

 1

Cross-Parameterization and Compatible Remeshing of 3D Models
Vladislav Kraevoy Alla Sheffer

University of British Columbia, {vlady | sheffa}@cs.ubc.ca

Figure 1: Applications: (left) texture transfer and morphing; (right) three-sided blending.

Abstract

Many geometry processing applications, such as morphing,
shape blending, transfer of texture or material properties, and
fitting template meshes to scan data, require a bijective mapping
between two or more models. This mapping, or cross-
parameterization, typically needs to preserve the shape and
features of the parameterized models, mapping legs to legs, ears
to ears, and so on. Most of the applications also require the
models to be represented by compatible meshes, i.e. meshes
with identical connectivity, based on the cross-parameterization.
In this paper we introduce novel methods for shape preserving
cross-parameterization and compatible remeshing. Our cross-
parameterization method computes a low-distortion bijective
mapping between models that satisfies user prescribed
constraints. Using this mapping, the remeshing algorithm
preserves the user-defined feature vertex correspondence and the
shape correlation between the models. The remeshing algorithm
generates output meshes with significantly fewer elements
compared to previous techniques, while accurately
approximating the input geometry. As demonstrated by the
examples, the compatible meshes we construct are ideally
suitable for morphing and other geometry processing
applications.

Keywords: Modeling – Shape blending/Morphing; Modeling –
Surface parameterization; Modeling – Polygonal modeling;
Modeling – Mesh generation

1 Introduction

The ability to bijectively map one surface model to another is
useful for many applications. Smooth morphing of one geometry
into another is one of the oldest and most popular special effects
in movies. The first stage of any morphing algorithm is the es-
tablishment of a bijective mapping between the models [Alexa
2000, Kanai et al. 2000, Lee et al. 1999]. Recent research in
digital geometry processing suggests multiple new applications
for such a mapping, including pair-wise model editing [Bier-

mann et al. 2002], transferring texture and surface properties
(BRDFs, normal maps, etc…) [Praun et al. 2001], fitting tem-
plate meshes to multiple data sets [Marshner et al. 2000, Allen et
al. 2003], and principal component analysis. Many of these ap-
plications, such as blending and morphing, require compatible
input meshes, i.e. meshes with identical connectivity. Therefore,
given the cross-parameterization, the models must be remeshed
with a common connectivity.

The models which need to be cross-parameterized usually have
similar features (there is little use for mapping a phone onto a
cow) and the parameterization must respect those. For example,
when mapping between two humans, the legs must map to the
legs, the ears to the ears, and so on. This is typically achieved by
enforcing the correspondence for a small set of feature vertices
and using a cross-parameterization that preserves the shape of
the models as much as possible (in terms of angles and area).

1.1 Previous Work

Much of the previous work done in this area focused on morph-
ing as the target application. Alexa [2002] gives a good recent
review of cross-parameterization and compatible remeshing
techniques developed for morphing. The cross-parameterization
is typically computed by parameterizing the models on a com-
mon base domain. One popular choice is the sphere. There are a
number of algorithms for spherical parameterization, e.g. [Alexa
2000, Gotsman et al. 2003, Praun and Hoppe 2003]. Of those,
only Alexa's method addresses feature correspondence. How-
ever, it does not guarantee a bijective mapping and is not always
capable of matching the features. An inherent limitation of a
spherical parameterization is that it can only be applied to
closed, genus zero surfaces.

A more general approach is to parameterize the models over a
common base mesh [Lee et al. 1999, Lin et al. 2003, Michikawa
et al. 2001, Praun et al. 2001]. This approach splits the meshes
into matching patches with an identical inter-patch connectivity.
After the split, each set of matching patches is parameterized on
a common convex planar domain. One advantage of this ap-
proach is that it naturally supports feature correspondence by
using feature vertices as corners of the matching patches. The
main challenge in mapping the models to a single base mesh is
to construct identical inter-patch connectivities. The vast major-
ity of the methods use heuristic techniques that work only when
the models have nearly identical shape. Praun et al. [2001] pro-
vide a robust method for partitioning both meshes into patches

 2

given user-supplied base mesh connectivity. A common down-
side of existing base mesh techniques is that the patch structure
severely restricts the freedom of the parameterization. As a re-
sult, the shape of the patches has a huge influence on the amount
of mapping distortion.

Kraevoy et al. [2003] introduce an algorithm that, given a mesh,
a set of feature vertices, and a set of corresponding positions in
the plane computes a patch layout and a triangulation of the
points that have identical connectivity. Since the method oper-
ates in 2D, the authors were able to use standard parameteriza-
tion techniques to achieve low distortion. As explained in Sec-
tion 3, our work extends this general framework to partition
meshes into patches with identical connectivity.

When cross-parameterization is used for geometry processing, it
is sometimes possible to limit the computation to disk-like parts
of the surface [Bierman et al. 2002]. In this case, standard planar
parameterization techniques (e.g. [Desbrun et al. 2002, Levy et
al. 2002, Sheffer and de Sturler 2000]) can be used to construct
the cross-parameterization. However, this limitation restricts the
spectrum of available editing operations.

Given the cross-parameterization, many techniques [Alexa 2000,
Kanai et al. 2000] generate the common connectivity for the
models by overlaying the meshes in the parameter domain and
computing a common intersection mesh. The new mesh captures
the geometry of the models. However, typically the new mesh is
a factor of ten larger than the input meshes and has very badly
shaped triangles. The overlaying algorithm is also extremely
tricky to implement, as it requires multiple intersection and pro-
jection operations. Another alternative is to remesh the models
using a regular subdivision connectivity derived from the base
mesh [Lee et al. 1999, Michikawa et al. 2001, Praun et al. 2001].
Due to the rigid connectivity structure, the shape of the mesh
triangles reflects the shape of the base mesh. Hence, if the shape
of the triangles is poor (because, for example, if the user picked
unevenly spaced feature vertices) the shape of the mesh triangles
will reflect this. More importantly, a model that contains fea-
tures interior to the base mesh triangles (e.g. David's hair in
Figure 9) will require a very dense subdivision mesh over the
entire model. Lin et al. [2003] partly rectify this by introducing
adaptive subdivision. However, their meshes still contain a very
large number of elements.

Allen et al. [2003] use the connectivity of one mesh to approxi-
mate the geometry of another, avoiding explicit parameteriza-
tion. Their solution is limited to very specific inputs and can
introduce severe approximation errors when the input models
have significantly different geometry.

A concurrent work by Schreiner et at. [2004] uses a procedure
similar to the one below for base mesh construction, however,
handling models of arbitrary genus more robustly. To generate a
smooth cross-parameterization, they use a symmetric, stretch
based relaxation procedure, which trades high computational
complexity for quality of the mapping. The common mesh is
generated using an overlay of the input meshes, described above.
To avoid artifacts, the method has to relax feature vertex corre-
spondence in some cases.

1.2 Contribution

In this paper we propose new methods for cross-
parameterization and compatible remeshing. Our cross-
parameterization method is the first one guaranteed to find a

bijective parameterization which satisfies the feature vertex
correspondence between any number of genus zero models with-
out additional input from the user. The method works for higher
genus models as well, if the user specifies a sufficient number of
feature vertices to define a correspondence between the handles
(typically four vertices per handle).

We introduce a novel local framework for mesh parameteriza-
tion over a base mesh domain. Our algorithm uses this frame-
work to compute both shape-preserving and adaptive cross-
parameterizations. The framework can be used to optimize other
criteria, providing a powerful stand-alone parameterization tool.

After the cross-parameterization is computed, a novel adaptive
method for compatible remeshing is applied. It generates meshes
that accurately approximate the input geometry with signifi-
cantly fewer elements than those generated by previous tech-
niques. As a consequence, the method can be applied to gener-
ate compatible meshes for any number of models.

Thanks to the combination of shape preservation and good ap-
proximation, the resulting compatible meshes are well-suited for
morphing and other geometry processing applications.

The rest of the paper is organized as follows. Section 2 provides
an overview of the algorithm. Section 3 describes the construc-
tion of the common base mesh. Section 4 defines the cross-
parameterization function between the models. Section 5 de-
scribes the compatible remeshing algorithm. Section 6 demon-
strates the resulting cross-parameterizations and showcases sev-
eral of their applications. Finally, Section 7 summarizes the
algorithm and suggests future research directions.

2 Algorithm Overview

The algorithm as described below can handle any number of
input meshes simultaneously. However for efficiency reasons it
is simpler to perform the procedure on a pair-wise basis (Section
2.3). To simplify the notations, in the rest of the paper we will
describe the process for two input models.

2.1 Definitions

The following terms are used in the algorithm description:
• A cross-parameterization of two surface meshes Ms and Mt

is a one-to-one and onto mapping between the two surfaces.
• A patch layout P of a mesh M induced by a set of vertices V

is a partition of the mesh into simply connected, non-
overlapping patches where the boundary of each patch is de-
fined by non-intersecting edge paths in M between vertices
in V. A layout is triangular if the boundary of each patch is
defined by three paths.

• Given two meshes Ms and Mt with corresponding sets of
vertices Vs and Vt (|Vs|=|Vt|), the layouts Ps and Pt are topo-
logically identical if each path (vs

i,vs
j) in Ps corresponds to a

path (vt
i,vt

j) in Pt and vice-versa. We refer to such pair of
paths as matching pair.

• A base triangle b for a triangular patch p=(vi,vj,vk) is the
straight-line planar triangle in 3D formed by the coordinates
of vi,vj, and vk. A base mesh B of the patch layout is the un-
ion of the base triangles.

2.2 Algorithm Stages

The input to the algorithm consists of two closed manifold
meshes Ms and Mt and the corresponding sets of matching fea-

 3

ture vertices Vs and Vt, typically selected by the user. The algo-
rithm has three main stages. First, we construct a common base
domain. Second, a low distortion cross-parameterization is com-
puted. The final stage compatibly remeshes the input models
using the parameterization.

Common base domain construction: The goal of this stage is
to construct a common base mesh domain for Ms and Mt based
on the matching feature vertices Vs and Vt. To construct it, we
compute topologically identical triangular layouts of the two
meshes (Section 3). The layouts are constructed incrementally
by adding pairs of matching paths between feature vertices.

Cross-parameterization: After the base mesh domain is con-
structed, each patch is mapped to the corresponding base mesh
triangle. This provides two parameterizations Fs and Ft between
the meshes Ms and Mt and their corresponding base domains Bs
and Bt. By mapping each triangle in Bs to the matching triangle
in Bt we obtain the initial cross-parameterization F (Section 4.1).
The algorithm then smoothes the mappings Fs and Ft from the
source and target meshes to their respective base mesh domains
(Section 4.2). This improves the shape of the mesh patches and
drastically reduces the distortion of the combined cross-
parameterization F.

Compatible remeshing: The algorithm described in Section 5
constructs compatible meshes for the two models. It uses the
source mesh Ms as the basis for remeshing. The method gener-
ates a mesh Mst for the geometry of the target mesh Mt with the
same connectivity as Ms. This is done by mapping the vertices of
Ms onto Mt using F. Initially, Mst does not necessarily provide a
good approximation of the target geometry. Therefore the algo-
rithm adapts Mst to the target geometry using a combination of
smoothing (Section 5.2) and refinement (Sections 5.3 and 5.4)
operations.

The result of this procedure is a shape-preserving cross-
parameterization between two compatible meshes Ms and Mst
where Mst closely approximates the geometry of the target mesh
Mt. The cross-parameterization maps the feature vertices of one
model to the corresponding ones on the other and is guaranteed
to be bijective. The applications of the parameterization are
demonstrated in Section 6. The stages of the algorithm are de-
scribed in detail in the following sections.

2.3 Multiple Inputs

To efficiently and robustly handle multiple input models we
apply a sequential procedure which incrementally generates the
common connectivity for all the models. The method selects
one model as the source (arbitrarily, or as the one with highest
resolution, or best mesh quality). It then computes the cross-
parameterization (Sections 3 and 4) between the source model
and each of the other models. A mapping between any pair of
models is defined by combining appropriate cross-
parameterization functions. Finally a single common connec-
tivity is computed incrementally, starting with the connectivity
of the source and adding one model at a time. At each stage the
remeshing procedure (Section 5) is used to fit the common mesh
to a new model refining the connectivity as necessary. This pro-
cedure was used to generate the triceratops/rhino/cow blends in
Figures 1 and 10.
3 Constructing a Common Base Domain

The common base domain is the basis for the subsequent cross-
parameterization. It is constructed by computing topologically

identical triangular patch layouts of the input meshes Ms and Mt.
The layouts define a common base mesh connectivity.

A related, but simpler, problem of constrained planar parame-
terization was addressed by Kraevoy et al. [2003]. The authors
described an algorithm that computes a triangular patch layout
and a triangulation of a set of positions in the plane such that
both patch layout and triangulation have the same connectivity.
We extend the proposed framework to compute the topologi-
cally identical patch layouts.

The layouts are computed by incrementally adding pairs of
matching edge paths between feature vertices. As defined above,
edge paths match if both their start and end vertices correspond
to one another. The addition process is explained in detail in
Sections 3.1 and 3.2. When adding each pair of matching paths,
the following conditions have to be satisfied:
1. Intersection: The new paths must not intersect existing

paths in either of the mesh layouts Ps and Pt.
2. Cyclical Order: The paths must have the same cyclical

order around the end vertices (Figure 2 (a)). Consider a fea-
ture vertex vs

i which has the paths s1,...,sn emanating from it,
in clockwise order. For a topologically identical layout to
exist, the vertex vt

i must have the same clockwise path order
as vs

i.
3. Blocking: The new paths must not block necessary future

paths. Blocking happens when a path splits a patch in two
and a feature vertex vs

i
 and the corresponding vertex vt

i are
placed in topologically different patches (Figure 2 (b,c)).
Blocking is tested by propagating fronts from the same side
of both paths (as determined by mesh orientation) and com-
paring the feature vertices encountered by the front.

4. Handle Blocking: For models of genus greater than zero
two other types of blocking must be considered:
4.1 If a patch has interior handles a path connecting two

boundary vertices can reduce the genus of the patch
without splitting it. One case of handle blocking is
therefore when the path on one model splits the patch
in two and on the other only reduces the genus. The
regular blocking test, above, locates this type of han-
dle blocking.

4.2 The second case of handle blocking happens when a
path splits a patch into two on both models and the
resulting matching patches have different genus. This
is tested by simply comparing the genus of the new
patches using the Euler formula. In practice this test
is redundant if there are enough feature vertices
around each handle (in this case the regular blocking
test will fail as well).

(b)

(a) (c)

Figure 2: Path validity conditions. (a) Matching paths s3 and t3
(blue) violate cyclical order. Blocking paths (blue): (b) path in

Ps; (c) matching path in Pt. This pair of paths places the red
feature vertex on different patches on Ps and Pt.

To satisfy these conditions we introduce matching paths in two
stages: first, adding as many paths as we can without modifying
the connectivity of the source and target meshes; then introduc-

 4

ing the necessary remaining paths refining the meshes when
needed as we go along.

3.1 Adding Edge Paths

This stage of the algorithm traces matching paths on the edge
graphs of the source and target meshes.

Algorithm PathMatch
 Ms' = Ms
 Mt' = Mt
 Compute the shortest paths sij for each pair of vertices in Vs
 Compute the shortest paths tij for each pair of vertices in Vt
 ST = ∅
 foreach sij
 ST ← <sij,tij> /* pairs of matching paths */
 while ST ≠ ∅
 < s,t> =ST.RemoveShortest()
 if NonBlocking(s,t)
 Add s to Ps; Add t to Pt
 Remove all interior vertices of s from Ms'
 Remove all interior vertices of t from Mt'
 Update(ST, s, t)
 end
 end
end

The function NonBlocking tests the blocking condition as de-
scribed above. The method ReturnShortest returns a pair of
paths with the smallest length sum (|sij| + |tij|). The Update func-
tion modifies ST as follows:
1. Remove all paths sij containing interior vertices of s and

recompute them in Ms'.
2. Remove all paths tij containing interior vertices of t and re-

compute them in Mt'.
3. For each path sij emanating from one of the end vertices of s,

check that sij and tij are in the same segment with respect to
the cyclical ordering around the end vertex. If they are not,
recompute the paths, starting in the correct segment.

Note that given the new constraints, the Update procedure can
find that it may not be able to locate replacement paths for sij or
tij. In this case, the pair is simply removed from ST. Using the
Update function eliminates the need to check intersection and
cyclical order conditions explicitly when the paths are added. As
a result of the on-the-fly recomputation performed by Update,
many more paths can be added at this stage of the algorithm.

At the end of the PathMatch algorithm we have a topologically
identical partition of both meshes into patches (Figure 4 (a),(b)).
If all the patches are triangular, we are done; otherwise, the pro-
cedure described in Section 3.2 is applied.

3.2 Adding Face Paths

The PathMatch algorithm terminates when no more matching
paths can be traced on the edge graphs of the input meshes.
Therefore, the second stage of the algorithm traces matching
paths on the face graphs instead. We use the restricted brushfire
algorithm [Praun et al. 2001] for tracing the paths. Since the face
graph of each mesh patch is connected, the brushfire can find a
correctly cyclically oriented path between any given pair of
vertices. Paths are added until all the patches are triangulated.
We guarantee termination by specifying an order for adding
paths that avoids blocking [Kraevoy et al. 2003]. First, if any of
the patches are not simple, namely they contain multiple bound-
ary loops, the method connects the loops generating simple

patches. Then the algorithm triangulates the resulting simple
patches.

The procedure for tracing paths on faces can fail if patches have
genus bigger than zero. In our tests, this happened only if there
were not enough feature vertices around each handle.

Make simple: The algorithm connects all boundary loops for
each pair of non-simple corresponding patches ps and pt as fol-
lows:
1. Compute the shortest paths between each pair of vertices on

different boundary loops of ps. Select the shortest path
among those.

2. Compute a matching path on pt.
3. Convert both face paths into edge paths (Figure 3). Each

step of the conversion traces an edge from a corner vertex of
a face to a vertex on the opposite, consecutive face in the
path. If the edge shared by the faces has a non-boundary ver-
tex, the method uses the edge from the corner to it. Other-
wise, the edge is split (Figure 3(b)) and the edge between the
corner and the midpoint is used.

(a) (b) (c)

Figure 3: Constructing an edge path (vi,vj) from a face path: (a)
face path; (b) adding new vertices; (c) derived edge path.

4. Repeat the process if the patches have multiple loops.

Triangulation: Simple patches are triangulated by recursively
adding paths between non adjacent boundary vertices. Each
addition of a pair of paths splits the patches into two. The proce-
dure is then called recursively for both halves until triangular
patches are obtained. The face paths are converted into edge
path as described above.

The procedure produces topologically identical triangular lay-
outs of the two input meshes.

3.3. Flipping Paths

The partitioning method described above tries to introduce the
shortest paths, which typically results in reasonably shaped
patches. The smoothing (Section 4) improves the shape of the
patches further. However, the smoothing effectiveness is re-
stricted by the connectivity of the mesh.

To improve the connectivity we introduce a simple path flip
procedure:
1. For each path s=(vi,vj) in Ps check if

deg(vi) + deg(vj) > deg(vr) + deg(vl) + 2

where vr and vl are the feature vertices opposite s in the right
and left patches, and deg returns the valence of the vertex
(number of emanating paths).

2. If the condition is satisfied, the path s is removed from Ps.
The flipped path (vr,vl) is added instead. The same change is
applied to the layout Pt.

3. The path flipping loop terminates when no more paths can
be flipped.

 5

The construction method is guaranteed to terminate and to com-
pute topologically identical triangular layouts for closed genus
zero surfaces. For genus greater than zero, as explained above,
the method will terminate successfully if enough vertices are
placed around each handle. The computed layouts are used to
generate the cross-parameterization as explained in the next
section.

(a) (b)

(c) (d)

(e) (f)

Figure 4: Base domains construction (feature vertices are dark
green): (a),(b) edge paths; (c),(d) face paths, new vertices are

highlighted (turquoise); (e),(f) base meshes.

Figure 5: Base domain construction for genus 3 models (19

feature vertices).

4 Cross-Parameterization

4.1 Initial Cross-Parameterization

Given the patch layouts Ps and Pt, we construct the two base
meshes Bs and Bt. The initial cross-parameterization is defined
as follows:
1. Map each patch p in Ps to the corresponding base triangle b

using the mean value parameterization [Floater 2003]. This
defines a mapping Fs from Ms to Bs.

2. Define Ft from Mt to Bt in the same way.
3. Map each triangle bs in Bs to the matching triangle bt in Bt,

mapping the corner vertices to the corresponding corners
and using barycentric coordinates for the interior. This de-
fines a mapping Fst.

4. The mapping F from Ms to Mt is

F= Ft -1⋅Fst⋅ Fs.

Since each component of the mapping is bijective, the combined
parameterization is bijective as well. Mean value parameteriza-
tion computes a shape preserving (conformal) parameterization.
However if the patches are not well shaped the resulting map-
ping can still be quite distorted (Figure 6 (c)). To reduce the
parameterization distortion we apply a smoothing procedure
described in Section 4.2.

(a)

(b) (c) (d)

Figure 6: Parameterization on a base mesh: zoom-in on patches (a)
and mapping to base mesh (c) before and after smoothing (b) and

(d).

4.2 Smoothing

The quality of any parameterization between a set of patches and
a base mesh is highly dependent on the shape of the patches.
Therefore any parameterization that preserves the original
patches will have low distortion only if the patches are well
shaped. We introduce the following smoothing algorithm which
drastically reduces the parametric distortion by letting vertices
migrate from one patch to another, improving the patch shape
(Figure 6 (a), (b)).
To guarantee a bijective mapping, the smoothing procedure
requires an adjacency constraint to be satisfied for all edges in
the mesh. An edge satisfies the adjacency constraint if its end
vertices belong to the same patch or to two adjacent patches that
share a common boundary path. The following pre-processing
procedure modifies the meshes Ms and Mt to comply with this
constraint. After the initial cross-parameterization the paths are
aligned with the edges of the base mesh (Figure 6 (c)). Hence,
the only edges that violate the adjacency constraint at this stage
are edges whose vertices lie on two bounding paths of a single
patch. Prior to running the smoothing procedure, each such edge
is split into two. During smoothing, vertices are prevented from
migrating from one patch to another if one of their edges will
violate the adjacency constraint.

The smoothing is performed independently for Ms and Mt, modi-
fying the current mapping from the mesh to the base domain.
This is done by changing the locations on the base domain to
which the mesh vertices are mapped. The base mesh location of
a vertex v is defined as a pair <b,vb> consisting of base triangle
index b and the barycentric coordinates vb defined with respect
to the base triangle.

The smoothing procedure iterates over the mesh vertices, repeat-
edly modifying their locations on the base mesh. Given a vertex
v located at (b, vb), each smoothing iteration relocates the vertex
based on the locations of the neighboring vertices using the fol-

 6

lowing local parameterization procedure (demonstrated in Fig-
ure 7):
1. Set b1, b2 and b3 to the three triangles adjacent to b.
2. Map b and the three adjacent triangles (b1, b2 and b3) to a

planar equilateral triangle E. Each triangle is mapped to a
corresponding quarter of E (b0', b'1, b'2 and b'3 respectively).

3. Map v to b0' using the barycentric coordinates vb. Compute
the coordinates vE of the vertex with respect to E.

Figure 7: Relocating vertices on base mesh.

4. Map each neighbor vertex of v to E. Due to the adjacency
constraint, each neighbor of v is located on one of the four
base triangles b, b1, b2 and b3. Hence, this mapping is well
defined. Each neighbor vertex u located at <bu,ub> is first
mapped to bu' using its barycentric coordinates ub. The algo-
rithm than computes the vertex's coordinates uE with respect
to E.

5. Given the locations of the neighbor vertices, compute a new
location vE based on the neighbors:

.
|)(|

1
)(

E
vNeiu

uvE uw
vNei

v ∑
∈

=

The weights wuv are the mean value edge weights [Floater
2003] computed on the original mesh.

6. Check if moving the vertex to the new location will flip any
triangles. If yes, restore previous coordinates.

7. Find the quarter bi' that vE is in.
8. Compute the barycentric coordinates vi of vE with respect to

bi'.
9. If i is zero the vertex remains in b. Set the location of v to

<b, vi>, (e.g. Figure 7, vertex v2).
10. Otherwise:

10.1 Check if moving v from b to bi will violate the adja-
cency constraint for any of its edges, (e.g. Figure 7,
highlighted edge incident on vertex v3).

10.2 If the constraint is satisfied for all the edges, update
the location of v to <b i, vi>, (e.g. Figure 7, vertex v1).

The procedure is repeated for each of the mesh vertices.

The vertex relocation in E explicitly checks for flipped triangles.
Thanks to the adjacency condition, the mapping between the
base mesh and E is bijective. In this way, the mapping between
the meshes and the base domains is guaranteed to remain bijec-
tive after the smoothing.

The smoothing is repeated until the vertices no longer move or
until a fixed number of iterations is reached. The procedure re-
distributes the vertices between patches, straightening the patch
boundaries and significantly reducing the parametric distortion
(Figure 6). Since paths are no longer mapped to base mesh
edges, we no longer experience the artifacts resulting from map-
ping curved paths to straight lines.
The use of four base triangles for smoothing the mesh on the
interior triangle provides a flexible and robust parameterization
tool. Its impact is quite similar to the global parameterization
used by Khodakovsky et al. [2003]. However, using one local

parameterization at a time provides a significantly cheaper
means of achieving this effect compared to the global linear
solver used by Khodakovsky et al. The parameterization frame-
work introduced here is used in the following section to remesh
the models compatibly.

5 Compatible Remeshing

The cross-parameterization, computed in Section 4, is used to
generate compatible meshes for the input models. Existing com-
patible remeshing techniques are based on mesh overlaying or
subdivision connectivity construction. For complex models both
approaches tend to generate meshes that are an order of magni-
tude larger than the input meshes. We now describe a novel
remeshing algorithm that computes significantly more compact
compatible meshes.

The algorithm first remeshes the target model with the connec-
tivity of the source mesh. The algorithm uses the cross-
parameterization to map the vertices of the source mesh Ms to
the target model Mt, creating a mesh Mst with the same connec-
tivity as Ms. This yields compatible meshes for both models.
However the mesh Mst may be a very poor approximation of the
target geometry (Figure 8 (b)) in curved regions. The algorithm
than improves the geometry approximation by vertex relocation
and refinement. Since we want to minimize the final vertex
count, refinement is performed only when strictly necessary.

(a) (b) (c)

(d)

Figure 8: Compatible remeshing: (a) source mesh. (b) Mst after
initial projection. (c) Mst after smoothing. (d) final mesh (after

smoothing and refinement). There are no features on the camel
corresponding to the cow's ears (mapping the camel's ears to the

cow's horns provides a more natural morphing sequence).

The stages of the remeshing algorithm are as follows:
1. Compute the distance approximation error across the surface

(Section 5.1).
2. While error is above a given threshold:

2.1. Relocate the vertices of Mst on the target model using
a smoothing procedure (Section 5.2). Recompute the
distance approximation error.

2.2. Refine the meshes where necessary using edge splits
(Section 5.3).

3. Compute normal approximation error and perform “pseudo”
edge-flip refinement (Section 5.4).

All connectivity changes are applied to both Mst and Ms. Note
that, compared with regular remeshing, this procedure does not
remove mesh vertices or flip edges, since both vertex removals

 7

and edge flips can potentially distort the geometry of Ms. We
now describe each of the algorithm stages in more detail.

5.1 Error Computation

At each stage of the remeshing we need to measure the ap-
proximation error between the target model Mt and its approxi-
mation Mst. Such error is typically measured using a discrete
Hausdorff metric, which measures the distance from the vertices
of one surface to the other surface. In our case, the vertices of
Mst lie on Mt so the one-sided error is zero. We therefore need to
measure only the distance between the vertices of the target
mesh Mt and the approximation surface. Computing the exact
distance is very time consuming. Instead we use our parameteri-
zation to efficiently compute a tight upper bound. We define the
mapping F' between Ms and Mst by mapping each vertex of Ms to
the corresponding vertex of Mst and by using barycentric coordi-
nates inside each triangle. Note that F' is not identical to F, as it
is based only on the mapping of the vertices of Ms. The distance
error e(v) at each vertex v is defined as

))('()(1 vvFFve −= − (1)

To eliminate high frequencies and spread the error around a
larger region of the mesh, we apply Gaussian smoothing, aver-
aging the error at each vertex with that of the neighboring verti-
ces. The error inside each triangle of Mt is computed from the
vertex errors using barycentric coordinates. For any point p on
the new mesh Mst, we map p to the target mesh using F(F')-1 and
use the error at that location. The face coloring in Figure 8
shows the approximation error throughout the remeshing proce-
dure, with red denoting areas of higher error.

5.2 Adaptive Smoothing

The adaptive smoothing procedure modifies the parameteriza-
tion of Ms on the base mesh Bs. This modifies the mapping F and
as a consequence moves the vertices of the projected mesh Mst
along the target mesh Mt. We apply the same smoothing proce-
dure that was used for computing shape-preserving cross-
parameterization (Section 4.2). The only difference between the
two procedures is the choice of weights. The adaptive smoothing
algorithm assigns weights wuv to the edges (u,v) using the fol-
lowing formula.







 +

+
+

= 2/)
2

(
2

)()(vueveueeuv
 (2)

2/)(uvuvuv wew +=

The edge error euv is based on a combination of the error at the
end vertices and the midpoint of the edge (in curved regions, the
mid-point error can be high even if it is low at both ends). The
weight is the combination of the current error with the previous
weight. This choice of weights attracts vertices to areas of higher
error. The averaging with previous value of wuv is used to avoid
high weight fluctuations. The result is gradual mesh smoothing
which prevents vertices from jumping back and forth when the
error increases in one location and decreases in another.

Those weights are passed to the smoothing algorithm (Section
4.2) which computes the new mapping F. After each smoothing
iteration, the positions of the vertices of Mst are recomputed.
5.3 Refinement

Adaptive smoothing goes a long way towards accurately ap-
proximating the target mesh with the projected mesh Mst.
Clearly, however, if the target contains complex features not
available in the source model (e.g. the cow's ears in Figure 8),
they cannot be captured by the source connectivity. Therefore,
when smoothing alone can not approximate the geometry accu-
rately, the local mesh needs to be refined. This is done by per-
forming edge split operations. The refinement uses the same
error function euv (Equation 2) as the smoothing. An edge is
refined if

),),(max
2
1max('')'',(

εvuvuuv ee >

where ε is the user-defined approximation error threshold. We
found that refining only the edges with error larger than half of
the current maximal error provides sufficient approximation
accuracy without adding too many vertices to the final mesh.
When the computed error exceeds the current threshold, the
edge is split by placing a vertex at its mid-point. The split is
performed simultaneously on Mst and Ms, thus preserving the
mesh compatibility.

To avoid unnecessary refinement edge splitting is performed
only when smoothing alone no longer decreases the global error.

5.4 Pseudo Edge Flips

The smoothing and refinement loop of the remeshing algorithm
terminates when the approximation error at the vertices of Mt is
sufficiently low. Therefore, in terms of absolute distance be-
tween the surfaces, the approximation is sufficiently accurate.
However there can still be large deviation between the face
normals of Mt and Mst. This is a well-known problem in remesh-
ing and is typically resolved by edge flips. However, since the
meshes Ms and Mst have to remain compatible, an edge flip can
potentially distort the geometry of Ms. We detect the edges to be
flipped using a standard normal deviation test. For each such
edge we compute the midpoints of the flipped edge. Instead of
flipping the edge we split it, placing a new vertex at the com-
puted location. This operation reproduces the change in normals
achieved by a flip.

After all the flips are completed, we have two compatible
meshes describing the source and target geometries: the mesh Ms
is an exact replica of the source geometry; the projected mesh
Mst approximates the target geometry up to a user prescribed
tolerance. New meshes, providing visually acceptable morphing
and blending results, typically have about ten to twenty percent
more vertices than the source mesh (Table 2), compared to an
order of magnitude increase using previous methods.

(a) (b) (c) (d)

Figure 9: Mapping a coarse template mesh (a) to a fine target
geometry (b). The remeshing approximates David's detailed hair
starting from a coarse bold headed source. (c) Mst before remesh-

ing; (d) final mesh.

6 Experimental Results

 8

Figures 1, 9, 10, and 11 demonstrate the applications of the algo-
rithm. In Figure 9, a coarse source mesh (4K vertices) is used to
remesh a highly detailed target (20K vertices). The final connec-
tivity contains 6764 vertices and approximates the target model
with an L2 error of 0.13% (measured as a percentage of the
bounding box diagonal). This is well within the range of errors
computed by regular (non-compatible) remeshing methods. This
example demonstrates the method's ability to approximate dense
models accurately with a much coarser template mesh, providing
a generic alternative to template fitting methods such as [Allen
et al. 2003] which use techniques carefully tailored to a particu-
lar type of models.

Figure 10: Texture transfer from camel to horse.

Figure 10 demonstrates texture transfer performed using the
cross-parameterization. By texturing the compatible meshes the
texture can be used throughout a morphing sequence (Figure 1).

Figures 1 and 11 showcase the use of the computed compatible
meshes for blending and morphing. The three-sided blends of a
cow, rhinoceros and triceratops highlight the method’s ability to
simultaneously cross-parameterize and remesh multiple models.
The cup/teapot and feline/triceratops examples demonstrate the
method's ability to handle high genus models. The genus 2, fe-
line/triceratops example required 28 constrained vertices. The
examples include weighted local blends that paste parts of dif-
ferent models together. This feature is very useful for model
editing.

Some cross-parameterization statistics (before remeshing) are
shown in Table 1. The conformality is measured using the for-
mula introduced by [Sheffer and de Sturler 2000]. The L2 stretch
is measured as described in [Sander et al. 2001]. Note that ideal
L2 stretch is 1 while ideal EAng is 0. Clearly, the distortion is
highly dependent on the level of similarity between the models.
Note that the cross-parameterization uses mean-value coordi-
nates aimed at reducing angular distortion.

Table 1: Parameterization statistics.

Table 2: Remeshing statistics.

Table 2 shows remeshing statistics, including the L2 error com-
puted using e(v) (Equation 1) and the Peak Signal to Noise Ratio
(PSNR) derived from it. Note that e(v) approximates the Haus-

dorff metric from above. The algorithm takes about two minutes
to run on models of up to 10K triangles on a 3GHz Pentium IV.

7 Conclusions

In this paper, we have introduced new methods for computing
shape preserving cross-parameterizations and compatible
remeshing. The parameterization method is guaranteed to find a
bijective, feature-preserving parameterization for any set of
models. The smoothing mechanism we propose significantly
reduces the mapping distortion compared to other parameteriza-
tion methods. Our remeshing method generates compatible
meshes for both models with fewer vertices than previous meth-
ods while accurately approximating the input geometry.

Compared to previous techniques, this method is significantly
less dependent on the shape of the patches. However, visible
artifacts can still occur when patch vertices have very high va-
lence, requiring special care during feature selection. Our future
research will explore ways to alleviate this problem. Another
problem we plan to address is automatic selection of matching
features.

Acknowledgements

We would like to thank Stanford University, University of
Washington, and cyberware.com for providing the data-sets used
in this paper. Special thanks to Bruno Levy for drawing the
camel texture.

References

ALEXA, M. 2000 Merging Polyhedral Shapes with Scattered Features,

The Visual Computer 16, 26-37.

ALEXA, M. 2002. Recent Advances in Mesh Morphing. Computer
Graphics Forum, 21, 2, 173-196.

ALLEN, B., CURLESS, B., AND POPOVIĆ, Z., 2003. The space of human
body shapes: reconstruction and parameterization from range scans,
ACM Transactions on Graphics, 22, 3, 587-594.

BIERMANN, H., MARTIN, I., BERNARDINI, F., AND ZORIN, D. 2002. Cut-
and-paste Editing of Multiresolution Surfaces. ACM Transactions on
Graphics, 21, 3, 312-321.

DESBRUN, M., MEYER, M., AND ALLIEZ, P. 2002. Intrinsic Parameteriza-
tions of Surface Meshes. In Proceedings of Eurographics 2002,
Blackwell Publishing, Saarbrucken, G. Drettakis and H.-P. Seidel,
Eds., Computer Graphics forum, 21, 3, 210-218.

FLOATER, M.S. 2003. Mean-value coordinates. Computer Aided Geomet-
ric Design, 20, 19-27.

GOTSMAN, C., GU, X., AND SHEFFER, A., 2003. Fundamentals of spheri-
cal parameterization for 3D meshes. ACM Transactions on Graphics,
22, 3, 358-363.

KANAI, T., SUZUKI, K., AND KIMURA, F.,. 2000. Metamorphosis of arbi-
trary triangular meshes. IEEE Computer Graphics and Applications,
20(2):62-75.

KHODAKOVSKY, A., LITKE, N., SCHRÖDER, P., 2003, Globally smooth
parameterizations with low distortion. ACM Transactions on Graph-
ics, 22, 3, 350-357.

KRAEVOY, V., SHEFFER, AND A., GOTSMAN, C., 2003, Matchmaker:
constructing constrained texture maps. ACM Transactions on Graph-
ics, 22, 3, 326-333.

LEE, A., DOBKIN, D., SWELDENS, W., AND SCHRÖDER, P., 1999, Mul-
tiresolution Mesh Morphing. In Proceedings ACM SIGGRAPH 1999,
343-350.

Models (source/target) Input sizes(#v) # Feature vertices EAng L2 stretch
teapot/cup 6988/1725 25 0.12 0.05

head/David (Figure 9) 4000/20000 10 0.04 0.86
triceratops/rhinoceros 4000/3552 15 0.18 0.49

Models (source/target) Input sizes (#v) Output size L2 error (%) PSNR
camel/cow 2444/2904 3357 0.12% 58.4
teapot/cup 6988/1725 7114 0.14% 57.1

triceratops/rhinoceros/cow 4000/3552/2904 4541 0.13% 57.7
camel/horse 39074/3500 39740 0.016% 75.9

 9

LÉVY, B., PETITJEAN, S., RAY, N., AND MAILLOT, J. 2002. Least Squares
Conformal Maps for Automatic Texture Atlas Generation. ACM
Transactions on Graphics, 21, 3, 362-371.

LIN, J.L., CHUANG, J.H., LIN, C.C., AND CHEN, C.C., 2003, Consistent
parametrization by quinary subdivision for remeshing and mesh
metamorphosis, In Proceedings of the 1st international conference
on Computer graphics and interactive techniques in Austalasia and
South East Asia, 151-158.

MARSCHNER, S., GUENTER, B., AND RAGHUPATHY, S., 2000, Modeling
and Rendering for Realistic Facial Animation. Rendering Techniques
2000, 231-242.

T. MICHIKAWA, T. KANAI, M. FUJITA, H. CHIYOKURA, 2001. Multireso-
lution Interpolation Meshes, In Proc. 9th Pacific Graphics Interna-
tional Conference, IEEE CS Press, 60-69.

PRAUN, E., HOPPE, H., 2003, Spherical parametrization and remeshing.
ACM Transactions on Graphics 22, 3, 340-349.

PRAUN, E., SWELDENS, W., AND SCHRÖDER, P. 2001. Consistent Mesh
Parameterizations. In Proceedings of ACM SIGGRAPH 2001, E.
Fiume, Ed.., Computer Graphics Proceedings, Annual Conference
Proceedings, 179-184.

SANDER, P. V., SNYDER, J., GORTLER, S., AND HOPPE, H. 2001. Texture
Mapping Progressive Meshes. In Proceedings of ACM SIGGRAPH
2001, Computer Graphics Proceedings, Annual Conference Proceed-
ings, 409-416.

SCHREINER, J., PRAKASH, A., PRAUN, E., HOPPE, H., 2004, Inter-Surface
Mapping, ACM Transactions on Graphics, to appear.

SHEFFER, A., AND DE STURLER, E. 2000. Surface Parameterization for
Meshing by Triangulation Flattening. In Proceedings of the 9th In-
ternational Meshing Roundtable, 161-172.

Figure 11: Blending and morphing of different models. The numbers in the blends are the affine combination weights of each model.

+ =

.35× =.50× .15× + +

= .55× .45× +

.5× .5×+ =

