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Learning objectives

different goals of learning a graphical model
effect of goals on the learning setup
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Where does a graphical model come from?

e designed by domain experts:
m more suitable for directed models

O cond. probabilities are more intuitive than unnormalized factors

O ho need to estimate the partition function

e |learning from data:
= fixed structure:
o easy for directed models

= unknown structure
= fully or partially observed data, hidden variables

image: http://blog.londolozi.com/
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Goals of learning: prediction

e given D= {(Xx™,ym)}

interested in learning P(x | Y)

the output in our prediction is structured

Ma k|ng prediCtion: i(y) — argmaXy })(m | y) e.g. in image segmentation

® error measures.

B 0/1 loss (unforgiving): Exy).p-I(X = X(Y))
B Hamming loss:  Exy)wp >, 1(X; = X(Y),)
B conditional log-likelihood: E(x,y)-p-log P(X | Y)

O takes prediction uncertainty into account



Goals of learning: knowledge discovery

given D= {(Xx"™)}

interested in learning G or %

finding conditional independencies or causal relationships
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Goals of learning: knowledge discovery

given D= {(Xx"™)}

interested in learning G or A

finding conditional independencies or causal relationships

not always uniquely identifiable

two DAGs are l-equivalent if Z(G) = Z(G') E.g. in gene regulatory network
pYavy
® O
® same undirected skeleton
® same immoralities

image credit: Chen et al., 2014
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learning ideally minimizes some risk (expeced ioss) Exp+[loss(X)]
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— h=0.1
-- h=0.2-
= h=0.5

if our model is expressive we can overfit

low empirical risk does not translate to low risk
our model does not generalize to samples outside D

as measured by a validation set
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bias-variance trade-off

learning ideally minimizes some risk expeced ioss) Exp+[loss(X)]
in reality we use empirical risk E,cplloss(z)]

— h=0.1
-- h=0.2-
= h=0.5

if our model is expressive we can overfit

low empirical risk does not translate to low risk
our model does not generalize to samples outside D

as measured by a validation set

high variance
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bias-variance trade-off

learning ideally minimizes some risk expeced ioss) Exp+[loss(X)]
in reality we use empirical risk E,cplloss(z)]

— h=0.1
-- h=0.2-
= h=0.5

if our model is expressive we can overfit

low empirical risk does not translate to low risk
our model does not generalize to samples outside D

as measured by a validation set

high variance

Il e 3
0.0 0.2 0.4 0.6 0.8 1.0

different choices of D ~ P*produce very different models p overfitting in density estimation

a solution: penalize model complexity

simple models cannot fit the data
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® the model has a bias even for large D
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e Generative: learn A(x,v) and conditiononY (e.g., MRF)
e Discriminative: directly learn p(x|v) (e.g., CRF)
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Discreminative vs generative i

if the goal is prediction: P(x |Y)

e Generative:

learn P(x,v) and conditiononY (e.g., MRF)

e Discriminative: directly learn p(x|v) (e.g., CRF)

SEINlEN naive Bayes vs logistic regression

X [
[ ]
[

Y °

trained generatively (log-likelihood)

works better on small datasets (higher bias)

unnecessary cond. ind. assumptions about Y

can deal with missing values & learn from unlabeled data

Naive Bayes P(X |Y) x P(X)P(Y | X)

® trained discriminatively (cond. log-likelihood)
® works better on large datasets v
® no assumptions about cond. ind.inY

logistic regression P(X =1[Y) = o(WY +b)



Discreminative vs generative i

Example naive Bayes vs logistic regression on UCI dataset ——— naive Bayes
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from: Ng & Jordan 2001



summary

e |learning can have different objectives:
= density estimation

O calculating P(x)

O sampling from P generative modeling)
= prediction (conditional density estimation)
O discriminative and generative modeling
= knowledge discovery
e expressed as empirical risk minimization

B pias-variance trade-off

® regularize the model



