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Learning objective

e Conditional Random Fields
e | ocal probability Models:

m Deterministic CPDs
= Noisy-OR model
m Generalized Linear Model



Conditional Random Fields; Motivation

Structu rEd prEdiCtion: output labels are structured X

X is always observed
Y is structured

Y
Examples:
image segmentation ) ) & @ ®
part of speech tagging

optical character recognition Oa0202020



Conditional Random Fields (CRF)

e a conditional graphical model P(Y | X)

= first attempt: p(Y | X) = %

e for prediction, no need to model P(X)
= may not have enough data

= X could be high-dim and complex




Conditional Random Fields (CRF)

X

second attempt:

P(Y | X) = 75y P(X,Y) = 5% [Ti #1(Dx)




Conditional Random Fields (CRF)

X

second attempt:

P(Y | X) = 75y P(X,Y) = 55 [T #1(Ds)

e differs from MRF in the partition function
» jnput-dependent Z(X)=73y P(Y,X)




Conditional Random Fields; arunning @eXample

P(Y | X) = ﬁ 1 0i( X, V) TTis, v (Y3, Yira)
Z(X) =Yy 112, 0:( X, Y5) [T (i, Yiga)

practically the same as

® e.g, in speech recognition (what do potentials encode?)

for each X=x, we have a different MRF

DROROR0R0
m N



Conditional Random Fields: another benefit

P(Y | X) = ﬁ 2 0i( X, Ys) [T (Y5, Yira) ORONORORO
Z(X) = Yoy [T (X, Vi) Ty %i(Yi, Yira) VOO0

what if ¢;(X,Y;) instead of ¢;(X;,Y;) ?

e nottrue for the corresponding MRF



Conditional Random Fields; input structure
P(Y | X) = 5o [T2, (X0, Y0) TTL, 9i(Yi, Yira) DOOO®®
( ):ZY z':l ¢z’(Xz‘>Yi) i:1¢i(Yi>Yi+1) @ @ @ @ @

How about the structure of the input ? D~ )—-(~1)—~(®)
P(Y | X) = 7 IT 1¢Z(Xz,Y)HZ‘ (Y YK, X)) = OO0~

Z’(1X ' ¢i( X5, Y5) [T, vi(Y5, Yia)

l.e., input structure can be ignored



Conditional Random Fields; parametrization

P(Y | X) = 7 [T 61X, Y) [Ty (Y3, Vi) POOO®
Z(X) = ZY ?:1 ¢i(X;,Y;) le Vi (Yi, Yis1) -

e |n practice we need to learn the potentials

e parameterize them and learn the parameters (eg., a neural network)
m traditionally: a log-linear model: ¢;(Xi,Vi;w;) 2 exp(3, win fir(Xi, Y3))

o E.g., for binary input/output:

¢i(Xi, Yi;wi) = exp(wil(X; = 1,Y; = 1)) = exp(w; X;Y;)



Local probabilistic models



Local probabilistic models

e conditional probability distributions (CPDs)
= in prediction P(Y | X1,..., X))

= in Bayes-nets P(X | Pax)

o discrete variables (CPTs)
o exponential in |Pax;|

e how to represent these efficiently? exploit some sort of structure



Deterministic CPDs

P(X | Pax) = 1I(X; = f(Pay,))

determinism produces additional independencies:

@ @ without determinism: (P L E|4,B) ¢ Z(G)

© X .
o < ® with determinsim: (D LE|AB)cI(G)



Deterministic CPDs

P(X | Pax) = 1I(X; = f(Pay,))

determinism produces additional independencies:

without determinism: (D L E|A,B)¢I(9)

with determinsim: (D LE|AB)cI(G)

deterministic d-separation: (X,Y | Z)?

e add all the variables that deterministically follow Z to defineZ™
e run d-separation for (X,Y | Z™)



Noisy-OR model

for binary variables only

number of parameters is linear in |Paf, |

each parent ( x; =1)is an independent cause

each cause is observed with prob p(x! =1) :@Xj PaS

noise parameter

p(Xi =0 | Pax,) = (1 =) I x,epay, (1 — X X;)

leak parameter (role of a bias term)




Noisy-OR model; vis.

p(Xi =0 | Pax,) = (1 =) [Ix,cpay, (1 — X X;)

leak parameter (role of a bias term)

no cause was observed



Noisy-OR model; example

Medical diagnosis (8N20 network)




Logistic CPD

for binary output variables

eXP(Zj w; X;)
P(X;=1) = T+exp(3, w; X;)

logistic aggregation function
generally, the input can be discrete or continuous

’E.g-, ijz or Xj,...,Xj_|_n=O,1,...,O

one-hot coding




Logistic CPD

for binary output variables

eXP(Zj w; X;)
P(X;=1) = T+exp(3, w; X;)

logistic aggregation function
generally, the input can be discrete or continuous

‘E.g-, ijz or Xj,...,Xj_|_n=O,1,...,O

one-hot coding

binary input: each cause has a multiplicative effect on the ratio p(x;=1)
P(X;=0)



Softmax CPD

extension for categorical outputs
softmax function for aggregation:

___ exp(z)
f(ZK) Y pexp(zyp)

functional form of the CPD:

exp(D_; w;eX;)
P(XZ — 6) — S exp( jwj,é’Xj)



Independence of causal influence
Commutative and associative aggregation

Logistic CPD Noisy-OR

transformation ER¢EXIP.¢
aggregation logistic function

P(X)=1)=XX; 0<A<1

OR /Max/...




Linear Gaussian CPD

for continuous input/output variables

P(X:) =N, wiXj;0°)

J

alternatively, a distcrete input selects among continuous

coefficients (produces a Gaussian mixture): G
Pax

X
P(Xi) = N, wix,Xj;0%,)

conditional linear Gaussian CPD:

one Gaussian mixture for each discrete assignment



Generalized linear models

E[X] = f(w" Pax,)

|
mean function

Logistic CPD: f is the logistic function
Gaussian CPD: f is the identity function




Generalized linear models

E[X] = f(w" Pax,)

|
mean function

Logistic CPD: f is the logistic function xi=wx;Q O
Gaussian CPD: f is the identity function N

conditional dist. is a member of the exponential family

p(z; | Pax,) = h(z;) exp(w' Pax, — F(w' Pay,))

base measure integral of f

(will come back to this in exp. family lecture)



Conditional Bayesian networks

Pa%
use an entire Bayes-net to represent a CPD

Pa%, is always observed (similar to a CRF) Z

P(X’b | Pa’Xi) — ZZP(Xivz ‘ Pa’Xi)

7
—
¥



Conditional Bayesian networks; example

can be used for encapsulation in complex models

Power Source
X

Computer

O
Q

O—O—CH
Monitor

Status

Motor

Data Access @
Mechanism

Status




Summary

the conditioned version of directed & undirected models:

e Conditional Random Fields
e Conditional Bayes-nets

representing conditional probabilities:

e deterministic CPD
noisy-OR model
logistic CPD

¢ linear Gaussian CPD

I part of a bigger family of GLMs

how about using neural networks?



