PARAMETERIZATION OF FACETED SURFACES FOR
MESHING USING ANGLE-BASED FLATTENING

A. Sheffer, E. de Sturler

Computational Science and Engineering Program,
University of lllinois at Urbana Champaign,
Urbana, IL, 61801 e-mail:sheffa@uiuc.edu, sturler@uiuc.edu

ABSTRACT

We propose a new method to compute planar triangulations of faceted surfaces for surface parameterization. In
contrast to previous approaches that define the flattening problem as a mapping of the three-dimensional node
locations to the plane, our method defines the flattening problem as a constrained optimization problem in terms
of angles (only). After applying a scaling that derives from the ’curvature’ at a node, we minimize the relative
deformation of the angles in the plane with respect to their counterparts in the three-dimensional surface. This
approach makes the method more stable and robust than previous approaches, which used node locations in their
formulations. The new method can handle any manifold surface for which a connected, valid, two-dimensional
parameterization exists, including surfaces with large curvature gradients. It does not require the boundary of the
flat two-dimensional domain to be predefined or convex. We use only the necessary and sufficient constraints for a
valid two-dimensional triangulation. As a result, the existence of a theoretical solution to the minimization procedure
is guaranteed.

Keywords: parameterization, triangulation, flattening

1 INTRODUCTION

Most algorithms for meshing of three-dimensional sur-
faces, with either quadrilateral or triangular elements,
are more efficient if a two-dimensional parameteriza-
tion of the surface is available. In fact, given a spac-
ing function which preserves the surface metric struc-
tures (lengths, angles, etc.), we can carry out the en-
tire mesh generation procedure in the two-dimensional
parametric domain and project the resulting mesh to
the three-dimensional surface. This makes the proce-
dure much more efficient. Moreover, we generally ob-
tain higher quality meshes if we use a two-dimensional
parametric domain, because better quality guarantees
exist for two-dimensional algorithms than for general
three-dimensional surface algorithms [1].

Another important use for surface parameterization is
anisotropic meshing (e.g. [2, 9]). The only way to pro-
vide a smooth control spacing function across a mesh
domain is by providing a proper domain parameteri-
zation. Unless the surface has an analytic description,
it does not have an inherent parameterization. Hence,
providing a two-dimensional surface parameterization
becomes an essential preprocessing step for anisotropic
meshing.

When meshing CAD models the analytic surface repre-
sentation can often be used to provide the parameter-
ization. However, analytic representation is not avail-
able when meshing composite surfaces, virtual topol-
ogy [16], or faceted models. For all of those models
we can provide an alternative surface representation
using a tessellation that describes the surface as an
unstructured triangular mesh. This description can

easily be generated for models from any source. It
can be used as the basis for the parameterization algo-
rithm described below. For parameterization purposes
the triangulation may be coarse and have lax quality
constraints.

A two-dimensional parameterization of faceted sur-
faces has many other applications. These applications
include texture mapping [6, 19, 8], surface reconstruc-
tion, multiresolutional analysis [3], formation of ship
hulls, generation of clothing patterns [12], and metal
forming.

An algorithm for two-dimensional parameterization of
tessellated surfaces first constructs a two-dimensional
mesh with a similar connectivity to the three-
dimensional surface. Then, a parametric function is
defined between the two-dimensional mesh facets and
their three-dimensional counterparts.

Multiple approaches for parameterization of tessel-
lated surfaces have been suggested. In [12] the authors
suggest a heuristic approach for triangulation flatten-
ing. The method is based on optimal local positioning
of projected nodes, based on a sequential addition of
the nodes. It is efficient and produces good results for
nearly planar surfaces. However, the method does not
guarantee the preservation of the metric structure of
the two-dimensional mesh or even its validity.

Eck et al. [3] suggest the use of harmonic maps
to generate the two-dimensional projection of the
three-dimensional mesh. The algorithm produces ap-
proximations of good quality, and provides an accu-
rate mapping function. A major disadvantage of the
method is that it requires the boundary of the two-
dimensional mesh to be predefined and convex. An-
other drawback is that the method does not guarantee
the validity of the resulting flat mesh (i.e. it can gen-
erate inverted elements).

Floater [5] describes a parameterization method that
computes the positions of the nodes in the flat mesh
using the solution of a linear system based on convex
combinations. Floater is the first, to our knowledge, to
formally define what types of surfaces can be parame-
terized and to provide a parameterization method that
is provably correct for any such surface. Similarly to
the algorithm in [3] the method requires the boundary
of the two-dimensional mesh domain to be predefined
and convex.

Marcum [10] introduces the use of finite-element tech-
niques to compute the locations of the flat mesh nodes.
The method computes the boundary as part of the so-
lution, using an iterative procedure where the bound-
ary and interior are recomputed in separate consecu-
tive steps. However, no validity guarantees are pro-
vided for the method.

A large amount of research on providing a parameteri-

zation for tessellated surfaces has been done in the con-
text of computer graphics, since parameterization is
required to generate non-distorted texture mappings.
Some papers like [6] provide a mapping to a sphere,
which is less useful in the context of mesh generation.
Zigelman et al. [19] provide a method for flattening
surfaces using multi-dimensional scaling. It computes
the two-dimensional domain boundaries as part of the
solution. The method does not guarantee the validity
of the resulting flat mesh. Levy and Mallet [8] suggest
a method that gives the user control on the spread of
the distortion across the flattened mesh. The method
uses some of the formulations introduced in [5], and as
a result has similar limitations.

Contribution

In [17] we presented a new method for parameteri-
zation of tessellated three-dimensional surfaces via a
mapping to a two-dimensional domain. The procedure
is based on the observation that for a triangular mesh
preserving the size of the angles on each of the faces
is sufficient to maintain the surface metric structures
up to a global scaling factor. Therefore, the method
defines the flattening problem in terms of angles. The
algorithm minimizes the relative deformation of the
angles in the plane with respect to their counterparts
in the three-dimensional surface, while satisfying a set
of constraints on the angles that ensure the validity of
the flat mesh. In order to account for the 'curvature’
at each node in the three-dimensional surface (the an-
gles around an interior node do not sum to 2m), we
apply a scaling to the angles in the three-dimensional
surface, and we measure the deformation relative to
these scaled angles. Our minimization problem is en-
tirely formulated in terms of the angles; the locations
of the mesh nodes do not play a role. Note that after
the angles have been computed, the two-dimensional
mesh is fully determined after fixing the position of one
interior node and the length and direction of one edge
connected to that node. This formulation does not re-
quire the two-dimensional boundary to be predefined
and does not place any restrictions on the boundary
shape or the surface curvature. At the same time the
solution method based on the formulation is provably
correct as shown below. The result of the procedure
is a valid two-dimensional mesh, which maintains the
original surface connectivity and minimizes the distor-
tion of the mesh angles resulting from the mapping to
a plane.

In this work we provide a more detailed description of
the method and address several aspects not handled
before. Those include: proof of convergence and va-
lidity of the resulting mesh; prevention of boundary
intersection; and application of the method to mesh-
ing of tree-dimensional surfaces. We provide several
examples of parameterization and surface meshing us-

ing the generated parameterization.

The main advantages of our method are that: (1) The
method provides a parameterization for any surface for
which a parameterization exists. (2) We prove that for
any such surface a solution to the optimization prob-
lem exists and that the numerical algorithm converges
to a solution. (3) The method guarantees that the
resulting parameterization is valid. (4) We compute
the boundary of the two-dimensional domain as part
of the projection procedure; we do not need to define
the boundary in advance. (5) The two-dimensional
domain can have any shape; specifically, it does not
have to be convex. (6) The robustness of the method
is not affected by the input mesh quality due to the
use of angles in the formulation. (7) The angle-based
optimization avoids the scale problems often associ-
ated with working on meshes with different feature
sizes, i.e. the tolerances and error measurements do
not need to be modified when different mesh element
sizes are used.

2 ALGORITHM

In order to preserve the surface metric structures (up
to a global scaling factor) of a triangular mesh it is suf-
ficient to maintain the sizes of the angles for each face.
Therefore, we formulate the mesh flattening problem
in terms of the flat mesh angles. The mapping to the
plane is computed through a constrained minimiza-
tion problem based on this formulation. The con-
straints are the necessary and sufficient requirements
for a valid two-dimensional mesh, and we minimize the
(relative) deviation of the angles from their optimal
two-dimensional projections.

Our procedure for surface parameterization for mesh-
ing has three stages.

1. Solve the constrained minimization problem (de-
fined below).

2. Check for intersections of the boundary. If a
boundary intersection is found, augment the con-
straints and solve the augmented minimization
problem again (starting with the current solution).

3. Compute the mesh spacing function based on the
ratios between the areas of triangles in the three-
dimensional surface and their counterparts in the
flat surface.

Using the parameterization a surface mesh is gener-
ated by first meshing the two-dimensional domain us-
ing the spacing function and then projecting the re-
sulting mesh to the three-dimensional surface.

We will now discuss each parameterization stage in
detail.

2.1 The Constrained Minimization Problem

This section consists of two parts. First we will define
the constrained minimization problem, and then we
will discuss its solution.

2.1.1 Definition of the Constrained Mini-
mization Problem

We use the following notation to define the objective
function to be minimized and the constraints. The
index ¢ always indicates faces, the index j indicates
angles inside a face, and the index k indicates nodes.

e fi,i =1...P, are the triangulation faces (either
in the flat mesh or in the original mesh, as will be
clear from the context).

e al,i=1...Pj =1,2,3, are the flat mesh an-
gles; the angles in a face are numbered counter-
clockwise in increasing order. The vector of all
angles is denoted a.

. zj,z =1...Pj =1,2,3, are the corresponding
original mesh angles.

e Ny, k=1...M, are the mesh nodes, where k =
1... M (< M) indexes the interior nodes.

. ag(k) is the angle in face f; at node Ny.

° ﬁf (®) is the angle in the original mesh correspond-

ing to ozg (k) .

In the following, we implicitly assume the obvious rela-
tions among the indices that derive from the connec-

tivity of the mesh. So when we write), ﬂf(k), the
index ¢ runs only over those faces that contain node
Nj,. The sum is therefore over all angles adjacent to
node Nj. The objective function (to be minimized) is
defined by

where (ﬁf is the optimal angle for ag in the two-
dimensional mesh, and the wf > 0 are weights. Our
standard initial choice for the weights is w} = (¢7)~2.

We derive the optimal angles ¢ from the angles ,Bf
by computing a scaling factor per node:

) 6J(k) 27r.
ARSI
ﬂf(k), Ny is a boundary node,

2)

Ny is an interior node,

where N}, is the mesh node to which the face f; is
attached at the corner j. Since the input mesh is sup-
posed to be valid, we assume that

Bi>e, >0, (3)

where €7 is an arbitrarily small (input) parameter.

The following constraints are necessary and sufficient

to ensure that the resulting mesh is valid.

1) g =al>e>0fori=1...Pj=1...3,
and some €5 > 0 ;

(2) 9§2)Ea%+af+az3—7r:0, fori=1...P;
@) 91(93) =), aif(k) — 21 =0, for Ni: k =

1...M;n; (interior nodes);
I1; sin Qi)+t
(4) 91(;1) EW—lzo,forNk: k=

1... M, where j(k) +1=1if j(k) =3 and
j(k)—1=3if j(k) = 1. The symbol IT indicates
the product of its arguments.

The precise meaning of the variable €2 will be made
clear in Section 3. We note that our constraints do not
avoid potential crossing of the boundary edges. We
discuss our solution to this potential problem in Sub-
section 2.2. The first two constraints deal with the
validity of individual faces. Constraint (1) maintains
the orientation of a face (up or down) with respect
to the mesh, and (2) ensures that each face is valid.
Constraints (3) and (4) are necessary to ensure the
topological validity of the mesh, because the connec-
tivity of the mesh is not an explicit constraint.

To explain this we introduce the following terminology.
We define the wheel associated with an interior node
as the set of all faces that share this interior node.
We refer to the edges in the wheel connected to the
interior node as the spokes.

Constraint (3) guarantees that after fixing the position
of an interior node and the direction of one spoke, go-
ing over all spokes in counterclockwise order around
the wheel, all shared edges (spokes) of neighboring
faces coincide. Constraint (4) guarantees that after
fixing the length of one (arbitrary) spoke, going over
all spokes in counterclockwise order around the wheel,
that the length of the last spoke (coinciding with the
first) agrees with the length of the first spoke. Note
that, since we only compute angles, the lengths of the
intermediate spokes can be made to agree by stretch-
ing or shrinking the faces appropriately. So we only
need one constraint. Going over all interior nodes, it
is easy to see that the interior of the mesh is valid.
The necessity of the third constraint is obvious. The
necessity of the fourth constraint is best illustrated by

Figure 1, where the constraint is violated. Since the
connectivity of the mesh is not explicit in the compu-
tation of the angles of all faces, we must make sure
that the (arbitrarily chosen) first face in a wheel and
the last face agree on the length of the shared edge.

The fourth constraint is derived as follows. Consider
an interior node as shown in Figure 1, and assume we
fix the edge length [;. Now from the angles a} and
a? in face fi we can compute I using the relation

l1 sin a%
= = . 4
Iy sinal (4)

Using Iy and the angles a3 and a3 in face fo we can
compute I3 to obtain an equation analogous to (4)

N
s _ sinaj

(5)

Is ~ sinal’
Combining (4) and (5) we can relate I3 to Iy

ll ll l2 sin a% sin ag

(6)

l3 lz l3 sin Oé} sin a%)

Applying (4) for each face as we go in counterclockwise
direction around the wheel, we can compute l4, I5, . ..,
7. However, for the mesh to be valid we need Iy = 1.
Using an equation analogous to (6) to relate l7 to [y
we get

L L I l¢ sina? sina? sin o2
1 2 6

A P I; sinal sinal sin a} ’
1 2 6

(7)

which demonstrates the necessity of our fourth con-
straint.

2.1.2 Solution of the Constrained Mini-
mization Problem

We solve the constrained minimization problem as fol-
lows. As argued in Section 3, for any valid input to
our algorithm a valid planar mesh exists. Since the
optimal angles ¢] are strictly positive and our objec-
tive function measures the relative distance between
the angles o and the optimal angles ¢!, we may
prevent the algorithm from making angles too small
by increasing the weight in the objective function for
those angles rather than explicitly preventing the algo-
rithm from moving outside the feasible set. This cor-
responds to a change in the norm that measures the

Figure 1. Incompatibility of edge length in a wheel.

distance to our optimal angles. Moreover, because of
their simple form, the inequality constraints are very
easy to check. Therefore, we formulate the optimiza-
tion problem without explicitly taking the inequality
constraints into account. If the optimization algorithm
makes a certain angle too small we reject the iterate,
adjust the weight of that angle, and continue.

We use a standard Lagrange multiplier formulation
for the optimization problem with the equality con-
straints. The auxiliary objective function then be-
comes

P Mint Miny
Fa)+> Mg @)+ g @)+ > vrgl? ().
=1 k=1 k=1

(8)
We use Newton’s method to solve for a stationary
point of the auxiliary function that satisfies the equal-
ity constraints. We modify Newton’s method as in-
dicated above to make sure we satisfy the inequality
constraints. In most of our examples Newton’s method
converges in a few iterations and we do not need to
adapt the weights. Although more analysis is needed
we conjecture this happens for the following reasons.
(1) The equations are linear, apart from those derived
from constraint (4). (2) We start with the optimal
angles as an initial guess, which is close to the so-
lution. The sparse linear systems of equations that
arise in Newton’s method are solved by a precondi-
tioned iterative solver. We use either GMRES(m) [14]
or BiCGSTAB [18]; as preconditioner we use Saad’s
ILUT preconditioner [13]. The results provided in Ta-
ble 1 were computed using BiCGSTAB.

2.1.3 Node Placement

After the algorithm computes the angles of the pro-
jected mesh, we compute the placement of the mesh
nodes on the z = 0 plane. As stated earlier the an-

gles of a two-dimensional mesh define the mesh up to
a linear transformation (translation, rotation or scal-
ing). Hence, by placing the end nodes of a single mesh
edge in the plane, we fully define the placement of the
other nodes, based on the mesh angles.

The procedure is done as follows.

e Choose a mesh edge e' = (N}, N}).
e Project N} to (0,0,0).

e Project N} to (||e']|,0,0).

e Push e! on the stack S.

e While S not empty, pop an edge e = (N,, V).
For each face f; = (N,, Ny, N..) containing e:

— If f; is marked as set continue.

— If N, is not yet projected to the z = 0 plane,
compute it’s position based on N,, Ny and the
face angles a}, af and af.

— Mark f; as set, push (N,, N;) and (Np, N.)
on the stack.

The node placement gives us the parameterization of
the three-dimensional surface.

2.2 Preventing Boundary Intersections

The set of constraints defined in Section 2.1.1 guaran-
tees the validity of the flat mesh at any interior node.
However it does not prevent the flat surface from gen-
erating self-intersections at the boundary. It is also
very difficult, if at all possible, to predict in advance
when the basic flattening procedure described above
will lead to self intersections. Hence in this work we
take the approach of handling self-intersections as a
post-processing step. A flat surface mesh is generated
and then tested for self intersections, by checking in-
tersections of boundary edges.

If an intersection exists the following procedure is per-
formed (Figure 2).

e Given the two intersecting edges e! = (N,, Np)
and €2 = (N, Ny), find a list of nodes forming the
interior loop of the intersection N}', N7, ..., N/
where Nll = Ny, NJ" = N. (N, and Ny are out-
side the loop).

e For each concave node IN; on this loop compute
a new angle 6; such that using those angles the
intersection will no longer occur. The computation
of 6; is explained below.

o Add to the system of equations above an additional
constraint 91(5) for each concave node IN:

Figure 2. Intersection boundary.

gl(5) = Zaf:(l) —-6,=0

(In Figure 2 this means adding a constraint for all
the loop nodes except N;').

e Solve the combined constrained system of equa-
tions using the previous solution as the initial guess
for the solver.

Figure 3. Zoom-in on the intersecting edges. Note
that the choice of 7 should try to anticipate the in-
tersection of ¢ and e*.

The angle 6, is computed so as to remove the point of
intersection between the intersecting edges e! and e?.
This can be done by reducing the intersection angle
T between the edges (Figure 3) to angle 7. To avoid
the intersection of the edges it is sufficient to define 7
less than the minimum of Z((Ny, N,), (N, N,)) and
Z((N¢, Ng), (N, Ng)) (Figure 3). However, this does
not prevent an intersection to occur between another
pair of edges on two sides of e! and e?. A conser-
vative approach is to make 7 equal zero, i.e. make
the two edges parallel. This makes the intersection
between the adjacent edges (e and e* in Figure 3)
very unlikely, but can lead to unnecessary distortion
(Figure 4(d)). An intermediate value can be based

on the trade-off between distortion and the number of
iterations necessary to fix intersections.

The desired 7 is achieved by setting #; for each concave
N on the interior loop to:

9,=Zaf(l)*(1—c)+w*c
i

where

T—T

Lr-Y,@2r -3,y

c

L is the number of concave nodes in the loop, El goes
over those nodes and the ag @

N in the current solution.

are the angles at nodes

To avoid all boundary intersections it may be neces-
sary to repeat the procedure more than once. And
theoretically avoiding an intersection in one part of the
model may generate an intersection in another place.
In practice intersections are very rare and a single iter-
ation with additional constraints is sufficient if they do
occur. Examples of intersection treatment are shown
in Figures 4 and 5.

2.3 Spacing Function and Surface Meshing

After a flat triangulation has been generated, the
surface can be meshed by first meshing the two-
dimensional flat domain and then projecting the mesh
back to the original surface. Since the flattening pro-
cedure causes some mesh distortion, a spacing function
has to be used when generating the two-dimensional
mesh to account for the distortion.

Since the parameterization procedure presented above
minimizes the deformation of the angles, the main pur-
pose of the spacing function is to preserve area. Hence,
we can use an isotropic spacing. The spacing function
S is computed as follows.

e For each f;, ¢ = 1...P compute the distortion

ratio as R; = 1/%2282;, the ratio of the face
area in the flat mesh to the area of the face in the
original surface.

e For each Ny, k = 1...M compute the distor-
tion ratio at the node Ry, as the average of face
distortions at it.

e Now we can compute the spacing function at each
point p in the domain. For each point p we locate
the mesh triangle f; = (N, Ny, N¢) it belongs

(c)

(d)

Figure 4. Flattening of a spiral surface. (a) Original surface. (b) Initial flattening (no intersection prevention).
(c) Preventing intersection by enforcing the original intersecting edges to be parallel. (d) Preventing intersection
by moving the intersection point beyond the length of the two edges.

to. We compute S(p) using the barycentric coor-
dinates of pin f;. For p = Nyu+ Nyv+ N.w, u+
v+w =1 weset S(p) = Ry,u+ Ry,v+ Ry w.

This spacing function scaled by the desired mesh size
is then used as an argument to a two-dimensional mesh
generator. In our examples we used the triangulation
code described in [9].

Due to the use of the spacing function when generating
the two-dimensional mesh, the final surface mesh has
a uniform spacing. If a non uniform spacing is desired,
the two spacing functions can be combined to achieve
the desired mesh.

An additional feature added to the meshing procedure
is preservation of significant surface mesh features.
This is achieved by explicitly adding the surface nodes
that have very high curvature to the mesh node set.
For this purpose we define the (discrete) curvature at
node N, as

>, 8%

Ci 2

The (discrete) curvature measures the deviation of the

sum of the angles at an interior node in the surface
from the sum of the corresponding angles in the plane.
In the surface meshes in Figure 6 the tips of the cat’s
ears are preserved this way.

3 PROOF OF ALGORITHMIC
CORRECTNESS

To define the input to the algorithm and prove the
existence of a solution to the constrained minimiza-
tion problem defined above, we use the following stan-
dard definitions from graph theory [11]. A (simple)
graph is defined as G = (V, E) where V = {i : i =
1...M?} are the graph nodes and E the graph edges.
E = {(i,5),% # j}is a subset of all unordered pairs
of nodes.

A planar embedding of a graph G is defined as follows:
e each node 4 is mapped to a point in R?,

e ecach edge (i,j) is mapped to a curve whose end-
points are ¢ and j,

o the only intersections between curves are at the
common endpoints.

S

e
Ry

TG
N TNB ey
AVl SN
DR

7>

s
N
N

R

SN TSR,
QH\W%un(é\;é - U

Y
I [\
’é‘ésv
L7

N
X

—
< ~]
(AN

v
o

W/

u
1!
sr

:Z
<
;gb.
Y
7

(d)

Figure 5. Flattening a rabit model. (a) Full model. (b) The surface of half a rabit being flattened. (c) Initial
flattening (no intersection prevention). The model intersects near the front leg. (d) Final flattening, with no

intersections.

A graph G is said to be planar if it has a planar em-
bedding.

A surface triangulation [5] S = S(G,X) is an em-
bedding in R? of a triangulated planar graph G, with
node set X = {z; : #; € R®,i = 1... M}, with
straight lines for edges and triangular facets for faces.

We require the input to our algorithm to be a sur-
face triangulation. Intuitively, a three-dimensional
triangular surface mesh is a surface triangulation if
it is manifold, has a single boundary loop and has
no tunnels. Figure 7 shows a surface mesh which is
not a surface triangulation. By definition if a trian-
gular surface mesh is not a surface triangulation, it
does not have a valid two-dimensional parameteriza-
tion, since a parameterization is a planar embedding.

In fact as mentioned in the previous section, we allow
the introduction of input meshes which have more than
one boundary loop, allowing a single outside bound-
ary and multiple interior boundary loops. In such a
case, the interior loops are triangulated by connect-
ing their boundary nodes prior to starting the mini-
mization procedure (e.g. Figure 10(b)). However, if
the (straightforward) triangulation of an interior loop
produces an invalid surface mesh, the algorithm will

Figure 7. A manifold surface with a single boundary
loop, which is not a surface triangulation.

fail. A more robust approach to triangulating interior
loops is an area of further research.

Fary’s Theorem [4] states that every planar graph has
an embedding in R? in which all edges are straight
line segments. This means that for every valid input
to our algorithm a valid flat triangulation exists. Since
our constraints for a valid triangulation are necessary
and sufficient, the solution space for the minimization
procedure is not empty.

Next, we want to show that our objective function
has at least one local minimum on the closure of the

A
RS
e
AN
A

Nedl
Vﬂé‘é‘#’ﬂ(h
"

N

s}\

i

(f)

Figure 6. Remeshing a cat head model. (a) Complete model (b) The head (256 elements). (c) Flat parameter-
ization. (d) (e) Coarse remeshing: (d) mesh in parameter space, (e) surface mesh with 53 elements. (Note that
the extreme points at the ears are preserved). (f) Medium size surface mesh (118 elements).

AN

b
%‘Vé

KK
oo
oS
N

A
R

E‘
=

Figure 8. Remeshing a 3 ball model. (a) Original surface (1032 elements). (b) Flat parameterization. (d) (e)
Remeshing: (d) mesh in parameter space, (e) surface mesh with 279 elements.

constrained set. If the nonlinear function is smooth,
globally convergent extensions of Newton’s method are
guaranteed to find a solution [7]. Hence, demonstrat-
ing the smoothness properties will conclude our proof.
Rather than giving a formal proof we will only give an
outline. The outline will also highlight the theoretical
importance of our set of weights w; .

We denote the set of all vectors o that satisfy con-
straints o > 0, (2), (3), and (4) as Q. Further-
more, we denote the set of all vectors a that satisfy
constraints (1), (2), (3), and (4) as {2,, Where the
subscript indicates the dependence on the parameter
€. If no singularities exist (see below), the set ()
is bounded and open. The set (), is bounded and

closed. We want to show that €0 > 0 exists such that
¢, contains a continuous and differentiable surface.
From Fary’s Theorem [4] we know that a vector (of
angles) w € () exists that satisfies our constraints.
So w represents a valid planar mesh with the same
structure/topology as the three-dimensional triangu-
lated surface represented by 3. From the geometry of
the two-dimensional mesh it is clear that there exists
a neighborhood of w that satisfies all our constraints.
This neighborhood represents all small perturbations
of the mesh nodes that maintain the validity of the
mesh. From this heuristic argument we may infer that
the gradients of the constraints (4)

Vg,(f)(a), for k=1, ... My,

are never dependent with the gradients of the linear
equality constraints (2) and (3). So we have no singu-
larities, where the surfaces defined by these constraints
touch. Now we choose an arbitrarily small value €2

such that 1min(w!) > &2 > 0. Therefore some

i
neighborhood of w exists that is a subset of {2, and
that is continuous and differentiable. We denote this

surface by S,. Note that the gradients of the func-
tions g,(f) and g,(cs) are constant and non-zero, that

(4)

the gradients of the functions g, * are differentiable

and continuous, as long as] > &2 > 0 for all i, j,
and that the gradients of g,(f) never vanish. Now from
continuity we can extend S, until either it crosses the

boundary «; ; = €2 or it closes. Note that Sw C Qe,

is a bounded set, since we have g9 < ag < T —e¢g,
for all 4, j. Concluding, if no singularities occur, S, is
a bounded, closed set in a finite dimensional normed
space (we may assume any norm) and therefore it is
compact. Clearly our objective function is continuous
and so it assumes a minimum (and a maximum) on
Su C Qe,. It is easily verified that the gradient of our
auxiliary objective function is continuous and differen-
tiable as long as ag > 0. If necessary, we adaptively

choose a set of weights wf such that the auxiliary ob-
jective function has a stationary point that satisfies
the constraints (1). Then, globally convergent exten-
sions of Newton’s method [7] are guaranteed to find
the solution. Finally, note that our standard initial
choice of w] = (¢7)~2 puts the vector ¢ at equal
distances to the boundaries defined by the constraints
(1). This makes it very unlikely that the Newton algo-
rithm tries to approximate a stationary point outside
this domain.

JAVAVAVAVAVAVAVAVAVAVAVA!
§$AVAVAVAVAVAVAVAVAVAVAVAVA
R VAVAVAVAVANFAVAVAVAVAVAN Sy
AV YAVAVAVAVAVAVAVAVAVAVAVARS
S VAVAYAVAVAVAVAVAVAVAVAVSAV.
KOOO0OLLORERER
VAVAVAVAVAVAVAVAYAVAVAVAVAVAVASI

(b)

Figure 9. Flat triangulation of nearly developable
surface. (a) Original model. (b) Flat triangulation.

4 EXAMPLES

Throughout the paper the flattening procedure is
demonstrated on several examples of varying complex-
ity. The examples properties are summarized in Table
1. To measure the distortion of the flat surface with
regard to the original mesh we use F'(a) (Equation 1)

with the weights w;] set to the initial algorithm choice
of (¢1)2.

Figures 9 and 10 show relatively simple meshes with
few elements. Figure 9 shows the flattening of a nearly
developable surface. It demonstrates the distortion
minimization property where the resulting flat sur-
face has near zero distortion compared to the original
three-dimensional surface. In Figure 10 we demon-
strate the method’s ability to handle surfaces with in-
terior holes, and significant variation in element sizes.

In Figure 6 we show a model of a cat’s head (cut
around the neck). The model is quite complex and
has a large overall curvature, hence the distortion is
relatively high. Figure 8 displays a surface build from
three spheres positioned at 120° around a joint axis.
The surface is cut at about a quarter of the diameter

Model Num.Runtime Num. Distortion

faces (sec.) iterations F'(a)

Spiral 68 0.3 5 0.022
() (de6)

Rabbit 380 108 10 31.28
(6) 29.9

Cat 257 10 4 21

3 Balls 1032 158 4 36.118

Folded Plane 280 3 2 Se-4

Face 472 21 3 2.36

Table 1. Flattening examples data. The numbers in
brackets for the spiral and rabbit examples represent
the values of the first solution iteration (before the
intersection prevention).

up from the sphere base, to create a surface which can
be parameterized. The surface mesh is highly non-
smooth with high local curvature changes and with
multiple sliver triangles, but despite this the param-
eterization converges in a small number of iterations
and provides good results. This model is about four
times larger than the cat model. Despite the increase
in model size, the number of Newton iterations re-
quired to obtain a solution does not increase. The in-
crease in solution time (roughly a factor of fifteen) is
the result of a linear increase in the cost of the matrix-
vector product and an increase in the number of iter-
ations in the linear solver.

Figures 4 and 5 show examples, where the initial pa-
rameterization resulted in boundary intersections, and
an additional intersection removal step was required.
The rabbit model in Figure 5 consists of half of the
original closed and symmetric model. The model con-
tains a region of very high curvature near the rabbit’s
ear. This produces a relatively high distortion in this
region during parameterization. A possible way to dis-
perse this type of local distortion throughout a larger
region is by adopting the weights at the mesh angles,
increasing the weight near nodes with high curvature.

5 SUMMARY

We have proposed a new method for computing a sur-
face parameterization that can be used for generating
three-dimensional surface meshes and for several other
purposes. We have discussed the properties and un-
derlying theory of our algorithm. Our method can be
applied to more general problems than other methods,

has fewer restrictions, and does not require the user to
predefine boundaries. The method is based on mini-
mizing the (relative) distortion of the mesh angles in
each face subject to the necessary and sufficient condi-
tions of a valid two-dimensional mesh. In our examples
we demonstrate that the proposed method is capable
of generating good parameterizations of highly com-
plex surfaces in a modest amount of time.

Although we must solve a nonlinear system of equa-
tions, in practice the work involved is modest. For all
our test cases convergence seemed to be very fast. The
convergence seems loosely dependent on the curvature
and complexity of the three-dimensional mesh, which
is to be expected.

The efficiency of the current implementation can be
further improved in a number of ways. This will be
especially useful when handling larger meshes (tens
of thousands of elements). First, we do not need to
recompute the entire Jacobian, since the part that
derives from the linear constraints is constant. Sec-
ond, as part of the Jacobian is constant, we only need
to update the preconditioner for those rows that are
changed. This can be done easily if we order the rows
of the Jacobian so that the rows that change come
last. The computation of a good preconditioner ac-
counts for a significant part of the computational cost.
So, we expect this will make a large difference in run-
time. Third, the various parts of the solution algo-
rithm, especially the convergence tolerances, should
be tuned better for overall performance. For example,
we currently solve the linear systems in each Newton
iteration to high relative accuracy. High accuracy is
unnecessary in the initial Newton iterations. Reduc-
ing the tolerance in the initial iterations may therefore
reduce costs without affecting convergence.

Another area of future research is parameterization
of very large models. For models with hundreds of
thousands of elements, solving the flattening problem
directly as an optimization problem may be too expen-
sive. For such surfaces a mesh simplification procedure
has to be used first to produce a mesh with fewer ele-
ments. The parameterization obtained for the simpli-
fied mesh, can then be adjusted to handle the original.

An interesting research issue raised by this research
is automatic surface subdivision to facilitate low-
distortion parameterization. Subdivision has to be
used to parameterize closed surfaces or other surfaces
which are not surface triangulations as defined in
Section 3. It can also improve parameterization of
highly distorted surfaces like the rabbit model in Fig-
ure 5. Subdivision methods similar to [15] can be used,
but they need to be adopted to follow parameteriza-
tion based subdivision criteria.

SIS
RN
KRS

PSSOl

AV et
>

Ny

(c)

Figure 10. Flat triangulation of surface with holes.
(a) The original model. (b) Model with the additional
triangles filling the holes. (c) Flat triangulation of the
model.

6 ACKNOWLEDGMENTS

The work reported here was supported, in part, by the
Center for Process Simulation and Design (NSF DMS
98-73945) and the Center for Simulation of Advanced
Rockets (DOE LLNL B341494).

[1]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

REFERENCES

M. Bern and D. Eppstein. ”Quadrilateral Mesh-
ing by Circle Packing”. 6th International
Meshing Roundtable, pages 7-19, 1997.

H. Borouchaki and P. J. Frey. ”Adap-
tive Triangular-Quadrilateral Mesh Genera-
tion”. International Journal of Numerical
Methods in Engineering, 41:915-934, 1998.

M. Eck, T. DeRose, T. Duchamp, H. Hoppe,
M. Lounsbery, and W. Stuetzle. ”Multiresolu-
tion Analysis of Arbitrary Meshes”. Computer
Graphics (Annual Conference Series, 1995.
SIGGRAPH ’95), pages 173-182, 1995.

I. Fary. ”On the Straight Line Representations
of Planar Graphs”. Acta Sci. Math., 11:229—
233, 1948.

M. S. Floater. ”Parametrization and Smooth
Approximation of Surface Triangulations”.
Computer Aided Geometric Design, 14:231—
250, 1997.

S. Haker, S. Angenent, A. Tannenbaum, R.. Kiki-
nis, G. Sapiro, and M. Halle. ”Conformal Sur-
face Parameterization for Texture Mapping”.
IEEE Transactions on Visualization and
Computer Graphics, 6 (2):181-189, 2000.

Jr J. E. Dennis and R. E. Schnabel. Numer-
ical Methods for Unconstrained Optimiza-
tion and Nonlinear FEquations. SIAMpub,
Philadelphia, PA 19103-5052, USA, 1996.

B. Levi and J.L. Mallet. ”Non-distorted Texture
Mapping for Sheared Triangulated Meshes”.
Proc. SIGGRAPH 1998, pages 343-352, 1998.

X. Y. Li, S. H. Teng, and A. I"Jngiir. " Biting
Ellipses to Generate Anisotropic Mesh”. &th
International Meshing Roundtable, pages 97—
108, 1999.

D. L. Marcum and J. A. Gaiter. ”Unstructured
Surface Grid Generation Using Global Mapping
and Physical Space Approximation”. 8th Inter-
national Meshing Roundtable, pages 397-406,
1999.

C. W. Marshall. Applied Graph Theory. Wi-
ley, New-York, 1971.

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

J. McCartney, B. K. Hinds, and B. L. Seow.
”The Flattening of Triangulated Surfaces Incor-
porating Darts and Gussets”. Computer-Aided
Design (CAD), 31:249-260, 1999.

Y. Saad. ”"ILUT: a dual threshold incomplete
ILU factorization”. Numerical Linear Algebra
and Applications, 1:387-402, 1994.

Y. Saad and M. Schultz. "GMRES: A Gener-
alized Minimal Residual Algorithm for Solving
Nonsymmetric Linear Systems”. SIAM Jour-
nal on Scientific and Statistical Computing,
7:856-869, 1986.

A. Sheffer. ”Model Simplification for Meshing
Using Face Clustering”. To appear in Com-
puter Aided Design (CAD), 2000.

A. Sheffer, T. D. Blacker, and M. Bercovier.
”Virtual Topology Operators for Meshing”. In-
ternational Journal of Computational Geom-
etry and Applications, 10(2), 2000.

A. Sheffer and E. de Sturler. ”Parameterization
of CAD Surfaces for Meshing by Triangulation
Flattening”. Proc. 7th International Confer-
ence on Numerical Grid Generation in Com-
putational Field Simulations, pages 699-708,
2000.

H. A. Van der Vorst. "BI-CGSTAB: A Fast
and Smoothly Converging Variant of BI-CG for
the Solution of Nonsymmetric Linear Systems”.
SIAM Journal on Scientific and Statistical
Computing, 13:631-644, 1992.

G. Zigelman, R. Kimmel, and N. Kiryati. ”Tex-
ture Mapping Using Surface Flattening Via
Multi-Dimensional Scaling”. CIS report CIS-
2000-01, submitted to IEEE Trans. on Visu-
alization and Computer Graphics, 2000.

