Graphical Models

Relationship between the directed \& undirected models

Two directions

Markov network \Rightarrow Bayes-net
Markov network \Leftarrow Bayes-net

From Bayesian to Markov networks

build an I-map for the following

From Bayesian to Markov networks

build an I-map for the following

From Bayesian to Markov networks

build an I-map for the following

From Bayesian to Markov networks

build an I-map for the following

moralize \& keep the skeleton

From Bayesian to Markov networks

moralize \& keep the skeleton

for moral \mathcal{G}, we get a perfect map $\mathcal{I}(\mathcal{M}[\mathcal{G}])=\mathcal{I}(\mathcal{G})$

- directed and undirected CI tests are equivalent

From Bayesian to Markov networks

- in both directed and undirected models $X_{i} \perp$ every other var. $\mid M B\left(X_{i}\right)$
- connect each node to its Markov blanket

From Bayesian to Markov networks

- in both directed and undirected models $X_{i} \perp$ every other var. $\mid M B\left(X_{i}\right)$
- connect each node to its Markov blanket

- gives the same moralized graph

From Markov to Bayesian networks

minimal examples 1.

$$
\mathcal{I}\left(\mathcal{G}_{1}\right)=\mathcal{I}\left(\mathcal{G}_{2}\right)=\mathcal{I}(\mathcal{H})
$$

From Markov to Bayesian networks

minimal examples 1.

$$
\mathcal{I}\left(\mathcal{G}_{1}\right)=\mathcal{I}\left(\mathcal{G}_{2}\right)=\mathcal{I}(\mathcal{H})
$$

minimal examples 2.

$$
\mathcal{I}(\mathcal{G})=\mathcal{I}(\mathcal{H})
$$

From Markov to Bayesian networks

```
minimal examples 3.
```


From Markov to Bayesian networks

minimal examples 3.

§ $B \perp C \mid A$

$$
\mathcal{I}(\mathcal{G}) \subset \mathcal{I}(\mathcal{H})
$$

From Markov to Bayesian networks

minimal examples 3.

examples 4.

From Markov to Bayesian networks

examples 4.


```
build a minimal I-map from CIs in \mathcal{H:}
```

- pick an ordering - e.g., A,B,C,...,F
- select a minimal parent set
- have to triangulate the loops
- therefore, \mathcal{G} is chordal
loops of size >3 have chords

From Markov to Bayesian networks

alternatively

$\mathcal{I}(\mathcal{G}) \subseteq \mathcal{I}(\mathcal{H}) \Rightarrow \mathcal{G}$ cannot have any immoralities
any non-triangulated loop of size 4 (or more) will have immoralities
therefore, \mathcal{G} is chordal

> loops of size >3 have chords

Chordal = Markov \cap Bayesian networks

\mathcal{H} is not chordal, then $\mathcal{I}(\mathcal{G}) \neq \mathcal{I}(\mathcal{H})$ for every \mathcal{G}

- no perfect MAP in the form of Bayes-net

\mathcal{H} is chordal, then $\mathcal{I}(\mathcal{G})=\mathcal{I}(\mathcal{H})$ for some \mathcal{G}
- has a Bayes-net perfect map

directed
 undirected

- parameter-estimation is easy
- can represent causal relations
- better for encoding expert
domain knowledge
- simpler Cl semantics
- less interpretable form for local factors
- less restrictive in structural form (loops)

Summary

- Directed to undirected:
- moralize
- Undirected to directed:
- the result will be chordal
- Chordal graphs = Markov \bigcap Bayesian networks
- P-maps in both directions

