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Learning objective

e |loopy belief propagation
e its variational derivation: Bethe approximation



So far...
e exact inference;

= variable elimination
= equivalent to belief propagation (BP) in a clique tree



So far...
e exact inference;

= variable elimination
m equivalent to belief propagation (BP) in a clique tree

This class...

e what if the exact inference is to0 expensive? e, te treewidth is large)
= continue to use BP: loopy BP
= why is this a good idea?
o answer using variational interpretation



Recap: BP in clique trees

sum-product BP message update:

0i~;(Sig) = 2c,—s,; Yi(Ci) rene,—j Ok—i(Sik)

sepset cluster/clique

030G I):
ZsYA(Cy) X 85,5

85,3(G.S): & 5(GJ):
2 W5(Cs) X 8,5 2av(Cy

e from leaves towards the root
e back to leaves (ven } Lo ==z osr s Gusa]— (4167

Slaz(D)Z 52*)3(6'1): 53~>S(Gvs):
Zewi(Cy) Zp¥n(C) X 8,5 ZWs(C3) X 8, 5




Recap: BP in clique trees

sum-product BP message update:

0i~;(Sig) = 2c,—s,; Yi(Ci) rene,—j Ok—i(Sik)

sepset cluster/clique

53a2(G,1)1

05,3(G.S): 04 5(GJ):
ZsYA(Cy) X 85,5

2 W5(Cs) X 8,5 2av(Cy

e from leaves towards the root
e back to leaves (ven } Lo ==z osr s Gusa]— (4167

8,_,,(D): 8, ,4(G.I): 85_,5(G.S):
marginal (belief) for each cluster: (2% KZDWCNM 2O X By

pi(Ci) < Bi(Ci) = ¥i(Ci) [Trens, Ok—i(Sik)



Clique-tree for tree structures

e pairwise potentials ¢ ;(z:,z;)
e tree width =1

~. - one possible clique-tree

- — what are the sepsets?
one cluster per factor



Clique-tree for tree structures

e pairwise potentials ¢ ;(z:,z;)
e tree width =1

~. - one possible clique-tree

- — what are the sepsets?

one cluster per factor

a different valid clique-tree

— check for running intersection property



BP for tree structures

e pairwise potentials ¢ ;(z:, z;)
e message update
Oinj(z5) = D g, B (®is Tj) [penn,—j Or—i(i)

® from leaves towards a root

® pack to leaves

one cluster per factor



BP for tree structures

e pairwise potentials ¢ ;(z:, z;)
e message update
Oinj(z5) = D g, B (®is Tj) [penn,—j Or—i(i)

® from leaves towards a root

® pack to leaves

e marginal (belief) for each cluster one cluster per factor
pi(wi) o< [ Irens, Ok—i(z:)

Pi,j (@i, 75) o< i (@i, 75) [ Tnenn,—j Or—i(@i) [ Lnewn,—s Ok—i(x5)



BP for tree structures: reparametrization

graphical model represents
* p(x) — % Hz’,jeéf Pi;j (miv xj)

write it in terms of marginals

[1i jee Pij(xisz;)
one cluster per factor
why is this correct?

the denominator is adjusting for double-counts

substitute the marginals using BP messages to get (*)



Variational interpretation

BP as I-projection
arg ming D(q||p)

l
p(@) = % TT, #is(2i,25)

Hi ice 4i, '(xhx )
2(2) = TG

write g in terms of marginals of interest

minimization gives us the marginals 4,4



Variational free energy

D(qllp) = > q(X)l(ln q(z) — Inp(z))

—H(q) Eq[> i ; Inéij (i, ;)] — In(Z)
— _H(q) o EQ[Z@,] ln ¢Za] (331', 33])] + ln Z ignore: does not depend on q

l-projection is equivalent to argmax, H(q) + Eq[)_; ; In¢; (i, z;)]

free energy is a lower-bound on In Z



Simplifying the free energy

arg ming D(q||p)

l

p(z) = 5 [1; $ij(zi, )

Hi ic QZ,(wlam)
Q(x) = Hquj(mZ;szjl

= arg max, H(q) + E, [Zzg In ¢ j (i, ;)]

so far did not use the decomposed form of q

both entropy and energy involve summation over exponentially many terms



Simplifying the free energy

arg ming D(q||p)

l

p(z) = 5 [1; $ij(zi, )

H,-,E ql(%'u%')
Q(m) — H;qj(xi;Nbi—Jl

= arg max, H(q) + E, [ZU In ¢ j (i, z5)]

l

D ijeg Dowis i (Tir Tj) In @ (i, )

v

Zi,jeﬁ H(Qz,]) — ZZ(‘sz‘ _ ]-)H(Qz) follows from the decomposition of q



Variational interpretation: marginal constraints

arg max, H(q) + E, [Zi,j In ¢;,(@i, ;)]

l

Dijee Donis 9 (Tir 5) In @5 (i, )

e Hgig) — S:(INbi| — 1) H(g:)

ma rg| nals Qij, Qi ShOUId be "Va Iid" a real distribution with these marginals should exist

Do Gig(Tizj) = qi(xy) Vi, j €€, x;

for tree graphical models this local consistency is enough



Variational derivation of BP

argmaxyq} > ; ice H(qij) = D2 (INbi| = 1) H(qi) + 3 jee Dou,, @i (% T5) In @i j (i, ;)



Variational derivation of BP

argmax(qy ) ; ice H(qij) — 22 (|Nbi| = 1)H(qi) + 32 jeg Doa,, @0 (%is T5) In @i (i, ;)
> G(®i, 25) = gi(z;) Vi,j €E,2z;  locally consistent
marginal distributions

g (zi, ;) >0 Vi, j €€, z,x;



Variational derivation of BP

argmaxyq} > ; ice H(qij) — D2, (INbil = 1) H(qi) + 3 jee Dou,, @i (% T5) In @i j (i, ;)
>, Gi(Tiz5) = gi(z;) Vi,j€€&,z; locally consistent
marginal distributions

qj(zi;z;) 20 Vi, j €& zi,x;

BP update is derived as "fixed-points" of the Lagrangian

® pp messages are the (exponential form of the) Lagrange multipliers



What happens if there are loops?

We can still apply BP update: \

Gi—sj(xj) o< Doy, Vii (i ) [Tnens, i Ok—i(Tk)

proportional to /

—

O

normalize the message for numerical stability

O
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O

We can still apply BP update: \

Gi—sj(xj) o< Doy, Vii (i T5) [Tnens, i Ok—i(Tk) —

proportional to / \)

normalize the message for numerical stability

e update the messages synchronously or sequentially
e may not converge (oscillating behavior)



What happens if there are loops?

O

We can still apply BP update: \
Ji—j(2;) OJC, Dz Yii (@i T5) [Lrenn,—j Or—i(ak) —

proportional to / \)

normalize the message for numerical stability

e update the messages synchronously or sequentially
e may not converge (oscillating behavior)
e even when convergent only gives an approximation:

p(xi) o [ Tpens, Ok—i(2:) is not (proportional to) the exact marginal  p(z;)



Loopy BP on factor graphs

V{1,2,3} V{3,5)

p(x) = %HI Yi(zr)

Ic{,..., N} is asubset of variables ) ~ \




Loopy BP on factor graphs

¥{1,2,3} P35}
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Loopy BP on factor graphs

Yi1,2,3) (3,5)

p(x) = 7 [1; ¥u(ar)

Ic{,..., N} is asubset of variables )‘ ~\
@ @) @) @

variable-to-factor message: (i) o< [ sjicg g21 67—i(i)

factor-to-variable message:  dr—i(zi) o< 32, r(zr) [1er—i 651 (i)



Loopy BP on factor graphs

¥{1,2,3} P35}

p(x) = % 1174 (xr)

Ic{,..., N} is asubset of variables )‘ ~\
@ @) @) @

variable-to-factor message: (i) o< 1 jieg,g21 07—i(i)

factor-to-variable message:  dr—i(zi) o< 32, r(zr) [1er—i 651 (@i)

after convergence: 5(zi) o< [[ ey 07—i(2s)



Loopy BP on factor graphs: complexity
Yi1,2,3) (3,5

variable-to-factor message:

| / A A
® from each var to all neighbors ,
T A
(@) o< [ e, 01 00i(i) J rriax @ @ @ @

number of vars

max neighbours

domain size
(2 for binary)
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Loopy BP on factor graphs: complexity
Yi1,2,3) (3,5

variable-to-factor message:

| / A A
® from each var to all neighbors ,
T A
(@) o< [ e, 01 00i(xi) J rriax @ @ @ @

number of vars

max neighbours

domain size
(2 for binary)

factor-to-variable messages: ;,dlScopems|

S Copemax ‘

51%i($i) o Zml,i 1/11(331) Hje]—i (1'1) number of factors vars in a factor



(Loopy) BP has found many applications

Machine Learning: Vision:
* clustering
e tensor factorization °

e inpainting &denoising
e stereo matching

www._jianxiongxiao.cont®*

Social network analysis:

e stochastic block modelling

9p pamays-|o03-ydeud//isdny

Combinatorial - -
optimization:

e Viterbi algorithm



Application: LDPC coding using BP

low-density parity check

z1,...,Zn are sent through a noisy channel
Y1,---,Yn are observerd

plyi=1|z;=1)=p(yi=0|z;=0)=1—¢



Application: LDPC coding using BP

low-density parity check

z1,...,Zn are sent through a noisy channel
Y1,---,¥n are observerd
plyi=1lzi=1)=p(y;=0|z; =0)=1—¢

the message satisfies parity constraints:

1 e dux, =1
wstu(ivsal'tal'u) = { ’ ‘ “

0 otherwise.



Application: LDPC coding using BP

low-density parity check

z1,..-,%»  are sent through a noisy channel . .
134
y1,---,Yn are observerd Y2
Y3 ?7[)256
pyi=1]|z,=1)=p(yy=0|x;=0)=1—¢
the message satisfies parity constraints: v V135
1 e Dr,=1 Y5 V246
wstu(xmztaxu) = .
0 otherwise. Yo 6

joint dist. over unobserved message:

p(@ | y) = [Lsp0 ¥(@s, @, ma) [ 1121 (1 — €)@ = i) + €l(@ # i)

image: wainwright&jordan



Application: LDPC coding using BP

low-density parity check

joint dist. over unobserved message:

p(z | y) =110 ¥(@ss 2ty za) [ 1721 (1 — €)l(zi = i) + €l(zi # ui)

inference problems

e most likely joint assignment

z* = arg max, p(z | y)

n

Y2

Y3

Y4

Y5

Yo

Y134
Y56
V135

V246

L6

image: wainwright&jordan



Application: LDPC coding using BP

low-density parity check

joint dist. over unobserved message:

p(z | y) =110 ¥(@ss 2ty za) [ 1721 (1 — €)l(zi = i) + €l(zi # ui)

inference problems
e most likely joint assignment
z* = arg max, p(z | y)
e max-marginals ; = argmax, p(z; | y)

= calculate the marginals p(z: | y)V:
= yusing loopy BP

n

Y2

Y3

Y4

V134
Y56
Y135

V246

L6

image: wainwright&jordan



Application: LDPC coding using BP

low-density parity check

joint dist. over unobserved message:

p('CC ‘ y) — Hs,t,u ,lvb(wS) Lt xu) H;’:Lzl(]. — G)H(xz = Y;

inference problems

e Most likely joint assignment

z* = arg max, p(z | y)

image: wainwright&jordan



Application: LDPC coding using BP

low-density parity check

joint dist. over unobserved message:

p(CU ‘ y) — Hs,t,u 77b(5’3s> Tt mu) H?:1(1 — G)H(xi —

inference problems

e Most likely joint assignment
z* = argmax, p(z | y)
e Max-marginals ; = argmax,, p(z; | y)

= calculate the marginals p(z: | y)V:
= yusing loopy BP

image: wainwright&jordan



Loops and variational interepretation

arg max, H(q) + E, [Zi,j In ¢; (i, ;)]

!

D ije Domis i (Tis Tj) In @y (i, T5)

S see H(gig) — S:(INb| — 1)H(g)



Loops and variational interepretation

arg max, H(q) + E, [Zi,j In ¢; (@i, ;)]

!

D ije Domis i (Tis Tj) In @y (i, T5)

A 4

2 ijee H(giz) — 22 (INbi| — 1) H(g:)
the entropy term is not exact anymore

e called to the entropy
e generally not convex anymore (multiple fixed points)



Loops and variational interepretation
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L: Do, %(mi ) = gi(z;) Vi,j € E,x;



Loops and variational interepretation

arg max, H(q) + E, [Zi,j In ¢; (@i, ;)]

L: Do, %(mi ) = gi(z;) Vi, € €, x;

Local consistency constraints are inadequate:

e |ocally consistent gi;,q may not be marginals for any joint dist.

B j.e, local consistency polytope is an outer bound on the marginal polytope



Loops and variational interepretation

[pla e ,pn,pl,?,, v ,pm,n]

arg max, H(q) + E, [Zi,j In ¢; (@i, ;)]

[q17---,Qn,q1,37~--,Qm,n]
L: . Gij(Ti, ;) = gj(z;) Vi,j €& x;

L(G)

Local consistency constraints are inadequate:

e |ocally consistent gi;,q may not be marginals for any joint dist.

B j.e, local consistency polytope is an outer bound on the marginal polytope



Variations on BP

arg max, H(q) + Eq [Zi,j In ¢; (@i, ;)]

e the entropy term is not exact anymore:

= improved entropy approximations (e.g., region-based, convex)
e |ocal consistency constraints are inadequate

m tighter constraints (e.g., marginal consistency of larger clusters)



Variations on BP: cluster-graph

cluster-graph generalizes clique-tree

® clusters are not necessarily max-cliques
® running intersection property
® family-preserving property

® Si,j C C; ﬂCj

i

instead of = in clique-tree
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i
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Variations on BP: cluster-graph

a factor-graph

cluster-graph generalizes clique-tree

® clusters are not necessarily max-cliques

® running intersection property
® family-preserving property
® Si,j C C; N Cj

i

instead of = in clique-tree

similar reparametrization:

) Ci
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Variations on BP: cluster-graph

a factor-graph

cluster-graph generalizes clique-tree

® clusters are not necessarily max-cliques

® running intersection property

L family-preserving property corresponding cluster-graph (the same BP updates)
e 5., CCiNC (:4.8.¢] [2BcD] (3:8DF| [ 48E ] [ 5DE |
instead of = in clique-tree (ea] [72) [sc] [9p] [we] [07]

similar reparametrization:

) Ci
p(x)ec Hl}j-—ggsib

l

instead of = in clique-tree



Variations on BP: cluster-graph

a factor-graph

cluster-graph generalizes clique-tree

® clusters are not necessarily max-cliques

® running intersection property

L family-preserving property corresponding cluster-graph (the same BP updates)
e 5, €CiNC (:4.8.c] [2BcD] (3:8DF] [48E ] [ 5DE |
instead of = in clique-tree (ea] [72) [sc] [9p] [we] [i07]

similar reparametrization:

improved cluster-graph (better entropy approximation + marginal constraint)

p(x) & % (tasc) (zBcp) [38nrF) [48E]) [50E ]

2
l / 12: B, C

instead of = in clique-tree (64 78] [s&c] [9p] [w0E] [11:F]




BP in practice

11 x 11 Ising grid

e works well when: S r "
B |ocally tree-like graphs oM §Eﬁ§\ SH
. . . Sl A7 or |/ 01
. dense graphs Wlth Weak InteraCtlonS i U[l 1; 20 30 40 50 60 70 80 90 100 UU 0.1 0.2 0.3 0.4 0.5 DU 0.1 0.2 0.3 0.4 0.

Time ((s:)conds) Time ((SZ)COndS) Time ((S:)Conds)
e sequential update works better = | sl
than parallel update lE}% s

0 0.1 0.2 03 0.4 05 0 0.1 0.2 0.3 0.4 05
Time (seconds) Time (secon ds)

(d) (e)

‘ --- Synchronous  — Asynchronous  -— No smoothing — True ‘

e improved convergence by damping (smoothing) the update

t+1 t t
S (@) o (1 )8 (@) + o Tl ysesger 85 (i)



Summary

belief propagation: efficient deterministic inference

e exactin clique-tree = variable elimination
m gpplication of distributive law
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Summary

belief propagation: efficient deterministic inference

e exactin clique-tree = variable elimination
m gpplication of distributive law
e optimization perspective:
m KL-divergence minimization
e works well in (cluster) graphs with loops (large tree-width):
= approximate objective (Bethe free energy) and constraints



