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Learning objectives

e MAP inference and its complexity
e exact & approximate MAP inference

= max-product and max-sum message passing
= relationship to LP relaxation
= graph-cuts for MAP inference



Definition & complexity

Y\l argmax, p(x)
given Bayes-net, deciding whether

p(z) > ¢ for some z is NP-complete! @\
) $>

side-chain prediction as MAP inference
(Yanover & Weiss)

decision
problem




Definition & complexity

Y\l argmax, p(z)
given Bayes-net, deciding whether

p(z) > ¢ for some z is NP-complete! @
) gfg

WVE rgl nal MAP arg max, Zy p(w’ y) side-chain prediction as I\(/\Igri)\i/:rfzrve\:lzzs

secision | S1VEN Bayes-net for p(x,y), deciding whether p(x) > ¢ for
problem  some x is complete for NPPlP

decision
problem

® s NP-hard even for trees a non-deterministic Turing machine that accepts if the
L. . majority of paths accept
® cannot use the distributive law
a non-deterministic Turing machine that accepts if a single path
accepts (with access to a PP oracle)
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= arg max, p(z) = argmax, | [; ¢1(zr)
ignore the normalization constant
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Problem & terminology

MAP inference:  argmax, p(z) = argmax, + [[; #1(z1)

= arg max, p(z) = argmax, | [; ¢1(zr)
ignore the normalization constant

with evidence:
arg max, p(z | e) = arg max, % = arg max, p(z, e)

log domain:

arg max, p(x) = argmax, » ,;In ¢r(x;) = arg min, — In p(z)
aka min-sum inference (energy minimization)




Max-marginals

marginal 2 ceva@) ?(#,¥) used in sum-product inference

is replaced with max-marginal maxcva(z) ¢(,y)
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distributive law for MAP inference

max(ab, ac) = amax(b, C) max-product inference
max(a +b,a + C) =a-—+ max(b, C) max-sum inference
max(min(a,b), min(a, c)) = max(a, min(b,¢))  min-max inference

sum-product inference

ﬁﬁ

3 operations 2 operations



distributive law for MAP inference

max(ab, CLC) = amax(b, C) max-product inference
max(a + b,a + ¢) = a + max(b, c) max-sum inference

min-max inference

save computation by factoring the operations
in disguise max,,, f(z,y)g(y, 2) = max, g(y, z) max, f(z,y)

® assuMming |vai(X)| = |Val(Y)| = [Val(Z)| = d
. from o(d®) to o(d?)



Max-product variable elimination

the procedure is similar to VE for sum-product inference
eliminate all the variables

o input: " = {¢1,...,¢x} a set of factors

output: max, p(x) = max, [[; #1(x1)

e goover z;,...,x; in some order:

= collect all the relevant factors: ¥t = {¢ € &' | z;, € Scope[¢]}
= calculate their product: ¢; =[] cq: ¢

= max-marginalize out z;,: ¥; = max,,

= ypdate the set of factors: t — $t-1 — @t 4+ {y!}

e return the scalarin t=m as » ()
Z=3%,p(w)



Decoding the max-value

we need to recover the maximizing assignment z*
keep {%i=1,...,%i=n}, produced during inference

input: =" ={¢1,...,¢x}a set of factors

output: 2 P() = maxe [[; ¢1(wr)

e goover m,...,x; insome order:

= collect all the relevant factors: gt _ {¢ € & | z;, € Scope|d]}
= calculate their product: , = [Tyeu

= max-marginalize out z;: ¢, = v, Yt

= update the set of factors: gt _ gt—1 _ gt o ()}

return the scalar in &t=m as +P(x)



Decoding the max-value

start from the last eliminated variable

¥+=n should have been a function of x; alone: z;,* < arg max,

= max-marginalize out x;,: ¥; = max,,



Decoding the max-value

at this point we have z;

Yi=n-1can only have i, ,, i, inits domainz;, ,* < argmax,,  VYn-1(zi, ,, i)

n

and so on...

» max-marginalize out x;,: ¥; = max,, ¥



Marginal-MAP variable elimination

e the procedure remains similar for maxy, ... > . . |];¢1(zr)
e max and sum in do not commute

max; ,, ¢(z,y) # ., max,; ¢(z,y)
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Marginal-MAP variable elimination

the procedure remains similar for maxy,
max and sum in do not commute

max; ,, ¢(z,y) # ., max,; ¢(z,y)

cannot use arbitrary elimination order
first, eliminate {zi,...,%n} (sum-prod VE)
then eliminate {y,...,ym} (max-prod VE)

= decode the maximizing value

«eYm Zwl,. R HI ¢I(x1)

X)) - ()

example: exponential complexity despite
low tree-width




Max-product BP

In clique-trees, cluster-graphs, factor-graph

building the chordal graph

building the clique-tree @ _____________
tree-width (complexity of inference) |\ hmn > |-G |

remains the same!




Max-product BP

In clique-trees, cluster-graphs, factor-graph

building the chordal graph
building the clique-tree  wml

tree-width (complexity of inference) |\ hmn > |-G |

remains the same!

main differences:

I replacing sum with max

decoding the maximizing assignment
variational interpretation



Max-product BP

Ve, Wi
factor-graph .24} {3,5}

x) = 1 . ) \~\
p(x) ZHI¢I( 7) @ @ @ @
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Max-product BP

Ve, Wi
factor-graph .24} {3,5}

) = 1 TT, s (er )‘ Q\
P() ZHI¢() @ @ @

variable-to-factor message: (@) o< Ty gr 67-i(xi)

factor-to-variable message: dr-i(xi) oc mase, r(@r) [Ijer—i 65 1(@:)

approx. max-marginals: B(z:) o< [1cy 07-i(z:)



Max-product BP

(7 2.4 Y ,
factor-graph .24} {3,5}

) = 1 TT, s (er )‘ Q\
P() zHﬂP() @ @ @

X HJ{@'GJ,J;&I 0.7—i(i)

variable-to-factor message: ()
factor-to-variable message: dr-i(xi) oc mase, r(@r) [Ijer—i 65 1(@:)

approx. max-marginals: B(z:) o [1cy 07-i(z:)

use damping for convergence in loopy graphs



Decoding exact max-marginals

clique-trees &factor-graphs without any loops

Single MAP assignment

MAP assignment is unique max-marginals are unambiguous

x* = arg max, p(z) @ T; = arg max,, B(z;)



Decoding exact max-marginals

clique-trees &factor-graphs without any loops

Single MAP assignment

MAP assignment is unique max-marginals are unambiguous
x* = arg max, p(x) @ x} = arg max,, B(x;)

Multiple MAP assignments —>



Decoding exact max-marginals

clique-trees &factor-graphs without any loops

Single MAP assignment

MAP assignment is unique max-marginals are unambiguous

x* = arg max, p(x) @ T; = arg max,, B(z;)

Multiple MAP assignments :> a join assignment z* exists
that is locally optimal

B (01,0 = (o1 = 2 o e

- _ _ _ I; ) = IMaXy, i)Vl

Zg‘gz‘gg‘ ; 8(a}) = maxs, Blar)VI
2 =0)=B(z2 =

easy to find (how?)



Decoding pseudo max-marginals

cluster-graphs, loopy factor-graphs

best local assignments may be incompatible

b=0 b=1 b=0 b=1 a=0 a=1
[
E. @ a=0 12 =0 1 2 =0 12
© ‘ a=1 2 1 c=1 2 1 c=1 2 1
x @ e
b}
B(a,b) B(b, c) B(a,c)

however, if m(a),m(b), m(c) have unique max., a unique locally optimal belief exists



Decoding pseudo max-marginals

cluster-graphs, loopy factor-graphs

best local assignments may be incompatible

o ) b=0 b=1 b=0 b=1 a=0 a=1
g. a=0 12 =0 1 2 =0 12
© ‘ a=1 2 1 c=1 2 1 c=1 2 1
S ©
¥}
@ B(a,b) B(b,c) B(a,c)
however, if m(a),m(b), m(c) have unique max., a unique locally optimal belief exists
@ b=0 b=1 b=0 b=1 a=0 a=1
g @ a=0 3 2 c=0 3 2 =0 3 2
% @Ae a=1 2 3 c=1 2 3 c=1 2 3
B(a,b) B(b, c) B(a,c)

B(a), B(b), B(c) do not have a unique max., but a locally optimal assignment (a=b=c=0) exists



Decoding pseudo max-marginals

cluster-graphs, loopy factor-graphs

best local assignments may be incompatible

o ) b=0 b=1 b=0 b=1 a=0 a=1
g. a=0 12 =0 1 2 =0 12
© ‘ a=1 2 1 c=1 2 1 c=1 2 1
S ©
¥}
@ B(a,b) B(b,c) B(a,c)
however, if m(a),m(b), m(c) have unique max., a unique locally optimal belief exists
@ b=0 b=1 b=0 b=1 a=0 a=1
g @ a=0 3 2 c=0 3 2 =0 3 2
% @Ae a=1 2 3 c=1 2 3 c=1 2 3
B(a,b) B(b, c) B(a,c)

B(a), B(b), B(c) do not have a unique max., but a locally optimal assignment (a=b=c=0) exists

so, it's complicated!



Decoding pseudo max-marginals

cluster-graphs, loopy factor-graphs

given a set of cluster max-marginals {m:(zs)}r how to find
locally optimal Z* (optimal in all mr) if it exists

e reduce to a Constraint Satisfaction Problem
e use decimation:

= run inference
= fix a subset of variables &} = argmax,, m;(z)
= repeat until all vars are fixed



Optimality of max-product loopy BP

a locally optimal assignment £*is a strong local maxima of p(z)

m(Z]) = max,, m(x;)Vi

m(Z}) = max,, m(z7)VI

no better assignment exists in a large neighborhood of z*

® pick any subset of variables T C {1,... ,n};
® build the maximal subgraph Gr s.t. each factor has a variable in T
® if this subgraph does not have more than one loop then

® p(Z*) cannotbe improved by changing thevarsin T



Using integer and linear programming

Inp(z) = >, ;In¢i;(zi, x;)

looking for an assignment x* to maximize this sum
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Inp(z) = >, ;In¢i;(zi, x;)

looking for an assignment x* to maximize this sum

integer-programming formulation:
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Using integer and linear programming

Inp(z) = >, ;In¢i;(zi, x;)

looking for an assignment x* to maximize this sum

integer-programming formulation:

AIgMAX(q} Y jeg Dz, % (Tis 3) In @i j (i, T5)

qi,j (mi, xj) S {0, 1} Vi, J < 5, Ly Lj picks a single assignment for vars in each factor
in qi (wl) =1 Vi ensure that assignments to different factors are
consistent

> e Gj(TisTj) = qi(xj) Vi, j €&, x;

solution to this NP-hard program is the MAP assignment



Using integer and linear programming

linear programming has a polynomial-time solution
AT MaxX{g} D ; ice D a,, %y (i T5) In @i 5 (T, T5)

qi,j(x%wj) S {07 1}

ensure that assignments to different factors are
in qi,j (:Ei, .’Bj) = Qj(xj) V’L,j & g’ Z consistent

{ai;}



Using integer and linear programming

linear programming has a polynomial-time solution
AT MaxX{g} D ; ice D a,, %y (i T5) In @i 5 (T, T5)

qi’j(aji,a’:j) -~ {O, ]_} relax this constraint to q¢,j (CU'L',J?J') Z 0 V'I,,] -~ 6, CIZZ‘,ZCJ'

ensure that assignments to different factors are
in qi,j (xi, .’Bj) = Qj(xj) V’L,] & g’ X consistent

{ai;}



Using integer and linear programming

linear programming has a polynomial-time solution

AT MaxX{g} D ; ice D a,, %y (i T5) In @i 5 (T, T5)

. gij(xi, x;) € {0,1} relaxthis constraintto  q; j(xi, z;) >0 Vi, j € &, xi, x;
Y.a(e) =1 Vi

: ensure that assignments to different factors are

sz q’L,j (,’B,L, w,]) — q](x]) Vi,j & g’ x] consistent

v

local consistency constraints that we saw earlier

e outer-bound to marginal polytope for globally consistent {4}



Using integer and linear programming

A

Marginal polytope / \

[qz,_] (wi7 wj)]i7j€5>$iaxj

Jq(z)s.t. max, ; q(z) = g ;(z, zvj)( /

v
alternative form

the convex hull of sufficient statistics for all assignments to x

L(G)

CO’I?/U{[H[X@' = miaxj = xj]]i,jegyfvi@j ’ X}



Using integer and linear programming

A

Marginal polytope / \ Local consistency polytope
|

196, (@i, 5) i jee a0, Gi,j (T, T5)i jee wia;

dq(x)s.t. max, Q(m)qm(m“wj)( / gij(zi,z;) >0 Vi,j €&, xi,x;
i, iy bj) = 3 y iy Lj

L(G)

D, G (Tis 25) = qj(25) Vi, j €&, xj

the convex hull of sufficient statistics for all assignments to x

CO’I?/U{[H[X@' = miaxj = xj]]i,jegyfvi@j ’ X}



Using integer and linear programming

why is this important?
LP solutions are at corners of the polytope (why?)

. . —
LP using T, is an upper-bound
to the MAP value using v /



Using integer and linear programming

why is this important?

LP solutions are at corners of the polytope (why?)
. . "
LP using T, is an upper-bound
to the MAP value using v / \

LP solution found USING T, - \ /
T——

L(G)



Using integer and linear programming

why is this important?
LP solutions are at corners of the polytope (why?)

LP using T, is an upper-bound
to the MAP value using g

LP solution found using M *

e isintegral (by definition)
e gives the correct MAP assignment
e M is difficult to specify



Recall: variational derivation of BP
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Recall: variational derivation of BP

argmaxyq} > ; ice H(qij) = D2 (INbil = 1) H(qi) + X jee Dow,, @.i(%i T5) In @i j (i, ;)

S @i (@i, ) = gi(x5) Vi, j € E,x; locally consistent
marginal distributions
gij(zi,zj) >0 Vi,j €& i,z

Zmi gi(zi) =1 Vi



Recall: variational derivation of BP

argmax(gy ) ice H(qij) — 22 (|Nbi| = 1)H(qi) + 32 jeg Doay, €6 (%is T5) In @i (i, ;)

S @i (@i, ) = gi(z5) Vi, j € E,x; locally consistent
marginal distributions
gij(zi,zj) >0 Vi,j€& i,z

in gi(zi) =1 Vi

BP update is derived as "fixed-points" of the Lagrangian

® pp messages are the (exponential form of the) Lagrange multipliers



Relationship between LP & BP

sum-product BP objective
LP objective

arg maxy,) Zi’jeg Zm] gi,j (i, Tj) In ¢ij(zi, xj) +

replace p(z)T o 1, ;¢ ¢i(zi,z;)T in the equation above

arg maxj, %Zi’jeg Zx” Gi,j(Ti, zj) In @i j(wi, z5) + H(Q)
= argMaxX(q} Y ; jcg Da,, %.d(Ti> T3) In dij(wi, x;) +TH(q)



Relationship between LP & BP

sum-product BP objective
LP objective

ArgMAaX(q} Y ; jeg D g, 9 (Tis Tj) Inij(xi, x) +
ij(%i,zj) >0 Vi,j €& zi,x;

> e Gg(Tis i) = gj(zy) Vi,j €€, x;

replace p(z)T o 1, ;¢ ¢i(zi,z;)T in the equation above

arg maX{q} %ZZ,]ES in,j Qz,g (:Ei7 33]) ]'n ¢2,] (wi7 w]) + H(q)
= argMaxX(q} Y ; jcg Da,, %.d(Ti> T3) In dij(wi, x;) +TH(q)



Relationship between LP & BP

sum-product BP for marginalization
at the zero-temperature limit limz_op(z)7

is similar to LP relaxation of MAP inference
they are equivalent for concave entropy approximations
sum-product BP

at the zero-temperature limit limzr_o p(z)

M=

is similar to max-product BP

they are equivalent for concave entropy approximations

In practice, max-product BP can be much more efficient than LP
® it uses the graph structure



using graph cuts

reduce MAP inference to min-cut problem
use efficient & optimal min-cut solvers
setting:
e binary pairwise MRF
p(z) x exp(—E(z))
E(z) = €(m) + D jee €i,i (@i, )

graph-cut problem: partition the nodes into two
sets that include source and target at min cost

image: https://www.geeksforgeeks.org



using graph cuts

reduce MAP inference to min-cut problem
use efficient & optimal min-cut solvers
setting:
e binary pairwise MRF
p(z) x exp(—E(z))

E(z) =) &) + D jee €(Tis Tj) - |
graph-cut problem: partition the nodes into two
° metric intera CtionS sets that include source and target at min cost

® reflexivity € ;(zi,z;) =0< z; = z;
® symmetry € ;(zi, z;) = €;i(z;, i)

® triangle inequality € ;(a,b) + € j(b,c) > € j(a,c)

image: https://www.geeksforgeeks.org
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reduction to graph-cuts

source node's partition —> assignment of 0

target node's partition —> assignment of 1

reduction through an example:




reduction to graph-cuts

source node's partition —> assignment of 0
target node's partition —> assignment of 1

reduction through an example:

any metric MRF is reducible to
this form

p(z) o exp(—E(x)) P
E(z) = Y2, €i(®i) + 3, jeg €0 (i, T5) m



reduction to graph-cuts

source node's partition —> assignment of 0
target node's partition —> assignment of 1

reduction through an example:

any metric MRF is reducible to
this form

p(z) o< exp(~ E(z)) e
B(z) = ¥ (@) + e €0 ) N

/ //
N N
7

N
o
&

non-optimal extensions to variables with higher cardinality



Other methods for MAP inference

e variable elimination

e max-product belief propagation
e |P and LP relaxation

e graph-cuts

e dual decomposition

e branch and bound methods

e |ocal search
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e MAP and marginal MAP are NP-hard
e distributive law extends to MAP inference

B variable elimination
B clique-tree an additional challenge of decoding
® |oopy BP
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m P relaxations



Summary

MAP and marginal MAP are NP-hard
distributive law extends to MAP inference

B variable elimination
B clique-tree an additional challenge of decoding
® |oopy BP

variational perspective, connects three approaches:

u max—product LBP (can find strong local optima!)
u sum-product LBP (theoretical zero temperature limit)
m P relaxations

for some family of loopy graphs, exact polynomial-time
inference is possible (graph-cuts)



