Graphical Models

Bayesian Networks

Learning objectives

- what is a Bayesian network?
- factorization
- conditional independencies
how are they related?
- how to read it from the graph
- equivalent class of Bayesian networks

Representing distributions

give a large number of random variables X_{1}, \ldots, X_{n}
how to represent $P\left(X_{1}, \ldots, X_{n}\right)$

- number of parameters exponential in n (curse of dimensionality)
- need to leverage some structure in \mathbf{P}

Independence \& representation

for discrete domains $\operatorname{Val}\left(X_{i}\right)=\{1, \ldots, D\} \quad \forall i$

- representation of $P\left(\mathbf{X}=x_{1}, \ldots, x_{n}\right)=\theta_{i_{1}, \ldots, i_{n}}$
- exponential in n: $\mathcal{O}\left(D^{n}\right\}$

Independence \& representation

for discrete domains $\operatorname{Val}\left(X_{i}\right)=\{1, \ldots, D\} \quad \forall i$

- representation of $P\left(\mathbf{X}=x_{1}, \ldots, x_{n}\right)=\theta_{i_{1}, \ldots, i_{n}}$
- exponential in n: $\mathcal{O}\left(D^{n}\right\}$
assuming independence $X_{i} \perp X_{j} \quad \forall i, j$
- linear-sized representation:

$$
P\left(\mathbf{X}=x_{1}^{d}, \ldots, x_{n}^{d}\right)=\prod_{i} P\left(X_{i}=x_{i}^{d}\right)=\prod_{i} \theta_{i, d}
$$

Independence \& representation

for discrete domains $\operatorname{Val}\left(X_{i}\right)=\{1, \ldots, D\} \quad \forall i$

- representation of $P\left(\mathbf{X}=x_{1}, \ldots, x_{n}\right)=\theta_{i_{1}, \ldots, i_{n}}$
- exponential in n: $\mathcal{O}\left(D^{n}\right\}$
assuming independence $X_{i} \perp X_{j} \quad \forall i, j$
- linear-sized representation:

$$
P\left(\mathbf{X}=x_{1}^{d}, \ldots, x_{n}^{d}\right)=\prod_{i} P\left(X_{i}=x_{i}^{d}\right)=\prod_{i} \theta_{i, d}
$$

a particular assignment (d) in discrete domain
independence assumption is too restrictive

Independence and representation

For a Gaussian distribution:

- from quadratic

$$
P\left(\mathbf{X}=x_{1}, \ldots, x_{n}\right)=\frac{1}{\sqrt{|2 \pi \Sigma|}} \exp \left(-\frac{1}{2}(\mathbf{x}-\mu)^{T} \Sigma^{-1}(\mathbf{x}-\mu)\right)
$$

- to a linear-sized representation

$$
P\left(\mathbf{X}=x_{1}, \ldots, x_{n}\right)=\prod_{i} \frac{1}{\sqrt{2 \pi \sigma_{i}^{2}}} \exp \left(-\frac{1}{2 \sigma_{i}^{2}}\left(x_{i}-\mu_{i}\right)^{2}\right)
$$

Using the chain rule

- pick an ordering of the variables

$$
P(\mathbf{X})=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) \ldots P\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right)
$$

Using the chain rule

- pick an ordering of the variables

$$
P(\mathbf{X})=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) \ldots P\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right)
$$

- parameterize each term
- does it compress the representation?
- original \#params $D^{n}-1$

Using the chain rule

- pick an ordering of the variables

$$
P(\mathbf{X})=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) \ldots P\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right)
$$

- parameterize each term
- does it compress the representation?
- original \#params $D^{n}-1$
- new \#params $(D-1)+\left(D^{2}-D\right)+\ldots+\left(D^{n}-D^{n-1}\right)=D^{n}-1$

$$
\overline{P\left(X_{1}\right)} \quad \overline{P\left(X_{2} \mid X_{1}\right)} \quad \overline{P\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right)}
$$

Using the chain rule

$$
P(\mathbf{X})=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) \ldots P\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right)
$$

simplify the conditionals

- flexible compression of P

Using the chain rule

$$
P(\mathbf{X})=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) \ldots P\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right)
$$

\downarrow
simplify the conditionals

- flexible compression of P

A Bayesian network!

Chain rule; simplification

$$
\begin{aligned}
& P(\mathbf{X})=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) \ldots P\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \\
& P(\mathbf{X})=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}\right) \ldots P\left(X_{n} \mid X_{1}\right)
\end{aligned}
$$

Chain rule; simplification

$$
\begin{aligned}
& P(\mathbf{X})=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) \ldots P\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \\
& P(\mathbf{X})=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}\right) \ldots P\left(X_{n} \mid X_{1}\right) \\
& \text { \# params extreme form of simplification } \\
& \frac{(D-1)+(n-1)\left(D^{2}-D\right)}{\mathcal{O}\left(n D^{2}\right) \quad \text { instead of }} \mathcal{O}\left(D^{n}\right)
\end{aligned}
$$

Idiot Bayes

Or naive Bayes

$P($ class, $\mathbf{X})=P($ class $) P\left(X_{2} \mid\right.$ class $) P\left(X_{3} \mid\right.$ class $) \ldots P\left(X_{n} \mid\right.$ class $)$
independence assumption: $X_{i} \perp \mathbf{X}_{-i} \mid$ class
for classification (use Bayes rule)

$$
P(\text { class } \mid \mathbf{X}) \propto P(\text { class }) P\left(X_{2} \mid \text { class }\right) P\left(X_{3} \mid \text { class }\right) \ldots P\left(X_{n} \mid \text { class }\right)
$$

Example: medical diagnosis (what if two symptoms are correlated?)

Simplifying the chain rule; general case

simplify the full conditionals:
$P(\mathbf{X})=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) \ldots P\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right)$

Simplifying the chain rule; general case

simplify the full conditionals:
$P(\mathbf{X})=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) \ldots P\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right)$

Bayesian network

represent it using a
Directed Acyclic Graph (DAG)
$P(\mathbf{X})=\prod_{i} P\left(X_{i} \mid P a_{X_{i}}\right)$

DAG; identification

- identifying a DAG
- has a topological ordering?
- no directed path from a node to itself?

DAG; identification

- identifying a DAG
- has a topological ordering?
- no directed path from a node to itself?

Example:

is this a DAG?
a topological ordering: G, A, B, D, C, E, F

DAG; identification

- identifying a DAG
- has a topological ordering?
- no directed path from a node to itself?

Example:

is this a DAG?
a topological ordering: G, A, B, D, C, E, F

DAG; identification

- identifying a DAG
- has a topological ordering?
- no directed path from a node to itself?

Example:

is this a DAG?
a topological ordering: G, A, B, D, C, E, F

how about this?

Bayesian network (BN); example

$$
P(I, D, G, S, L)=P(I) P(D) P(G \mid I, D) P(S \mid I) P(L \mid G)
$$

Bayesian network (BN); example

$$
P(I, D, G, S, L)=P(I) P(D) P(G \mid I, D) P(S \mid I) P(L \mid G)
$$

Bayesian network (BN); example

$$
P(I, D, G, S, L)=P(I) P(D) P(G \mid I, D) P(S \mid I) P(L \mid G)
$$

Intuition for reasoning in a BN

answering probabilistic queries

$$
\begin{aligned}
& P(\mathbf{Y}=\mathbf{y} \mid \mathbf{E}=e) \quad ? \\
& \text { evidence }
\end{aligned}
$$

Intuition for reasoning in a BN

answering probabilistic queries

$$
P\left(\mathbf{Y}=\mathbf{y} \left\lvert\, \begin{array}{r}
\mathbf{E}=e) \quad ? \\
\\
\text { evidence }
\end{array}\right.\right.
$$

$$
P\left(L=l^{1} \mid S=s^{1}\right)=\frac{P\left(L=l^{1}, S=s^{1}\right)}{P\left(S=s^{1}\right)}
$$

Intuition for reasoning in a BN

answering probabilistic queries

$$
P\left(\mathbf{Y}=\mathbf{y} \left\lvert\, \begin{array}{r}
\mathbf{E}=e) \\
\\
\text { evidence }
\end{array}\right.\right.
$$

$$
P\left(L=l^{1} \mid S=s^{1}\right)=\frac{P\left(L=l^{1}, S=s^{1}\right)}{P\left(S=s^{1}\right)}
$$

an inference problem

$$
P\left(S=s^{1}\right)=\sum_{d, i, g, l} P(d, i, g, s, l)
$$

- how to calculate? ... later

Intuition for reasoning in a BN

causal reasoning (top-down)

- marginal (prior) probability

■ of getting a good letter

$$
P\left(l^{1}\right) \approx .50
$$

- marginal posterior

■ given low intelligence $P\left(l^{1} \mid i^{0}\right) \approx .389$
■ ... and an easy exam $P\left(l^{1} \mid i^{0}, d^{0}\right) \approx .52$

Intuition for reasoning in a BN

evidential reasoning (bottom-up)

- (marginal) prior
- of a high intelligence $P\left(i^{1}\right) \approx .30$
- (marginal) posterior
- given a bad letter $P\left(i^{1} \mid l^{0}\right) \approx .14$
- ... and a bad grade $P\left(i^{1} \mid l^{0}, g^{3}\right) \approx .08$

Intuition for Reasoning in BN

Explaining away (v-structure)

- prior

■ of a high intelligence $P\left(i^{1}\right) \approx .30$

- posterior

■ given a bad letter $P\left(i^{1} \mid l^{0}\right) \approx .14$

- ... and a bad grade $P\left(i^{1} \mid l^{0}, g^{3}\right) \approx .08$
- a difficult exam explains away the grade

$$
P\left(i^{1} \mid l^{0}, g^{3}, d^{1}\right) \approx .11
$$

DAG; semantics

associating P with a DAG:

- factorization of the joint probability:

$$
P(\mathbf{X})=\prod_{i} P\left(X_{i} \mid P a_{X_{i}}\right)
$$

- conditional independencies in P from the DAG

Bayesian networks; factorization

$$
P(I, D, G, S, L)=P(I) P(D) P(G \mid I, D) P(S \mid I) P(L \mid G)
$$

In general
$P(\mathbf{X})=\prod_{i} P\left(X_{i} \mid P a_{X_{i}}\right)$

Bayesian networks; conditioinal independencies

- quality of the letter (L) only depends on the grade (G)

$$
L \perp D, I, S \mid G \oslash
$$

Bayesian networks; conditioinal independencies

- quality of the letter (L) only depends on the grade (G)

$$
L \perp D, I, S \mid G \oslash
$$

- How about the following assertions?

$$
D \perp S \quad ?
$$

Bayesian networks; conditioinal independencies

- quality of the letter (L) only depends on the grade (G)

$$
L \perp D, I, S \mid G \oslash
$$

- How about the following assertions?

$$
D \perp S \quad ?
$$

Bayesian networks; conditioinal independencies

- quality of the letter (L) only depends on the grade (G)

$$
L \perp D, I, S \mid G
$$

- How about the following assertions?
$D \perp S$?

$D \perp S \mid I$?

Bayesian networks; conditioinal independencies

- quality of the letter (L) only depends on the grade (G)

$$
L \perp D, I, S \mid G
$$

- How about the following assertions?
$D \perp S$?
0

Bayesian networks; conditioinal independencies

- quality of the letter (L) only depends on the grade (G)

$$
L \perp D, I, S \mid G \oslash
$$

- How about the following assertions?
$D \perp S$?
$D \perp S \mid I \quad ?$
$D \perp S \mid L \quad ?$

Bayesian networks; conditioinal independencies

- quality of the letter (L) only depends on the grade (G)

$$
L \perp D, I, S \mid G
$$

- How about the following assertions?

$D \perp S$	$?$	\ominus
$D \perp S \mid I$	$?$	$\boldsymbol{\ominus}$
$D \perp S \mid L$	$? \boldsymbol{\otimes}$ why?	

Bayesian networks; conditioinal independencies

- quality of the letter (L) only depends on the grade (G)

$$
L \perp D, I, S \mid G \oslash
$$

- How about the following assertions?

$D \perp S$	$?$	\ominus
$D \perp S \mid I$	$?$	$\boldsymbol{\ominus}$
$D \perp S \mid L$	$?$	$\boldsymbol{\otimes}$ why?

- read from the graph?

Conditional independencies (CI); notation

1. set of all Cls of the distribution P
$\mathcal{I}(P)$
2. set of local Cls from the graph (DAG)
$\mathcal{I}_{\ell}(\mathcal{G})$
3. set of all (global) Cls from the graph
$\mathcal{I}(\mathcal{G})$

Local conditional independencies (Cls)

for any node $X_{i} \quad X_{i} \perp$ NonDescendents $s_{X_{i}} \mid$ Parents $_{X_{i}}$

$$
\begin{aligned}
\mathcal{I}_{\ell}(\mathcal{G})=\{ & A \perp G \mid \emptyset \\
& B \perp G \mid A \\
& C \perp G, D, A \mid B \\
& D \perp A, C \mid B, G \\
& E \perp A, G \mid B, C, D \\
& F \perp A, B, C, D, G \mid E \\
& \}
\end{aligned}
$$

$\operatorname{graph} \mathcal{G}$

Local Cls

for any node $X_{i} \quad X_{i} \perp$ NonDescendents $X_{i} \mid$ Parents $_{X_{i}}$

$$
\begin{aligned}
\mathcal{I}_{\ell}(\mathcal{G})=\{ & D \perp I, S \\
& I \perp D \\
& G \perp S \mid I \\
& S \perp G, L, D \mid I \\
\} & L \perp D, I, S \mid G
\end{aligned}
$$

Local Cls from factorization

use the factorized form $P(\mathbf{X})=\prod_{i} P\left(X_{i} \mid P a_{X_{i}}\right)$
to show $\forall X_{i}$
$P\left(X_{i}\right.$, NonDesc $\left._{X_{i}} \mid P a_{X_{i}}\right)=P\left(X_{i} \mid P a_{X_{i}}\right) P\left(\right.$ NonDesc $\left._{X_{i}} \mid P a_{X_{i}}\right)$
which means $X_{i} \perp$ NonDesc $_{X_{i}} \mid P a_{X_{i}}$

Local CIs from factorization; example

```
S\perpG| I given P(D,I,G,S,L)=P(D)P(I)P(G|D,I)P(S|I)P(L|G)
```


Local CIs from factorization; example

$$
\begin{aligned}
& S \perp G \mid I \quad \text { given } P(D, I, G, S, L)=P(D) P(I) P(G \mid D, I) P(S \mid I) P(L \mid G) \\
& P(G, S \mid I)=\frac{\sum_{d, l} P(D, I, G, S, L)}{\sum_{d, g, s, l} P(D, I, G, S, L)}=
\end{aligned}
$$

Local CIs from factorization; example

$$
\begin{aligned}
& S \perp G \mid I \quad \text { given } P(D, I, G, S, L)=P(D) P(I) P(G \mid D, I) P(S \mid I) P(L \mid G) \\
& P(G, S \mid I)=\frac{\sum_{d, l} P(D, I, G, S, L)}{\sum_{d, g, s, l} P(D, I, G, S, L)}=\frac{\sum_{d, l} P(D) P(I) P(G \mid D, I) P(S \mid I) P(L \mid G)}{\sum_{d, g, s, l} P(D) P(I) P(G \mid D, I) P(S \mid I) P(L \mid G)}=
\end{aligned}
$$

Local CIs from factorization; example

Local CIs from factorization; example

$$
S \perp G \mid I \quad \text { given } \quad P(D, I, G, S, L)=P(D) P(I) P(G \mid D, I) P(S \mid I) P(L \mid G)
$$

$$
P(G, S \mid I)=\frac{\sum_{d, l} P(D, I, G, S, L)}{\sum_{d, g, s, l} P(D, I, G, S, L)}=\frac{\sum_{d, l} P(D) P(I) P(G \mid D, I) P(S \mid I) P(L \mid G)}{\sum_{d, g, s, l} P(D) P(I) P(G \mid D, I) P(S \mid I) P(L \mid G)}=
$$

$$
\frac{P(I) P(S \mid I) \sum_{d, l} P(D) P(G \mid D, I) P(L \mid G)}{P(I) \sum_{d, g, s, l} P(D) P(G \mid D, I) P(S \mid I) P(L \mid G)}=
$$

$$
\frac{P(S \mid I) \sum_{d, l} P(D) P(G \mid D, I) P(L \mid G)}{1}=P(S \mid I) P(G \mid I)
$$

Factorization from local Cls

from local CIs $\mathcal{I}_{\ell}(\mathcal{G})=\left\{X_{i} \perp \operatorname{NonDesc}_{X_{i}}\left|P a_{X_{i}}\right| i\right\}$
find a topological ordering (parents before children): $X_{i_{1}}, \ldots, X_{i_{n}}$
use the chain rule

$$
P(\mathbf{X})=P\left(X_{i_{1}}\right) \prod_{j=2}^{n} P\left(X_{i_{j}} \mid X_{i_{1}}, \ldots, X_{i_{j-1}}\right)
$$

simplify using local Cls

$$
P(\mathbf{X})=P\left(X_{i_{1}}\right) \prod_{j=2}^{n} P\left(X_{i_{j}} \mid P a_{X_{i_{j}}}\right)
$$

Factorization from local Cls; example

- local Cls $\mathcal{I}_{\ell}(\mathcal{G})=\{(D \perp I, S),(I \perp D),(G \perp S \mid I)$,

$$
(S \perp G, L, D \mid I),(L \perp D, I, S \mid G)\}
$$

- a topological ordering: D, I, G, L, S
- use the chain rule

$$
P(D, I, G, S, L)=P(D) P(I \mid D) P(G \mid D, I) P(L \mid D, I, G) P(S \mid D, I, G, L)
$$

- simplify using $\mathcal{I}_{\ell}(\mathcal{G})$

$$
P(D, I, G, S, L)=P(D) P(I) P(G \mid D, I) P(L \mid G) P(S \mid I)
$$

Factorization \Leftrightarrow Iocal CIs

$$
P(\mathbf{X})=\prod_{i} P\left(X_{i} \mid P a_{X_{i}}^{\mathcal{G}}\right) \quad \Leftrightarrow \quad \mathcal{I}_{\ell}(\mathcal{G}) \text { holds in } \mathrm{P}
$$

P factorizes according to \mathcal{G}

Factorization \Leftrightarrow Iocal CIs

$$
P(\mathbf{X})=\prod_{i} P\left(X_{i} \mid P a_{X_{i}}^{\mathcal{G}}\right) \quad \Leftrightarrow \quad \mathcal{I}_{\ell}(\mathcal{G}) \text { holds in } \mathrm{P}
$$

P factorizes according to \mathcal{G}

$$
\mathcal{I}_{\ell}(\mathcal{G}) \subseteq \mathcal{I}(P)
$$

Factorization \Leftrightarrow local CIs

$$
P(\mathbf{X})=\prod_{i} P\left(X_{i} \mid P a_{X_{i}}^{\mathcal{G}}\right) \quad \Leftrightarrow \quad \mathcal{I}_{\ell}(\mathcal{G}) \text { holds in } \mathrm{P}
$$

P factorizes according to \mathcal{G}

$$
\mathcal{I}_{\ell}(\mathcal{G}) \subseteq \mathcal{I}(P)
$$

\mathcal{G} is an I-map for P
it does not mislead us about independencies in P

Independence map (I-map); example

the term is used for both graphs and distributions.

Independence map (I-map); example

the term is used for both graphs and distributions.

- easy to check $\mathcal{I}_{\ell}(\mathcal{G}) \subseteq \mathcal{I}_{\ell}\left(\mathcal{G}^{\prime}\right)$
- factorization of P over $\mathcal{G}^{\prime} \Rightarrow \mathcal{I}_{\ell}\left(\mathcal{G}^{\prime}\right) \subseteq \mathcal{I}(P)$
- both $\mathcal{G}, \mathcal{G}^{\prime}$ are I-maps for P

Summary so far

- simplification of the chain rule $P(\mathbf{X})=\prod_{i} P\left(X_{i} \mid P a_{X_{i}}\right)$

- Bayes-net represented using a DAG
- naive Bayes
- local conditional independencies $\mathcal{I}=\left\{X_{i} \perp \operatorname{NonDesc}_{X_{i}}\left|P a_{X_{i}}\right| i\right\}$
- hold in a Bayes-net
- imply a Bayes-net

Global CIs from the graph

for any subset of vars \mathbf{X}, \mathbf{Y} and \mathbf{Z}, we can ask $\quad \mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z}$?
global Cl: the set of all such Cls

Global CIs from the graph

for any subset of vars \mathbf{X}, \mathbf{Y} and \mathbf{Z}, we can ask $\quad \mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z}$?
global CI: the set of all such Cls
factorized form of $\mathrm{P} \Rightarrow$ global Cls $\mathcal{I}_{\ell}(\mathcal{G}) \subseteq \mathcal{I}(\mathcal{G}) \subseteq \mathcal{I}(P)$

Global CIs from the graph

for any subset of vars \mathbf{X}, \mathbf{Y} and \mathbf{Z}, we can ask $\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z}$?
global CI: the set of all such Cls
factorized form of $\mathrm{P} \Rightarrow$ global Cls $\quad \mathcal{I}_{\ell}(\mathcal{G}) \subseteq \mathcal{I}(\mathcal{G}) \subseteq \mathcal{I}(P)$

Example:

$$
C \perp D \mid B, F \quad ?
$$

algorithm: directed separation (D-separation)

Three canonical settings

for three random variables

1. causal / evidence trail

$$
P(X, Y, Z)=P(X) P(Y \mid X) P(Z \mid Y)
$$

marginalindependence: $P(X, Z) \neq P(X) P(Z)$
conditional Independence:

$$
P(Z \mid X, Y)=\frac{P(X, Y, Z)}{P(X, Y)}=\frac{P(X) P(Y \mid X) P(Z \mid Y)}{P(X) P(Y \mid X)}=P(Z \mid Y)
$$

Three canonical settings

2. common cause

marginalindepence: $P(X, Z) \neq P(X) P(Z)$
conditional independence:

$$
P(X, Z \mid Y)=\frac{P(X, Y, Z)}{P(Y)}=P(X \mid Y) P(Z \mid Y)
$$

Three canonical settings

3. common effect
a.k.a. collider, v-structure

marginal independence:

$$
P(X, Z)=\sum_{Y} P(X, Y, Z)=P(X) P(Z) \sum_{Y} P(Y \mid X, Z)=P(X) P(Z)
$$

eonditionalindependence:

$$
P(X, Z \mid Y)=\frac{P(X, Y, Z)}{P(Y)} \neq P(X \mid Y) P(Z \mid Y)
$$

Three canonical settings

3. common effect
conditional/Independence:

$$
P(X, Z \mid W) \neq P(X \mid W) P(Z \mid W)
$$

even observing a descendant of Y makes X, Z dependent

Putting the three cases together

Putting the three cases together

Putting the three cases together

$X_{1}, X_{2} \npreceq Y_{1} \mid Z_{1}, Z_{2} \quad ?$
consider all paths between variables in \mathbf{X} and \mathbf{Y}
had we not observed Z_{1}

$$
\left(X_{1}, X_{2} \perp Y_{1} \mid Z_{2}\right) \in \mathcal{I}(\mathcal{G})
$$

D-seperation

(a.k.a. Bayes-Ball algorithm)
$\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z} \quad$?
See whether at least one ball from \mathbf{X} reaches \mathbf{Y}
\mathbf{Z} is shaded

D-separation; algorithm

Linear time complexity

- input: graph G and $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$
- output: $\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z}$?
- mark the variables in \mathbf{Z} and all of their ancestors in G
- breadth-first-search starting from \mathbf{X}
- stop any trail that reaches a blocked node
- a node in \mathbf{Y} is reached?

- unmarked middle of a collider (V-structure)
- in Z otherwise

D-separation quiz

D-separation quiz

$G \perp S \mid \emptyset ?$

D-separation quiz

$$
G \perp S \mid \emptyset ? \quad \boldsymbol{\otimes}
$$

D-separation quiz

$$
\begin{aligned}
& G \perp S \mid \emptyset ? ~ \boldsymbol{x} \\
& D \perp L \mid G ?
\end{aligned}
$$

D-separation quiz

$$
\begin{aligned}
& G \perp S \mid \emptyset ? \\
& D \perp L \mid G ?
\end{aligned}
$$

D-separation quiz

$$
\begin{array}{ll}
G \perp S \mid \emptyset ? & \boldsymbol{x} \\
D \perp L \mid G ? & \boldsymbol{\varnothing} \\
D \perp I, S \mid \emptyset ? &
\end{array}
$$

D-separation quiz

D-separation quiz

$$
\begin{aligned}
& G \perp S \mid \emptyset ? \\
& D \perp L \mid G ? \\
& D \perp I, S \mid \emptyset ? \\
& D, L \perp S \mid I, G ?
\end{aligned}
$$

D-separation quiz

I-map quiz

is G an I-MAP for the following distribution?

$$
P(D, I, G, S, L)=P(L) P(S) P(G \mid D, I) P(D) P(I)
$$

I-map quiz

is G an I-MAP for the following distribution? yes!

$$
P(D, I, G, S, L)=P(L) P(S) P(G \mid D, I) P(D) P(I)
$$

Summary so far

graph and distribution are combined:

- factorization of the distrilbution
- according to the graph $\quad P(\mathbf{X})=\prod_{i} P\left(X_{i} \mid P a_{X_{i}}^{\mathcal{G}}\right)$
- conditional independencies of the distribution
- inferred from the graph
- local CI: $X_{i} \perp$ NonDescendents $X_{X_{i}} \mid$ Parents $_{X_{i}}$
- global CI: D-separation

Summary so far

- factorization of the distribution
- local conditional independencies
- global conditional independencies
identify the same family of distributions

Equivalence class of DAGs

Two DAGs are I-equivalent if $\mathcal{I}(\mathcal{G})=\mathcal{I}\left(\mathcal{G}^{\prime}\right)$

P factorizes on both of these graphs

Equivalence class of DAGs

Two DAGs are I-equivalent if $\mathcal{I}(\mathcal{G})=\mathcal{I}\left(\mathcal{G}^{\prime}\right)$

P factorizes on both of these graphs
From d-separation algorithm it is sufficient

- same undirected skeleton
- same v-structures

Equivalence class of DAGs

Two DAGs are I-equivalent if $\mathcal{I}(\mathcal{G})=\mathcal{I}\left(\mathcal{G}^{\prime}\right)$

different v -structures, yet $\mathcal{I}(\mathcal{G})=\mathcal{I}\left(\mathcal{G}^{\prime}\right)=\emptyset$

Equivalence class of DAGs

Two DAGs are I-equivalent if $\mathcal{I}(\mathcal{G})=\mathcal{I}\left(\mathcal{G}^{\prime}\right)$

different v -structures, yet

$$
\mathcal{I}(\mathcal{G})=\mathcal{I}\left(\mathcal{G}^{\prime}\right)=\emptyset
$$

here, v-structures are irrelevant for I-equivalent because:

- parents are connected (moral parents!)

Equivalence class of DAGs

Two DAGs are I-equivalent if $\mathcal{I}(\mathcal{G})=\mathcal{I}\left(\mathcal{G}^{\prime}\right)$

$$
\begin{array}{l|l}
\mathcal{I}(\mathcal{G})=\mathcal{I}\left(\mathcal{G}^{\prime}\right) \quad \Leftrightarrow \quad \begin{array}{l}
\text { same undirected skeleton } \\
\text { same immoralities }
\end{array}
\end{array}
$$

Equivalence class of DAGs

Two DAGs are I-equivalent if $\mathcal{I}(\mathcal{G})=\mathcal{I}\left(\mathcal{G}^{\prime}\right)$

$$
\mathcal{I}(\mathcal{G})=\mathcal{I}\left(\mathcal{G}^{\prime}\right) \Leftrightarrow \left\lvert\, \begin{aligned}
& \text { same undirected skeleton } \\
& \text { same immoralities }
\end{aligned}\right.
$$

I-Equivalence quiz

do these DAGs have the same set of CIs?

I-Equivalence quiz

do these DAGs have the same set of Cls? no!

I-Equivalence quiz

do these DAGs have the same set of Cls? no!

$$
X \perp Z \mid W
$$

Minimal I-map

which graph G to use for P?
G is minimal l-map for P :

- G is an I-map for $\mathrm{P}: \mathcal{I}(\mathcal{G}) \subseteq \mathcal{I}(P)$
- removing any edge destroys this property

$$
\text { Example: } P(X, Y, Z, W)=P(X \mid Y, Z) P(W) P(Y \mid Z) P(Z)
$$

Minimal I-map from Cl

which graph G to use for P ?
input: $\mathcal{I}(P)$ or an oracle; an ordering X_{1}, \ldots, X_{n}
output: a minimal I-map G

for $i=1 \ldots n$

- find minimal $\mathbf{U} \subseteq\left\{X_{1}, \ldots, X_{i-1}\right\}$
- set $P a_{X_{i}} \leftarrow \mathbf{U}$

$$
\text { s.t. } \frac{\left(X_{i} \perp X_{1}, \ldots, X_{i-1}-\mathbf{U} \mid \mathbf{U}\right)}{X_{i} \perp \operatorname{NonDesc}_{X_{i}} \mid P a_{X_{i}}}
$$

Minimal I-map from Cl

which graph G to use for P?
input: $\mathcal{I}(P)$ or an oracle; an ordering X_{1}, \ldots, X_{n}
output: a minimal I-map G

Minimal I-map from Cl

which graph G to use for P?
input: $\mathcal{I}(P)$ or an oracle; an ordering X_{1}, \ldots, X_{n}
output: a minimal I-map G

Example:

different orderings give different graphs

D,I,S,G,L
L,S,G,I,D
L,D,S,I,G
(a topological ordering)

Perfect MAP (P-MAP)

which graph G to use for P ?

L,D,S,I,G
all the graphs above are minimal I-MAPs $\quad \mathcal{I}(\mathcal{G}) \subseteq \mathcal{I}(P)$
Perfect MAP: $\mathcal{I}(\mathcal{G})=\mathcal{I}(P)$

Perfect map (P-map)

which graph G to use for P ?
Perfect MAP: $\mathcal{I}(\mathcal{G})=\mathcal{I}(P)$
P may not have a P-map in the form of BN

Perfect map (P-map)

which graph G to use for P ?
Perfect MAP: $\mathcal{I}(\mathcal{G})=\mathcal{I}(P)$
P may not have a P-map in the form of BN
Example: $\quad P(x, y, z)= \begin{cases}1 / 12, & \text { if } x \otimes y \otimes z=0 \\ 1 / 6, & \text { if } x \otimes y \otimes z=1\end{cases}$
$(X \perp Y),(Y \perp Z),(X \perp Z) \in \mathcal{I}(P)$
$(X \perp Y \mid Z),(Y \perp Z \mid Z),(X \perp Z \mid Y) \notin \mathcal{I}(P)$

Perfect map (P-map)

which graph G to use for P ?
Perfect MAP: $\mathcal{I}(\mathcal{G})=\mathcal{I}(P)$
P may not have a P-map in the form of a $B N$
if P has a P-map: is it unique?
unique up to I-equivalence

Example:

$\mathcal{I}(P)=\{(X \perp Y, Z \mid \emptyset),(X \perp Y \mid Z),(X \perp Z \mid Y)\}$

Perfect map (P-map)

which graph G to use for P ?
Perfect MAP: $\mathcal{I}(\mathcal{G})=\mathcal{I}(P)$
P may not have a P-map in the form of a $B N$
if P has a P-map: is it unique?
unique up to I-equivalence

Example:

$\mathcal{I}(P)=\{(X \perp Y, Z \mid \emptyset),(X \perp Y \mid Z),(X \perp Z \mid Y)\}$

How to find P-MAPs? discussed in learning BNs

Summary

- factorization of the dist.
- local Cls
- global Cls
identify the same
family of distributions
can be represented using an equivalent class of graphs:
- alternative factorization
- different local CIs
- same global Cls

