Graphical Models

introduction to learning

Siamak Ravanbakhsh

Winter 2018

Learning objectives

different goals of learning a graphical model effect of goals on the learning setup

Where does a graphical model come from?

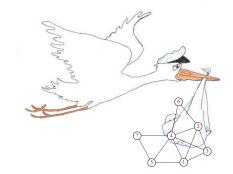
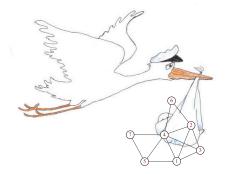


image: http://blog.londolozi.com/

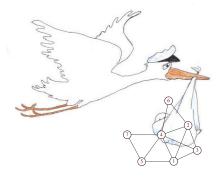
Where does a graphical model come from?

- designed by **domain experts**:
 - more suitable for directed models
 - $^{\mbox{O}}$ $\,$ cond. probabilities are more intuitive than unnormalized factors
 - $^{\mbox{O}}$ $\,$ no need to estimate the partition function



Where does a graphical model come from?

- designed by **domain experts**:
 - more suitable for directed models
 - $^{\mbox{O}}$ $\,$ cond. probabilities are more intuitive than unnormalized factors
 - $^{\mbox{O}}$ $\,$ no need to estimate the partition function
- **learning** from data:
 - fixed structure:
 - easy for directed models
 - unknown structure
 - fully or partially observed data, hidden variables



• **assumption**: data is IID sample from a P^*

 $egin{aligned} \mathcal{D} = \{X^{(1)},\ldots,X^{(M)}\} & X^{(m)} \sim P^* \ \end{aligned}$ empirical distribution: $P_\mathcal{D}(x) = rac{1}{|\mathcal{D}|}\mathbb{I}(x\in\mathcal{D}) \end{aligned}$

• **assumption**: data is IID sample from a P^*

 $egin{aligned} \mathcal{D} = \{X^{(1)}, \dots, X^{(M)}\} & X^{(m)} \sim P^* \ \end{aligned}$ empirical distribution: $P_\mathcal{D}(x) = rac{1}{|\mathcal{D}|} \mathbb{I}(x \in \mathcal{D}) \end{aligned}$

• **objective**: learn a \hat{P} close to P^*

$$\hat{P} = rgmin_P D_{KL}(P^* \| P)$$

• **assumption**: data is IID sample from a P^*

 $egin{aligned} \mathcal{D} = \{X^{(1)},\ldots,X^{(M)}\} & X^{(m)} \sim P^* \ \end{aligned}$ empirical distribution: $P_\mathcal{D}(x) = rac{1}{|\mathcal{D}|} \mathbb{I}(x \in \mathcal{D}) \end{aligned}$

• **objective**: learn a \hat{P} close to P^*

$$\hat{P} = rgmin_P D_{KL}(P^* \| P) = \mathbb{E}_{P^*}[\log P^*] - \mathbb{E}_{P^*}[\log P]$$

• **assumption**: data is IID sample from a P^*

 $egin{aligned} \mathcal{D} = \{X^{(1)},\ldots,X^{(M)}\} & X^{(m)} \sim P^* \ \end{aligned}$ empirical distribution: $P_\mathcal{D}(x) = rac{1}{|\mathcal{D}|}\mathbb{I}(x\in\mathcal{D}) \end{aligned}$

• **objective**: learn a \hat{P} close to P^*

$$\hat{P} = rgmin_P D_{KL}(P^* \| P) = \mathbb{E}_{P^*}[\log P^*] - \mathbb{E}_{P^*}[\log P]$$
negative Entropy of P* (does not depend on P)

• **assumption**: data is IID sample from a P^*

 $egin{aligned} \mathcal{D} = \{X^{(1)},\ldots,X^{(M)}\} & X^{(m)} \sim P^* \ \end{aligned}$ empirical distribution: $P_\mathcal{D}(x) = rac{1}{|\mathcal{D}|}\mathbb{I}(x\in\mathcal{D}) \end{aligned}$

• **objective**: learn a \hat{P} close to P^*

$$\hat{P} = rgmin_P D_{KL}(P^* \| P) = \mathbb{E}_{P^*}[\log P^*] - \mathbb{E}_{P^*}[\log P]$$
negative Entropy of P* (does not depend on P)

substitute P^* with $P_\mathcal{D}$: $\hat{P} = rg \max_P \sum_{x \in \mathcal{D}} \log P(x)$

how to compare two log-likelihood values?

• **assumption**: data is IID sample from a P^*

 $egin{aligned} \mathcal{D} = \{X^{(1)},\ldots,X^{(M)}\} & X^{(m)} \sim P^* \ \end{aligned}$ empirical distribution: $P_\mathcal{D}(x) = rac{1}{|\mathcal{D}|} \mathbb{I}(x \in \mathcal{D}) \end{aligned}$

• **objective**: learn a \hat{P} close to P^*

$$\hat{P} = rgmin_P D_{KL}(P^* \| P) = \mathbb{E}_{P^*}[\log P^*] - \mathbb{E}_{P^*}[\log P]$$
negative Entropy of P* (does not depend on P)

substitute
$$P^*$$
 with $P_{\mathcal{D}}$: $\hat{P} = rg \max_P \sum_{x \in \mathcal{D}} \log P(x)$
log-likelihood

how to compare two log-likelihood values?

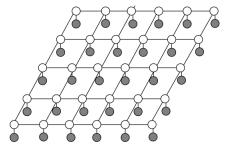
Goals of learning: prediction

• given
$$\mathcal{D} = \{(X^{(m)}, Y^{(m)})\}$$

interested in learning $\hat{P}(X \mid Y)$

the output in our prediction is structured

making prediction: $\hat{x}(y) = \arg \max_x \hat{P}(x \mid y)$



e.g. in image segmentation

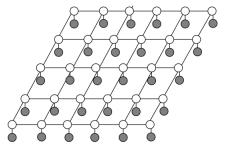
Goals of learning: prediction

• given $\mathcal{D} = \{(X^{(m)}, Y^{(m)})\}$

interested in learning $\hat{P}(X \mid Y)$

the output in our prediction is structured

making prediction: $\hat{x}(y) = \arg \max_x \hat{P}(x \mid y)$



e.g. in image segmentation

• error measures:

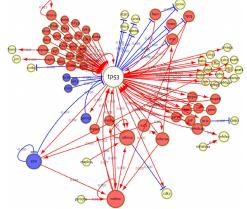
- 0/1 loss (unforgiving): $\mathbb{E}_{(X,Y)\sim P^*}\mathbb{I}(X=\hat{X}(Y))$
- Hamming loss: $\mathbb{E}_{(X,Y)\sim P^*} \sum_i \mathbb{I}(X_i = \hat{X}(Y)_i)$
- conditional log-likelihood: $\mathbb{E}_{(X,Y)\sim P^*}\log \hat{P}(X \mid Y)$
 - ^O takes prediction uncertainty into account

Goals of learning: knowledge discovery

given $\mathcal{D} = \{(X^{(m)})\}$

interested in learning $\mathcal{G} \text{ or } \mathcal{H}$

finding conditional independencies or causal relationships



E.g. in gene regulatory network

Goals of learning: knowledge discovery

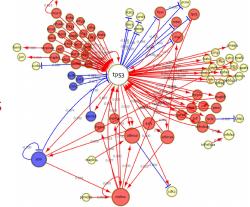
given $\mathcal{D} = \{(X^{(m)})\}$

interested in learning \mathcal{G} or \mathcal{H} finding conditional independencies or causal relationships

not always uniquely identifiable



- same undirected skeleton
- same immoralities



E.g. in gene regulatory network

learning *ideally* minimizes some risk (expected loss) $\mathbb{E}_{X \sim P^*}[loss(X)]$ in reality we use empirical risk $\mathbb{E}_{x \in D}[loss(x)]$

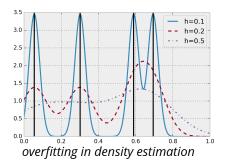
learning *ideally* minimizes some risk (expected loss) $\mathbb{E}_{X \sim P^*}[loss(X)]$ in reality we use empirical risk $\mathbb{E}_{x \in D}[loss(x)]$

if our model is expressive we can overfit

high variance

low *empirical* risk does not translate to low risk our model does not generalize to samples outside \mathcal{D} as measured by a validation set

different choices of $\mathcal{D} \sim P^*$ produce very different models \hat{P}



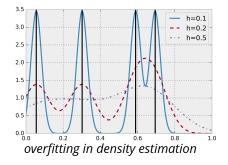
learning *ideally* minimizes some risk (expected loss) $\mathbb{E}_{X \sim P^*}[loss(X)]$ in reality we use empirical risk $\mathbb{E}_{x \in D}[loss(x)]$

if our model is expressive we can overfit

high variance

low *empirical* risk does not translate to low risk our model does not generalize to samples outside \mathcal{D} as measured by a validation set

different choices of $\mathcal{D} \sim P^*$ produce very different models \hat{P}



simple models cannot fit the data

• the model has a bias even for large $\, \mathcal{D} \,$

image: http://ipython-books.github.io

learning *ideally* minimizes some risk (expected loss) $\mathbb{E}_{X \sim P^*}[loss(X)]$ in reality we use empirical risk $\mathbb{E}_{x \in \mathcal{D}}[loss(x)]$

if our model is expressive we can overfit

low *empirical* risk does not translate to low risk our model does not generalize to samples outside \mathcal{D} as measured by a validation set

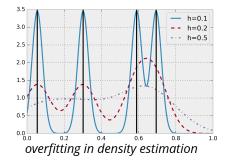
different choices of $\mathcal{D} \sim P^*$ produce very different models \hat{P}

a solution: penalize model complexity

high variance

- simple models cannot fit the data

 the model bas a lit



if the goal is prediction: $\hat{P}(X | Y)$

- **Generative:** learn $\hat{P}(X,Y)$ and condition on Y (e.g., MRF)
- **Discriminative:** directly learn $\hat{P}(X | Y)$ (e.g., CRF)

if the goal is prediction: $\hat{P}(X | Y)$

- **Generative:** learn $\hat{P}(X,Y)$ and condition on Y (e.g., MRF)
- **Discriminative:** directly learn $\hat{P}(X | Y)$ (e.g., CRF)

Example naive Bayes vs logistic regression

- trained generatively (log-likelihood)
 works better on small datasets (bigl)
 - works better on small datasets (higher bias)
 - unnecessary cond. ind. assumptions about Y
 - can deal with missing values & learn from unlabeled data

Naive Bayes $P(X \mid Y) \propto P(X)P(Y \mid X)$

if the goal is prediction: $\hat{P}(X | Y)$

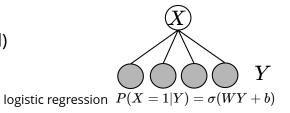
- **Generative:** learn $\hat{P}(X,Y)$ and condition on Y (e.g., MRF)
- **Discriminative:** directly learn $\hat{P}(X | Y)$ (e.g., CRF)

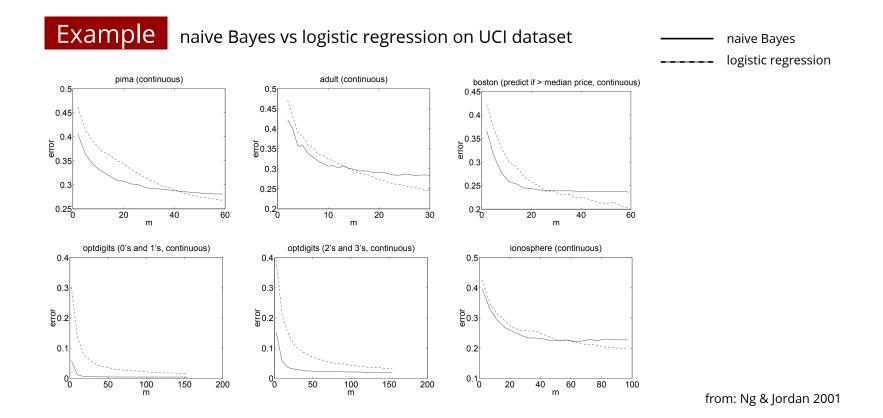
Example naive Bayes vs logistic regression

- trained generatively (log-likelihood)
- works better on small datasets (higher bias)
- unnecessary cond. ind. assumptions about Y
- can deal with missing values & learn from unlabeled data

Naive Bayes $P(X \mid Y) \propto P(X)P(Y \mid X)$

- trained discriminatively (cond. log-likelihood)
- works better on large datasets
- no assumptions about cond. ind. in Y





summary

- learning can have different objectives:
 - density estimation
 - calculating P(x)
 - $\circ \ \ sampling from \ P_{(generative \ modeling)}$
 - prediction (conditional density estimation)
 - discriminative and generative modeling
 - knowledge discovery
- expressed as empirical risk minimization
 - bias-variance trade-off
 - regularize the model