Graphical Models

Conditional & Local Probability Models

Siamak Ravanbakhsh

Winter 2018

Learning objective

- Conditional Random Fields
- Local probability Models:
 - Deterministic CPDs
 - Noisy-OR model
 - Generalized Linear Model

Conditional Random Fields; Motivation

Structured prediction: output labels are structured

X is always observed

Y is structured

Examples:

image segmentation
part of speech tagging
optical character recognition

Conditional Random Fields (CRF)

- a conditional graphical model P(Y | X)
 - first attempt: $P(\mathbf{Y} \mid \mathbf{X}) = \frac{P(\mathbf{X}, \mathbf{Y})}{P(\mathbf{X})}$
- for prediction, no need to model P(X)
 - may not have enough data
 - X could be high-dim and complex

Conditional Random Fields (CRF)

second attempt:

$$P(\mathbf{Y}\mid\mathbf{X})=rac{1}{Z(\mathbf{X})} ilde{P}(\mathbf{X},\mathbf{Y})=rac{1}{Z(\mathbf{X})}\prod_k\phi_k(\mathbf{D}_k)$$

Conditional Random Fields (CRF)

second attempt:

$$P(\mathbf{Y}\mid\mathbf{X})=rac{1}{Z(\mathbf{X})} ilde{P}(\mathbf{X},\mathbf{Y})=rac{1}{Z(\mathbf{X})}\prod_k\phi_k(\mathbf{D}_k)$$

- differs from MRF in the partition function
 - input-dependent $Z(\mathbf{X}) = \sum_{\mathbf{Y}} \tilde{P}(\mathbf{Y}, \mathbf{X})$

Conditional Random Fields; a running example

$$P(\mathbf{Y}\mid \mathbf{X}) = rac{1}{Z(\mathbf{X})} \prod_{i=1}^5 \phi_i(X_i,Y_i) \prod_{i=1}^4 \psi_i(Y_i,Y_{i+1})$$

$$Z(\mathbf{X}) = \sum_{\mathbf{Y}} \prod_{i=1}^{5} \phi_i(X_i, Y_i) \prod_{i=1}^{4} \psi_i(Y_i, Y_{i+1})$$

practically the same as

• e.g., in speech recognition (what do potentials encode?)

for each **X=x**, we have a different MRF

Conditional Random Fields; another benefit

$$P(\mathbf{Y} \mid \mathbf{X}) = \frac{1}{Z(\mathbf{X})} \prod_{i=1}^5 \phi_i(X_i, Y_i) \prod_{i=1}^4 \psi_i(Y_i, Y_{i+1})$$

$$Z(\mathbf{X}) = \sum_{\mathbf{Y}} \prod_{i=1}^{5} \phi_i(X_i, Y_i) \prod_{i=1}^{4} \psi_i(Y_i, Y_{i+1})$$

what if $\phi_i(\mathbf{X}, Y_i)$ instead of $\phi_i(X_i, Y_i)$?

sparse structure after conditioning on **X=x**

- learning needs inference on this structure (discussed later)
- not true for the corresponding MRF

Conditional Random Fields; input structure

$$P(\mathbf{Y} \mid \mathbf{X}) = \frac{1}{Z(\mathbf{X})} \prod_{i=1}^{5} \phi_i(X_i, Y_i) \prod_{i=1}^{4} \psi_i(Y_i, Y_{i+1})$$

$$Z(\mathbf{X}) = \sum_{\mathbf{Y}} \prod_{i=1}^{5} \phi_i(X_i, Y_i) \prod_{i=1}^{4} \psi_i(Y_i, Y_{i+1})$$

How about the **structure of the input**?

$$P(\mathbf{Y} \mid \mathbf{X}) = rac{1}{Z(\mathbf{X})} \prod_{i=1}^{5} \phi_i(X_i, Y_i) \prod_{i=1}^{4} \psi_i(Y_i, Y_{i+1}) \gamma_i(X_i, X_{i+1}) = rac{1}{Z'(\mathbf{X})} \prod_{i=1}^{5} \phi_i(X_i, Y_i) \prod_{i=1}^{4} \psi_i(Y_i, Y_{i+1})$$

I.e., input structure can be ignored

Conditional Random Fields; parametrization

$$egin{aligned} P(\mathbf{Y} \mid \mathbf{X}) &= rac{1}{Z(\mathbf{X})} \prod_{i=1}^5 \phi_i(X_i, Y_i) \prod_{i=1}^4 \psi_i(Y_i, Y_{i+1}) \ Z(\mathbf{X}) &= \sum_{\mathbf{Y}} \prod_{i=1}^5 \phi_i(X_i, Y_i) \prod_{i=1}^4 \psi_i(Y_i, Y_{i+1}) \end{aligned}$$

- In practice we need to learn the potentials
- parameterize them and learn the parameters (e.g., a neural network)
 - traditionally: a log-linear model: $\phi_i(X_i, Y_i; w_i) \triangleq \exp(\sum_k w_{i,k} f_{i,k}(X_i, Y_i))$
 - E.g., for binary input/output:

$$\phi_i(X_i,Y_i;w_i)=\exp(w_i\mathbb{I}(X_i=1,Y_i=1))=\exp(w_iX_iY_i)$$

Local probabilistic models

Local probabilistic models

- conditional probability distributions (CPDs)
 - in prediction $P(Y | X_1, ..., X_n)$
 - in Bayes-nets $P(X \mid Pa_X)$
 - discrete variables (CPTs)
 - \circ exponential in $|Pa_{X_i}|$
- how to **represent** these efficiently? exploit some sort of structure

Deterministic CPDs

$$P(X \mid Pa_X) riangleq \mathbb{I}(X_i = f(Pa_{X_i}))$$

determinism produces additional independencies:

without determinism: $(D \perp E \mid A, B) \notin \mathcal{I}(\mathcal{G})$

with determinsim: $(D \perp E \mid A, B) \in \mathcal{I}(\mathcal{G})$

Deterministic CPDs

$$P(X \mid Pa_X) riangleq \mathbb{I}(X_i = f(Pa_{X_i}))$$

determinism produces additional independencies:

without determinism: $(D \perp E \mid A, B) \notin \mathcal{I}(\mathcal{G})$

with determinsim: $(D \perp E \mid A, B) \in \mathcal{I}(\mathcal{G})$

deterministic d-separation: $(X, Y \mid Z)$?

- ullet add all the variables that deterministically follow ${f Z}$ to define ${f Z}^+$
- ullet run d-separation for $(\mathbf{X},\mathbf{Y}\mid\mathbf{Z}^+)$

Noisy-OR model

- for binary variables only
- number of parameters is linear in $|Pa_{X_i}^{\mathcal{G}}|$
- each parent ($X_j = 1$) is an **independent cause**
- each cause is observed with prob $P(X_j'=1) = \lambda_j X_j$ noise parameter

$$p(X_i = 0 \mid Pa_{X_i}) = (1 - \lambda_0) \prod_{X_j \in Pa_{X_i}} (1 - \lambda_j X_j)$$

Noisy-OR model; vis.

$$p(X_i=0\mid Pa_{X_i})=(1-\widehat{\lambda_0})\prod_{X_j\in Pa_{X_i}}(1-\lambda_jX_j)$$

leak parameter (role of a bias term)

no cause was observed

Noisy-OR model; example

Medical diagnosis (BN20 network)

CPDs:
$$p(F_i = 0 \mid Pa_{F_i}) = (1 - \lambda_{i,0}) \prod_{D_j \in Pa_{F_i}} (1 - \lambda_{i,j} D_j)$$

Logistic CPD

for **binary output** variables

$$P(X_i=1)=rac{\exp(\sum_j w_j X_j)}{1+\exp(\sum_j w_j X_j)}$$

logistic aggregation function generally, the input can be discrete or continuous

ullet E.g., $X_j=2$ or $X_j,\ldots,X_{j+n}=0,1,\ldots,0$ one-hot coding

Logistic CPD

for **binary output** variables

$$P(X_i=1) = rac{\exp(\sum_j w_j X_j)}{1+\exp(\sum_j w_j X_j)}$$

logistic aggregation function generally, the input can be discrete or continuous

$$ullet$$
 E.g., $X_j=2$ or $X_j,\ldots,X_{j+n}=0,1,\ldots,0$ one-hot coding

binary input: each cause has a multiplicative effect on the ratio $\frac{P}{P}$

Softmax CPD

extension for categorical outputs softmax function for aggregation:

$$f(z_\ell) = rac{\exp(z_\ell)}{\sum_{\ell'} \exp(z_{\ell'})}$$

functional form of the CPD:

$$P(X_i = \ell) = rac{\exp(\sum_j w_{j,\ell} X_j)}{\sum_{\ell'} \exp(\sum_j w_{j,\ell'} X_j)}$$

Independence of causal influence

Commutative and associative aggregation

Logistic CPD

transformation $X_j' = w_j X_j$

aggregation

logistic function

Noisy-OR

 $P(X_j'=1)=\lambda_j X_j \quad 0 \leq \lambda \leq 1$

OR /Max/...

Linear Gaussian CPD

for **continuous** input/output variables

$$P(X_i) = \mathcal{N}(\sum_j w_j X_j; \sigma^2)$$

alternatively, a **distcrete** input selects among **continuous** coefficients (produces a Gaussian mixture):

$$P(X_i) = \mathcal{N}(\sum_j w_{j, oldsymbol{X_d}} X_j; \sigma^2_{oldsymbol{X_d}})$$

conditional linear Gaussian CPD:

one Gaussian mixture for each discrete assignment

Generalized linear models

$$\mathbb{E}[X_i] = f(\mathbf{w}^\mathsf{T} P a_{X_i})$$

Logistic CPD: **f** is the logistic function

Gaussian CPD: **f** is the identity function

Generalized linear models

$$\mathbb{E}[X_i] = f(\mathbf{w}^\mathsf{T} P a_{X_i})$$

Logistic CPD: **f** is the logistic function

Gaussian CPD: **f** is the identity function

conditional dist. is a member of the exponential family

$$p(x_i \mid Pa_{X_i}) = h(x_i) \exp(\mathbf{w}^\mathsf{T} Pa_{X_i} - F(\mathbf{w}^\mathsf{T} Pa_{X_i}))$$
 base measure integral of f

(will come back to this in exp. family lecture)

Conditional Bayesian networks

use an entire Bayes-net to represent a CPD

 $Pa_{X_i}^{\mathcal{G}}$ is always observed (similar to a **CRF**)

$$P(X_i \mid Pa_{X_i}) = \sum_{\mathbf{Z}} P(X_i, \mathbf{Z} \mid Pa_{X_i})$$

Conditional Bayesian networks; example

can be used for encapsulation in complex models

Status

Summary

the conditioned version of directed & undirected models:

- Conditional Random Fields
- Conditional Bayes-nets

representing conditional probabilities:

- deterministic CPD
- noisy-OR model
- logistic CPD
- linear Gaussian CPD

part of a bigger family of GLMs

how about using neural networks?