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Learning objectiveLearning objective

loopy belief propagation
its variational derivation: Bethe approximation



So far...So far...
exact inference:

variable elimination
equivalent to belief propagation (BP) in a clique tree



So far...So far...
exact inference:

variable elimination
equivalent to belief propagation (BP) in a clique tree

what if the exact inference is too expensive? (i.e., the tree-width is large)

continue to use BP: loopy BP
why is this a good idea?

answer using variational interpretation

This class...This class...
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sum-product BP message update:

δ (S ) = ψ (C ) δ (S )i→j i,j ∑C −Si i,j i i ∏k∈Nb −ji
k→i i,k

p (C ) ∝ β (C ) = ψ (C ) δ (S )i i i i i i ∏k∈Nbi k→i i,k

from leaves towards the root
back to leaves

marginal (belief) for each cluster:

sepset cluster/clique
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pairwise potentials
tree width = 1

ϕ (x ,x )i,j i j

x2 x4

one cluster per factor

x1
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x5

x6one possible clique-tree

what are the sepsets?



Clique-tree for Clique-tree for tree structurestree structures

pairwise potentials
tree width = 1

ϕ (x ,x )i,j i j

x2 x4

one cluster per factor

x1

x3

x5

x6one possible clique-tree

what are the sepsets?

a different valid clique-tree

check for running intersection property
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pairwise potentials
message update

δ (x ) = ϕ (x ,x ) δ (x )i→j j ∑xi
i,j i j ∏k∈Nb −ji

k→i i

from leaves towards a root

back to leaves
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BP for BP for tree structurestree structures

pairwise potentials
message update

δ (x ) = ϕ (x ,x ) δ (x )i→j j ∑xi
i,j i j ∏k∈Nb −ji

k→i i

p (x ) ∝ δ (x )i i ∏k∈Nbi k→i i

from leaves towards a root

back to leaves

marginal (belief) for each cluster

ϕ (x ,x )i,j i j

xi xj

one cluster per factor

p (x ,x ) ∝ ϕ (x ,x ) δ (x ) δ (x )i,j i j i,j i j ∏k∈Nb −ji
k→i i ∏k∈Nb −ij

k→j j



BP for tree structures:BP for tree structures: reparametrization reparametrization

graphical model represents

why is this correct?
the denominator is adjusting for double-counts

substitute the marginals using BP messages to get (*)

p(x) = ϕ (x ,x )z
1 ∏i,j∈E i,j i j

one cluster per factor

write it in terms of marginals

p(x) =
p∏i i

∣Nb ∣−1i

p (x ,x )∏i,j∈E i,j i j

*



Variational Variational interpretationinterpretation

write q in terms of marginals of interest

argmin D(q∥p)q

BP as I-projection

p(x) = ϕ (x ,x )Z
1 ∏k i,j i j

q(x) =
q (x )∏i i i

∣Nb ∣−1i

q (x ,x )∏i,j∈E i,j i j

minimization gives us the marginals q , qi,j i



Variational Variational free energyfree energy

D(q∥p) = q(x)(ln q(x) − ln p(x))∑x

E [ lnϕ (x ,x )] − ln(Z)q ∑i,j i,j i j−H(q)

= −H(q) − E [ lnϕ (x ,x )] + lnZq ∑i,j i,j i j

I-projection is equivalent to argmax H(q) + E [ lnϕ (x ,x )]q q ∑i,j i,j i j

                        variational free energy

ignore: does not depend on q

free energy is a lower-bound on  lnZ



Simplifying the free energySimplifying the free energy
argmin D(q∥p)q

p(x) = ϕ (x ,x )Z
1 ∏k i,j i j

≡ argmax H(q) + E [ lnϕ (x ,x )]q q ∑i,j i,j i j

so far did not use the decomposed form of q
both entropy and energy  involve summation over exponentially many terms

q(x) =
q (x )∏i i i

∣Nb ∣−1i

q (x ,x )∏i,j∈E i,j i j



SimplifyingSimplifying the free energy the free energy

argmin D(q∥p)q

p(x) = ϕ (x ,x )Z
1 ∏k i,j i j

≡ argmax H(q) + E [ lnϕ (x ,x )]q q ∑i,j i,j i j

H(q ) − (∣Nb ∣ − 1)H(q )∑i,j∈E i,j ∑i i i follows from the decomposition of q

q (x ,x ) lnϕ (x ,x )∑i,j∈E∑xi,j i,j i j i,j i j

q(x) =
q (x )∏i i i

∣Nb ∣−1i

q (x ,x )∏i,j∈E i,j i j



Variational interpretation: Variational interpretation: marginal constraintsmarginal constraints

argmax H(q) + E [ lnϕ (x ,x )]q q ∑i,j i,j i j

marginals             should be "valid"q , qi,j i

q (x ,x ) = q (x ) ∀i, j ∈ E ,x∑xi
i,j i j j j j

a real distribution with these marginals should exist

marginal polytope

for tree graphical models this local consistency is enough

H(q ) − (∣Nb ∣ − 1)H(q )∑i,j∈E i,j ∑i i i

q (x ,x ) lnϕ (x ,x )∑i,j∈E∑xi,j i,j i j i,j i j



Variational derivation of BPVariational derivation of BP
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Variational derivation of BPVariational derivation of BP

argmax H(q ) − (∣Nb ∣ − 1)H(q ) + q (x ,x ) lnϕ (x ,x ){q} ∑i,j∈E i,j ∑i i i ∑i,j∈E∑xi,j i,j i j i,j i j

q (x ,x ) = q (x ) ∀i, j ∈ E ,x∑xi
i,j i j j j j

q (x ,x ) ≥ 0 ∀i, j ∈ E ,x ,xi,j i j i j

locally consistent
marginal distributions

q (x ) = 1 ∀i∑xi
i i

BP update is derived as "fixed-points" of the Lagrangian

BP messages are the (exponential form of the) Lagrange multipliers



What happens if there are What happens if there are loopsloops??

We can still apply BP update:

δ (x ) ∝ ψ (x ,x ) δ (x )i→j j ∑xi
i,j i j ∏k∈Nb −ji

k→i k

proportional to
normalize the message for numerical stability
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What happens if there are What happens if there are loopsloops??

We can still apply BP update:

δ (x ) ∝ ψ (x ,x ) δ (x )i→j j ∑xi
i,j i j ∏k∈Nb −ji

k→i k

update the messages synchronously or sequentially
may not converge (oscillating behavior)
even when convergent only gives an approximation:

(x ) ∝ δ (x )p̂ i ∏k∈Nbi k→i i is not (proportional to) the exact marginal p(x )i

proportional to
normalize the message for numerical stability



Loopy BP on Loopy BP on factor graphsfactor graphs

x1 x2 x3 x4 x5

ψ{1,2,3} ψ{3,5}

p(x) = ψ (x )Z
1 ∏I I I factor nodes

variable nodes

is a subset of variablesI ⊆ {1,… ,N}
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Loopy BP on Loopy BP on factor graphsfactor graphs

δ (x ) ∝ δ (x )i→I i ∏J ∣i∈J ,J≠I J→i ivariable-to-factor message:

(x ) ∝ δ (x )p̂ i ∏J ∣i∈J J→i i

x1 x2 x3 x4 x5

ψ{1,2,3} ψ{3,5}

p(x) = ψ (x )Z
1 ∏I I I factor nodes

variable nodes

is a subset of variablesI ⊆ {1,… ,N}

factor-to-variable message: δ (x ) ∝ ψ (x ) δ (x )I→i i ∑xI−i
I I ∏j∈I−i j→I i

after convergence:



Loopy BP on factor graphs: Loopy BP on factor graphs: complexitycomplexity
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ψ{1,2,3} ψ{3,5}

ndΔmax2
δ (x ) ∝ δ (x )i→I i ∏J ∣i∈J ,J≠I J→i i

variable-to-factor message:
from each var to all neighbors

number of vars

domain size
(2 for binary)

max neighbours
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Loopy BP on factor graphs: Loopy BP on factor graphs: complexitycomplexity

x1 x2 x3 x4 x5

ψ{1,2,3} ψ{3,5}

ndΔmax2
δ (x ) ∝ δ (x )i→I i ∏J ∣i∈J ,J≠I J→i i

variable-to-factor message:

factor-to-variable messages:

δ (x ) ∝ ψ (x ) δ (x )I→i i ∑xI−i
I I ∏j∈I−i j→I i

from each var to all neighbors

number of vars

domain size
(2 for binary)

max neighbours

md ∣Scope ∣∣Scope ∣max max

number of factors vars in a factor



(Loopy) BP has found many applications(Loopy) BP has found many applications

https://graph-tool.skew
ed.de

Social network analysis:

 stochastic block modelling

Machine Learning:

clustering 
tensor factorization

www.jianxiongxiao.com

Vision:

inpainting &denoising
stereo matching

NLP and bioinformatics:

Viterbi algorithm

Combinatorial
optimization:
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Application: LDPC coding Application: LDPC coding using BPusing BP
low-density parity check 
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are observerd

p(x ∣ y) = ψ(x ,x ,x ) (1 − ϵ)I(x = y ) + ϵI(x ≠ y )∏s,t,u s t u ∏i=1
n

i i i i

are sent through a noisy channel
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p(y = 1 ∣ x = 1) = p(y = 0 ∣ x = 0) = 1 − ϵi i i i

x ,… ,x1 n

y ,… , y1 n

the message satisfies parity constraints:

joint dist. over unobserved message:
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low-density parity check 
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n

i i i i

image: wainwright&jordan

joint dist. over unobserved message:

inference problems

most likely joint assignment
 

max-marginals
calculate the marginals
using loopy BP

x = argmax p(x ∣ y)∗
x

x = argmax p(x ∣ y)i
∗

xi i

p(x ∣ y)∀ii

Application: LDPC coding Application: LDPC coding using BPusing BP
low-density parity check 
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Application: LDPC coding Application: LDPC coding using BPusing BP

p(x ∣ y) = ψ(x ,x ,x ) (1 − ϵ)I(x = y ) + ϵI(x ≠ y )∏s,t,u s t u ∏i=1
n

i i i i
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joint dist. over unobserved message:

inference problems

Most likely joint assignment
 

Max-marginals
calculate the marginals
using loopy BP

x = argmax p(x ∣ y)∗
x

x = argmax p(x ∣ y)i
∗

xi i

p(x ∣ y)∀ii

low-density parity check 
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Loops and variational interepretationLoops and variational interepretation

argmax H(q) + E [ lnϕ (x ,x )]q q ∑i,j i,j i j

the entropy term is not exact anymore

called Bethe approximation to the entropy
generally not convex anymore (multiple fixed points)

H(q ) − (∣Nb ∣ − 1)H(q )∑i,j∈E i,j ∑i i i

q (x ,x ) lnϕ (x ,x )∑i,j∈E∑xi,j i,j i j i,j i j



argmax H(q) + E [ lnϕ (x ,x )]q q ∑i,j i,j i j

q (x ,x ) = q (x ) ∀i, j ∈ E ,x∑xi
i,j i j j j jL :

Loops and variational interepretationLoops and variational interepretation



argmax H(q) + E [ lnϕ (x ,x )]q q ∑i,j i,j i j

the entropy term is not exact anymore
Local consistency constraints are inadequate:

locally consistent           may not be marginals for any joint dist.
i.e., local consistency polytope is an outer bound on the marginal polytope

q (x ,x ) = q (x ) ∀i, j ∈ E ,x∑xi
i,j i j j j j

q , qi,j i
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argmax H(q) + E [ lnϕ (x ,x )]q q ∑i,j i,j i j

the entropy term is not exact anymore
Local consistency constraints are inadequate:

locally consistent           may not be marginals for any joint dist.
i.e., local consistency polytope is an outer bound on the marginal polytope

q (x ,x ) = q (x ) ∀i, j ∈ E ,x∑xi
i,j i j j j j

q , qi,j i

[q ,… , q , q ,… , q ]1 n 1,3 m,n

[p ,… , p , p ,… , p ]1 n 1,3 m,n

L :

Loops and variational interepretationLoops and variational interepretation



argmax H(q) + E [ lnϕ (x ,x )]q q ∑i,j i,j i j

the entropy term is not exact anymore:
improved entropy approximations (e.g., region-based, convex) 

local consistency constraints are inadequate
tighter constraints (e.g., marginal consistency of larger clusters)

Variations on BPVariations on BP



cluster-graph generalizes clique-tree

clusters are not necessarily max-cliques

running intersection property

family-preserving property
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Variations on BP: Variations on BP: cluster-graphcluster-graph
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instead of = in clique-tree

a factor-graph
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corresponding cluster-graph (the same BP updates)

similar reparametrization:
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cluster-graph generalizes clique-tree

clusters are not necessarily max-cliques

running intersection property

family-preserving property

 

Variations on BP: Variations on BP: cluster-graphcluster-graph

S ⊆ C ∩ Ci,j i j

instead of = in clique-tree

a factor-graph

A B C D E F

corresponding cluster-graph (the same BP updates)

improved cluster-graph (better entropy approximation + marginal constraint)
similar reparametrization:

p(x) ∝ (S )∏i,j p̂ i,j

(C )∏i p̂ i

instead of = in clique-tree



BP BP in practicein practice
works well when:

locally tree-like graphs

dense graphs with weak interactions

 

sequential update works better
than parallel update

δ (x ) ∝ (1 − α)δ (x ) + α δ (x )i→I
(t+1)

i i→I
(t)

i ∏J ∣i∈J ,J≠I J→i
(t)

i

improved convergence by damping (smoothing) the update

11 x 11 Ising grid
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SummarySummary

belief propagation: efficient deterministic inference

exact in clique-tree = variable elimination
application of distributive law

optimization perspective:
KL-divergence minimization

works well in (cluster) graphs with loops (large tree-width):
approximate objective (Bethe free energy) and constraints


