 π(X)

...X(1) X(T )
X(2) X(T−1)



MCMC in graphical modelsMCMC in graphical models

distinguishing the "graphical models" involved

1: the Markov chain

3: the graphical model, from which we

want to sample

X = [C,D, I,G,S,L,J ,H]
2: state-transition diagram (not shown)

that has exponentially many nodes

#nodes = ∣V al(X)∣

objective: design the Markov chain transition so that π(X) = P (X)∗

P (X)∗
P (X)∗

P (X)0 π(X)

...X(1) X(T )
X(2) X(T−1)



Multiple transition modelsMultiple transition models

idea

have multiple transition models

each making local changes to

T (x,x ),T (x,x ),… ,T (x,x )1
′

2
′

n
′

x

T1

T2

x = (x ,x )1 2

only updates  x1

aka, kernels

using a single kernel we may not be able to visit
all the states while their combination is "ergodic"

...X(1) X(T )
X(2) X(T−1)



Multiple transition modelsMultiple transition models

if

T (x,x ) = T (x,x )T (x ,x ),…T (x ,x )dx dx …dx′ ∫x ,x ,…,x[1] [2] [n] 1
[1]

2
[1] [2]

n
[n−1] ′ [1] [2] [n]

idea

have multiple transition models

each making local changes to

T (x,x ),T (x,x ),… ,T (x,x )1
′

2
′

n
′

x

T1

T2

x = (x ,x )1 2

only updates  x1

aka, kernels

using a single kernel we may not be able to visit
all the states while their combination is "ergodic"

π(X = x) = π(X = x )T (x,x ) ∀k∑x ∈V al(X)′
′

k
′

then we can combine the kernels:

mixing them

cycling them

T (x,x ) = p(k)T (x,x )′ ∑k k
′

...X(1) X(T )
X(2) X(T−1)



Revisiting Gibbs samplingRevisiting Gibbs sampling

one kernel for each variable

...X(1) X(T )
X(2) X(T−1)

T (x,x ) = P (x ∣x )I(x = x )i
′ ∗

i −i
′

−i −i
′

perform local, conditional updates

...

P (x ∣x ) = P (x ∣x )∗
i −i

′ ∗
i MB(i)

′

π(X) = P (X)∗ is the stationary dist. for this Markov chain

cycle the local kernels



Revisiting Gibbs samplingRevisiting Gibbs sampling

one kernel for each variable

...X(1) X(T )
X(2) X(T−1)

T (x,x ) = P (x ∣x )I(x = x )i
′ ∗

i −i
′

−i −i
′

perform local, conditional updates

...

P (x ∣x ) = P (x ∣x )∗
i −i

′ ∗
i MB(i)

′

π(X) = P (X)∗ is the stationary dist. for this Markov chain

cycle the local kernels

if                         then this chain is regularP (x) > 0 ∀x∗

i.e., converges to its unique stationary dist.
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local moves can get stuck in modes of P (X)∗
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x2

updates using                                       will have problem

exploring these modes

P (x ∣ x ),P (x ∣x )1 2 2 1
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Block Gibbs samplingBlock Gibbs sampling

local moves can get stuck in modes of P (X)∗

x1

x2

updates using                                       will have problem

exploring these modes

P (x ∣ x ),P (x ∣x )1 2 2 1

idea: each kernel updates a block of variables 

 

update h given v

P (v ,… , v ∣h ,h ,h ) = P (v ∣h)…P (v ∣h)0 3 0 1 2 0 3update v given h

P (h ,h ,h ∣v ,… , v ) = P (h ∣ v)…P (h ∣v)0 1 2 0 3 0 2

Restricted Boltzmann Machine (RBM)
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same frequency in both directions
detailed balance
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then       is the unique stationary distribution
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Detailed balanceDetailed balance

A Markov chain is reversible if for a unique π

π(x)T (x,x ) = π(x )T (x ,x) ∀x,x′ ′ ′ ′

same frequency in both directions

π(x )T (x ,x)dx∫
x′

′ ′ ′

left-hand side

π(x)T (x,x )dx = π(x) T (x,x )dx = π(x)∫
x′

′ ′ ∫
x′

′ ′

right-hand side

=

detailed balance

global balance

detailed balance is a stronger condition
π = [.4, .4, .2]

global balance
detailed balance

if Markov chain is regular and        satisfies detailed balance,
then       is the unique stationary distribution

π
π

analogous to the theorem for global balance
checking for detailed balance is easier

(example: Murphy's book)

what happens if T is symmetric?
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Given        design a chain to sample from P ∗ P ∗

idea
use a proposal transition
we can sample from 
               is a regular chain  (reaching every state in K steps has a non-zero probability)

accept the proposed move with probability

to achieve detailed balance

T (x,x )q ′

T (x, ⋅)q
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Metropolis algorithmMetropolis algorithm

use a proposal transition
we can sample from
               is a regular chain  (reaching every state in K steps has a non-zero probability)

accept the proposed move with probability

to achieve detailed balance

T (x,x )q ′

T (x, ⋅)q

T (x,x )q ′

A(x,x )′

proposal is symmetric T (x,x ) = T (x ,x)′ ′

A(x,x ) ≜ min(1, )′
p(x)
p(x )′

accepts the move if it increases  P ∗

may accept it otherwise 
(image: Wikipedia)



MetropolisMetropolis-Hastings-Hastings algorithm algorithm

if the proposal is NOT symmetric, then A(x,x ) ≜ min(1, )′
p(x)T (x,x )q ′
p(x )T (x ,x)′ q ′
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if the proposal is NOT symmetric, then A(x,x ) ≜ min(1, )′
p(x)T (x,x )q ′
p(x )T (x ,x)′ q ′

P ∗



why does it sample from      ?

MetropolisMetropolis-Hastings-Hastings algorithm algorithm

T (x,x ) = T (x,x )A(x,x ) ∀x ≠ x′ q ′ ′ ′

if the proposal is NOT symmetric, then A(x,x ) ≜ min(1, )′
p(x)T (x,x )q ′
p(x )T (x ,x)′ q ′

P ∗
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MetropolisMetropolis-Hastings-Hastings algorithm algorithm

T (x,x ) = T (x,x )A(x,x ) ∀x ≠ x′ q ′ ′ ′

if the proposal is NOT symmetric, then A(x,x ) ≜ min(1, )′
p(x)T (x,x )q ′
p(x )T (x ,x)′ q ′
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move to a different state is accepted

proposal to stay is always accepted
move to a new state is rejected



why does it sample from      ?

MetropolisMetropolis-Hastings-Hastings algorithm algorithm

T (x,x ) = T (x,x )A(x,x ) ∀x ≠ x′ q ′ ′ ′

if the proposal is NOT symmetric, then A(x,x ) ≜ min(1, )′
p(x)T (x,x )q ′
p(x )T (x ,x)′ q ′

substitute this into detailed balance (does it hold?)

P ∗

T (x,x) = T (x,x) + (1 −A(x,x ))T (x,x )q ∑x≠x′
′ ′

move to a different state is accepted

proposal to stay is always accepted
move to a new state is rejected

π(x)T (x,x )A(x,x ) = π(x )T (x ,x)A(x ,x)q ′ ′ ′ q ′ ′

min(1, )π(x)T (x,x )q ′
π(x )T (x ,x)′ q ′

min(1, )π(x )T (x ,x)′ q ′
π(x)T (x,x )q ′

?



why does it sample from      ?

MetropolisMetropolis-Hastings-Hastings algorithm algorithm

T (x,x ) = T (x,x )A(x,x ) ∀x ≠ x′ q ′ ′ ′

if the proposal is NOT symmetric, then A(x,x ) ≜ min(1, )′
p(x)T (x,x )q ′
p(x )T (x ,x)′ q ′

substitute this into detailed balance (does it hold?)

P ∗

T (x,x) = T (x,x) + (1 −A(x,x ))T (x,x )q ∑x≠x′
′ ′

move to a different state is accepted

proposal to stay is always accepted
move to a new state is rejected

π(x)T (x,x )A(x,x ) = π(x )T (x ,x)A(x ,x)q ′ ′ ′ q ′ ′

min(1, )π(x)T (x,x )q ′
π(x )T (x ,x)′ q ′

min(1, )π(x )T (x ,x)′ q ′
π(x)T (x,x )q ′

?

Gibbs sampling is a special case, with                  all the time!A(x,x ) = 1′
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Sampling from the chainSampling from the chain
at the limit             , 

 how long should we wait for 

T →∞ P = π = P∞ ∗

D(P ,π) < ϵ?T

run the chain for a burn-in period (T steps)

collect samples (few more steps)

multiple restarts can ensure a better coverage

mixing time

O( log( ))1−λ2
1

ϵ
N

#states (exponential)

2nd largest eigenvalue of T



model

                          different colors  

128x128 grid

Gibbs sampling

Sampling from the chainSampling from the chain
at the limit             , 

 how long should we wait for 

T →∞ P = π = P∞ ∗

D(P ,π) < ϵ?T

run the chain for a burn-in period (T steps)

collect samples (few more steps)

multiple restarts can ensure a better coverage

mixing time

Potts model

p(x) ∝ exp( h(x ) + .66I(x = x ))∑i i ∑i,j∈E j j

Example

∣V al(X)∣ = 5

200 iterations 10,000 iterations

image : Murphy's book

O( log( ))1−λ2
1

ϵ
N

#states (exponential)

2nd largest eigenvalue of T
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difficult problem
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Diagnosing convergenceDiagnosing convergence

heuristics for diagnosing non-convergence
difficult problem
run multiple chains (compare sample statistics)

auto-correlation within each chain

example sampling from a mixture of two 1D Gaussians (3 chains: colors)

metropolis-hastings (MH) with increasing step sizes for the proposal Gibbs sampling
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SummarySummary

Markov Chain:
can model the "evolution" of an initial distribution
converges to a stationary distribution

Markov Chain Monte Carlo:

design a Markov chain: stationary dist. is what we want to sample
run the chain to produce samples

Two MCMC methods:

Gibbs sampling 
Metropolis-Hastings


