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Abstract

In this work a new method for surface reconstruction is introduced,
which simplifies the original object mesh and then builds a smooth
surface on top of it. It handles original models containing free-form
faces, and 1s not restricted to initial triangular or polygonal faces. The
method is illustrated by building of several free form surfaces from an
arbitrary topology mesh.
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1 Introduction

Manipulation and display of geometric objects are the two most common
operations in graphics and geometric modeling. These operations become
cumbersome and time-consuming when the number of faces used to model
the objects increases, as is common in many applications. Often, the large
number of faces does not reflect the real object complexity, but is the result of
the algorithms used to construct their shapes. For example, most algorithms
for creating polyhedral surfaces from data sampled on a regular 3D grid
produce meshes with a large number of small faces. Similar problems are
encountered in data reconstruction from laser range scanners.

Model simplification methods seek to produce smaller models by creating
representations with as few faces as possible while maintaining the object
topology and deviating as little as possible from the original model geometry.
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Construction of a smooth surface based on the nodal faceted representation
is often a necessary step for both model analysis and display.

In this work a new method for surface reconstruction is introduced, which
simplifies the original object mesh and then builds a smooth surface on top
of it. The proposed algorithm produces a smooth surface and maintains
the object topology. Due to the subdivision into limited curvature regions,
the energy functional is stabilized and the result provide a smoother sur-
face. It constructs a quadrilateral simplified mesh which is more suitable
for analysis; it handles original models containing free-form faces, and is not
restricted to initial triangular or polygonal faces; thanks to the use of finite
element techniques complex surface structures including non-manifold can
be treated; the deviation of the reconstructed surface from the original can
be estimated and bounded. This method is most suitable for CAD/CAM
and FEA (finite element analysis) applications.

2 Previous Work

As noted by Eck [5]: “The difficulty of dealing with complicated models is
evident by the extensive recent research on the topic”.

Many works on mesh simplification were written in the context of fast
rendering and display of polygonal models (e.g. [6], [9]). Those works pro-
vide algorithms that are both very fast and allow big reduction in the number
of elements used. However such methods are usually not applicable for CAD
purposes since the original model topology is not preserved. Those meth-
ods produce a triangular description of the models which is not suitable for
analysis and most CAD/CAM systems.

Several methods for mesh simplification and reconstruction are based
on the topology of the original mesh. For example, Turk [16] proposes a
method in which polygonal surfaces are “re-tiled” by triangulating a new set
of vertices that replaces the original one using mutual tessellation. Schmitt
[13] uses a top-down approach to simplify a regular rectangular mesh by
refining an approximation mesh of piecewise patches until it is within a
given error bound of the original mesh. Kalvin and Taylor [8] present a
domain-independent method for simplifying polygonal meshes based on a
bounded approximation criterion which produces a simplified mesh within
a prescribed error-bound from the original and uses a subset of the original
mesh vertices. These topology-based methods are restricted to polygonal
meshes and some like Turk restrict themselves to triangular meshes only.



Such algorithms are relatively fast but are very dependent on the initial
mesh. Another disadvantage of this type of algorithms is that they do not
solve some of the intersection problems that arise during re-meshing which
in some cases might result in self-intersecting models, starting from a valid
original model.

A different type of algorithms tries to capture physical properties of the
mesh using different energy functionals. This approach was introduced in
Hoppe [7], where an energy based mesh optimization method was suggested.
In Eck and Hoppe [4] a method for reconstructing a G* surface was pre-
sented. The method uses a subdivision method for constructing the smooth
surface from the quadrilateral mesh (Peters [12]). To achieve the desired
tolerance, a special reconstruction procedure was used. In the first stage of
the algorithm, the construction of the quadrilateral mesh, a big reduction
in the number of elements can be achieved, however due to the subdivision
method used for the surface construction the number of elements is at least
quadrupled to achieve the desired smoothness.

Those algorithms result in much smoother and better meshes, but many
of these require non-linear optimization and all take much more time than
the simpler methods mentioned above. These methods use global energy
functionals which are sensitive to small areas of high curvature deviation,
which can cause global disturbances.

Non of the methods above addresses the issues of initial non-linear sur-
faces or non-manifold topology.

3 Algorithm overview

In this work an algorithm that combines the advantages of both approaches
is presented. The method simplifies the original object mesh and then builds
a smooth surface on top of it. The proposed algorithm produces a smooth
surface and maintains the object topology. Due to the subdivision into
limited curvature regions, the energy functional is stabilized and the result
provide a smoother surface.

The main stages of the algorithm are:

1. Subdivision of the surface into restricted curvature deviation regions,
using a topology based method with a bounded error. The regions
are constructed based on clustering of the original mesh faces. (Figure

1(a) to (b))



2. Generation of a boundary conforming finite element quadrilateral mesh
of the regions. The element size for meshing is given as a parameter
of the final number of elements and the deviation tolerance. (Figure

1(c))

3. Construction of a smooth surface over the quadrilateral mesh using
the plate energy method. Inter-patch approximation of G' continuity
constraints are added to achieve the desired smoothness. (Figure 1(d))

The stages are explained in detail in the following sections and demon-
strated in figure 1.
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Figure 1: The stages of the surface reconstruction demonstrated on a simple
spinning top example. (a) Original model (containing linear triangle and
quad elements). (b) Subdivision into regions. (¢) Quadrilateral mesh of the
model regions (d) The reconstructed smooth surface.

4 Regions construction

The first step of the model simplification is the subdivision of the initial
surface S into simple regions of restricted distance and curvature deviation.



The subdivision is based on clustering of planar facets into maximal
clusters with topological connectivity, maintaining a set of user-controlled
constraints. When the model contains only planar faces, the clustering al-
gorithm is applied directly on the model, with the resulting clusters defining
the subdivision regions. When the model contains non-planar faces, they
are approximated using a tolerance based linear faceting to simplify the sur-
face analysis. The clustering is then applied on the resulting facets, and an
additional analysis stage is performed to group the original faces based on
the facets clusters.

In both cases the faces of each region are then merged into a single topo-
logical virtual face using the virtual B-Rep [14], allowing mesh generation
over the region as a single surface.

4.1 Clustering

The set of linear facets is subdivided into clusters using a greedy type
method. As a result, clustering is extremely fast and can be applied on
very large sets of facets. The clustering procedure is not restricted to closed
or regular meshes (sets of facets).

In the description of the clustering the following terms are used. A
cluster is defined as a set of connected facets and the boundary of a
cluster as the set of edges lying on its perimeter. The facets that contain
a boundary edge, but are not yet part of the cluster are called its border
facets.

The creation of a cluster begins with a selection of an initial “seed” facet
that grows through a process of accretion; border facets (i.e. facets adja-
cent to the current cluster boundary) are merged into the evolving cluster
if they satisfy the required clustering criteria. A cluster eventually stops
growing when there are no more facets on its boundary that can be merged.
The process is demonstrated in figure 2.

It is a “greedy” method; it doesn’t backtrack or undo any merging once
it is done. The “seed” facets for growing the clusters are selected randomly
from the set of unclustered facets on the mesh, and the process ends when
all the mesh facets belong to clusters. The boundary facets for each cluster
come from facets not already belonging to another cluster.
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Figure 2: A visualization of the clustering procedure. (a) An initial cluster
containing only the “seed” facet f,;.. The boundary of the cluster contains
edges ab, bc and ca. The border facets (facets sharing a boundary edge with
the cluster) are fucq, fanv, foeee (b) The cluster after the addition of the
border facet f,.,. The boundary of the cluster contains edges ab, be, ¢g and
ga. The border facets are fopy, foce, ferg and fynq. (c) The cluster after the
addition of the border facet fi...

4.2 Clustering Criteria

The fundamental growing step of the algorithm is the expansion of a cluster
boundary through the merging of a border face. A border face f, is accepted
into a cluster c if it satisfies a set of merging criteria. The criteria to satisfy
are chosen by the user from the set described below.

For each cluster an approximating plane is defined as the weighted aver-
age of the planes of the facets in cluster with the weight based on the facet’s
area. Defining each plane pl as the tuple (N, d), where N is the plane normal
and d is the nearest distance from the plane to the center of coordinates, we
have for each point (z,y, z) on the plane

Nyx 4+ Nyy+ N,z4+d=0

where N, stands for the ¢ coordinate of N. Defining the plane for each
face f; in the cluster as p; = (N, d;) we get for the cluster ¢

Z area(f;)d

Using those definitions the set of applicable merging criteria is defined as:
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1. Bounded angle between adjacent facets - the angle between the
plane of the new facet f, and the planes of facets in ¢ that share a
common edge with it, is below a user defined angle ¢.

2. Bounded distance between facets and the cluster plane - the
normal distance between the vertices of the new cluster facets { f; }/2,U
f» and the plane of the new cluster p.;, is below a given distance
tolerance §. It is sufficient [15] to check the distance of the vertices
of f, from the existing cluster plane p,; if this distance is above the
tolerance §, compute the plane p.,;, and check the distance from all
cluster vertices to it. If the new plane doesn’t satisfy this criteria, the
facet f, is not added to to the cluster.

3. Bounded angle between the planes of facets and the clus-
ter plane - The angle between the planes {p;}/2, U p;, of the facets
{fi}2o U f» and the plane p.yy, of the new cluster is below a user de-
fined angle 7. Similar to criteria 2 above, the plane p.,;, needs to be
recomputed only if the angle between p;, and p, is above the threshold
1. As in criteria 2, if the new plane doesn’t satisfy this criteria, the
facet f, is not added to to the cluster.

These criteria guarantee construction of cluster regions with restricted
plane deviation and with restrictions on both local and global curvature.

Criteria 1 (bounded local angle) prevents absorption of prominent minor
details into the the surrounding region (like the lips or nose in figure 6).
The use of criteria 2 (distance from plane), bounds the normal deviation of
the region’s mesh from the initial surface, and hence controls the distance
between the reconstructed and initial surfaces. Criteria 3 guarantees regions
of relative smoothness, which is a pre-condition for construction of smooth
surface afterwards. High curvature deviation will create high oscillation of
the surface.

In the spinning top example (figure 1), the values used were ¢ = 40°, § =
1.5 (for model side length of 22) and ¥ = 40°.

A subset of the criteria can be used when some of the restrictions are
required.

4.3 Non Linear Faces - Linearization and Analysis

When the model contains non-linear faces, a set of planar facets approximat-
ing them is constructed. This is done in order to reduce the complexity of



the clustering process to one of considering linear surfaces only. The faceting
is used solely to approximate the faces and to allow simple clustering of the
facets. The only requirements on it are of conformity and constrained de-
viation (distance and angle) from the original face surface. The faceting
constructed is the same faceting used for shaded object display and other
computations on the object, as done in commercially available packages (e.g.
[19]). Hence it’s computations is not an overhead of the clustering algorithm.

After the merging of the facets into clusters is completed, the clusters

are analyzed to group the original faces based on the facets clusters. (as
described in detail in [15]).

5 Mesh Generation

After the regions are formed, a surface meshing algorithm is used to generate
a boundary conforming finite element quadrilateral mesh Q of the region
virtual faces. The meshing is done using the paving algorithm described
in [2]. It handles any face topology or geometry structure. This algorithm
is widely used in finite element analysis. In this work it is introduced as
a surface subdivision tool. The element size for the edges and faces mesh
is given as a parameter of the final number of elements and the deviation
tolerance.

A simple example of the surface mesh is shown in figure 1(c). Figures
6(c) and (e) show the effect of different element size on the mesh and on the
final surface.

6 Smooth surface construction

Once the mesh Q is generated, the final step of the procedure is to build a
smooth surface S approximating the mesh.

Composite free form surfaces, that approximate a given mesh are con-
structed by assembling tensor product type patches (such as non-uniform
B-splines or Bézier). This approach is based on the concept of Thin Plate
Energy, i.e. functionals that are not directly derived from the patch standard
parameterization, and depend on the definition of a local reference plane for
each element. Hence each mesh element (), is initially approximated by
a planar quadrilateral element €. The reference parametric space € for
the mesh is then defined as the union of the planar quadrilaterals, each of
which is an image of the reference domain €’ = [0, 1] x [0, 1] under a bilinear



transformation.
Q= Uirvzl Qk

For each €, a local coordinate system is introduced. The displacement
in the normal direction is defined as in the classical FEM (Finite Element
Method) [18]. This displacement defines the energy functional at the element
level. The resulting surface minimizes the global energy functional, which
is built as the sum of the local functionals. In the global coordinate system,
patches of the resulting surface can be written in the form:

=305 P (unv), (u,v) € [0,1] % 0,1],

i=0 j=0

where Pf are nodal displacements in the global coordinate system, corre-
sponding to the patch £ and ¢; ; are the shape functions.
Additional geometrical conditions must be imposed in order to obtain a

smooth surface, as will be discussed in subsection 6.2.

6.1 Definition of the local coordinate system and the energy
functional

Consider now one element (), of the mesh Q. The first step is to approximate
this non-planar element by a planar quadrilateral €2 as close as possible to
the original one, such that the normal to the constructed quadrilateral is
estimated normal to the initial element. The plate energy will be defined
relative to this new plane. A local coordinate system is defined so that
the Z-direction coincides with the normal direction of the planar element
Q.. By analogy with the thin plate approximation of shells for surface
construction, one first defines a local functional at the element level £} and
the global energy functional for the whole mesh is taken as the sum of the
local functionals over all mesh elements.

The local patch energy is constructed in two steps. The functional for-
mulation is given on the plane quadrilateral related to the underlying mesh.
The unknown displacement field is decomposed into a bending displacement
Z(#,79) normal to the local plane defined by €, and into a local (#, ) plane
displacement. Construction of the local energy functional is described in
details in [17]. The energy functional over € is defined as:
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where Z(%,7), as defined above, is the normal displacement relative to
the local element plane and v is the Poisson’s coefficient, 0 < v < 0.5.

Depending on the obtained mesh and the final design goal, different «,
[ and ~ are applied. The correlation of the a, § and v parameters is used
to obtain the desired surface properties as a combination of minimal surface
area, minimal curvature and minimal curvature change. Increasing o makes
the surface more planar and “tight”. § affects the surface smoothness, and
increasing v makes the surface more rounded and “fat”. In the spinning top
example (figure 1) the values used were a = 0.3, 5 =0.1, v = 0.6.

It is important to note that the quadratic functional is independent of
the actual position of the plane Ozy (§2) and of any underlying parameter-
1zation.

L]

6.2 Discrete G! continuity conditions

In order to obtain a G' condition at a common n-curve vertex, it is necessary
that the tangents to the boundaries of all n patches sharing that vertex lie
in the same plane.

In the present approach one fixes the relations between tangents at the
vertex instead of fixing the direction of the normal, which is then deter-
mined according to the minimization of the energy functional. Globally
smooth surface (without "bumps” near the vertices) can be obtained since
the geometric conditions at the vertices do not fix a priori the resulting
normal direction (such a procedure has better shape preserving properties
as discussed in [10]). Since the considered energy functionals are closely
related to the structure of the mesh, the resulting surface will correspond to
the geometry of the given mesh.

In the present approach the following pseudo C' linearized smoothness
conditions are imposed along the common edge:

Gn; — Qn-1,; = P1; — Po; j:17"'7n_1 (2)
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The conditions are visualized in figure 3.

This does not result in G* surface in general. However the deviation of
the normals for two neighboring patches is bounded by its maximal “incon-
sistency” at vertices. The deviation is relatively small when near the middle
of the segment of parameterization. Moreover, since at the ends of the seg-
ments the G' condition results from the choice of the geometric conditions

at the vertices, it will compensate relatively large deviations at the vertices
[10].
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Figure 3: Smoothness condition along common edge.

7 Error Bounds

In this section it is shown that the deviation of the final surface S9 (where ¢
stands for the solution restricted to the subspace defined by the FE (Finite
Element) mesh Q) from the original surface mesh S is bounded in L? norm by
¢, where ¢ is a quadratic function of the meshing element size and the local
curvature of the original surface S over the area of the new mesh elements.
The coefficients of ¢ are constants depending solely on the original surface
quality. Hence, the deviation tolerance can be controlled directly by the
mesh element size and the maximal curvature (angle between surface and
plane) of the region clusters.

As proven in Ciarlet [3], given a boundary value problem such as the
above one, whose solution S is sufficiently smooth, and 7,S the polynomial
bilinear interpolate over the original mesh ( 7,S is well-defined since S is

11



assumed to be sufficiently smooth), the following inequality holds :
IS — 7¢Slz2 < C1I%[S] (3)

where ('} is a constant independent of the mesh, [ is the maximal length of
an element edge in the FE mesh Q, and |S|;, is the L? semi-norm of the
second derivatives of S over a mesh element. Now let S? be the computed
surface simplified solution. Then, by the present construction of the smooth
surface over the FE mesh

IS? — 7, S||12 < Cyl?

where C5 depends on the original surface only [1]. Hence by equation 3 the
resulting construction satisfies:

187 = Sll2 <1187 = 7,Sllz2 + IS = 7S|li> < (C1lSlya + Ca)i®

and so we have the deviation of the constructed surface S? from the original
surface S bounded by a quadratic function of the size of the FE mesh Q
elements and the curvature of the clustered regions.

8 Examples

The examples below demonstrate the mesh simplification and smooth sur-
face reconstruction processes described in this paper.

Figure 4 shows a reconstruction of an initial free form (NURB) surface.
The initial data in figure 4(a) contains 213 NURB and cylindrical surfaces.
The model is subdivided into regions based on angle tolerance only. The
regions are shown in figure 4(b). Figure 4(c) shows a quadrilateral conformal
mesh of the regions containing 125 elements. The final reconstructed surface
based on the mesh is shown in figure 4(d). The surface is based on quartic
Bézier piecewise polynomial patches.

Figure 5 shows a reconstruction of a car model described by a triangular
mesh. The mesh contains 1114 elements. The regions based on distance and
angle tolerance are shown in figure 5(b). The simplified mesh (5(c)) con-
sist of 189 quadrilateral conformal mesh elements. The final reconstructed
surface based on the mesh is shown in figure 5(d).

Figure 6 shows a smooth surface build from initial triangular data. The
data (figure 6(a)) is the triangulation of a human face (the Nefertiti statue).
The original model consists of 1747 triangles. The subdivision into regions
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based on distance and angle tolerances is shown in figure 6(b). The regions
are highly irregular due to the model complexity. The model was analyzed
with two different mesh element sizes shown in figures 6(c) and 6(e), resulting
in meshes with 286 and 1146 elements respectively. The surfaces based on
two meshed are shown on figures 6(d) and 6(f). The difference in the surface
detail level is a result from the difference in the compression ratio.

Figures 7 demonstrate the complete surface reconstruction process of a
non-manifold model of the Volkswagen Beetle car, starting from a quadrilat-
eral surface mesh. First, the mesh (7(a)) is divided into clusters of restricted
curvature (7(b)). Then a quadrilateral boundary conforming mesh of each
cluster region is constructed (7(c)). The number of mesh elements is re-
duced from 308 element to 146. The major reductions are on the front hood
and the trunk of the car, where the original surface has many small mesh
elements describing small details. Note that the new mesh elements are
more uniform in size which is an important property for any finite element
analysis or other computations. The topology of the original mesh is fully
preserved, including the relatively small (compared to mesh element size)
light holes, and the non-manifold structure at the trunk light hood. The sur-
face constructed over the mesh at the last step of the algorithm is smooth
over all the car structure.

The running times for the examples above are comparable with those in
the works of Hoppe and Eck ([5], [7]) for similar model sizes.

9 Conclusions

This work presents a new method for reconstruction of a smooth surface
over an original mesh data. During the reconstruction, a simplification of
the original object is achieved. Since the surface is subdivided into restricted
curvature regions before the construction of the simplified mesh, the faces
of the mesh have restricted curvature as well. As a result, the energy mini-
mization method is both stable and efficient.

The present approach provides error bounds on the approximation that
can be controlled by the simplification parameters. The use of finite element
techniques allows the algorithm to work with no restriction on complex mesh
structures containing N-vertex T-nodes and on non-manifold topologies as
demonstrated in figure 7. Our experiments on a variety of data sets show
that the algorithm can work on complex geometries including objects with
large curvature changes. This approach allows to extend face simplification
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to free-form surfaces, and is not limited to only linear faces like other ones.
The surface reconstruction method used does not require any subdivision of
the simplified mesh, hence the introduced data reduction is preserved.

Further research is required to reduce and regularize the randomness in

the cluster regions construction resulting from the random choice of seed
and accreted boundary facets. Other topics of interest include examining
and experimenting with different criteria for faces clustering and introducing
adaptive refinement tools.
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Figure 4: Mesh simplification of a free-form (NURB) glass. (a) original
(free-form) mesh; (b) virtual faces resulting from clustering; (here we used
very big angle tolerance; (c) the simplified quadrilateral mesh of the glass;
(d) the reconstructed smooth polynomial surface.
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Figure 5: Mesh simplification of an arbitrary topology car. (a) original mesh;
(b) virtual faces resulting from clustering; (c) the simplified quadrilateral
mesh; (d) the reconstructed smooth polynomial surface.

17



(e) (f)

Figure 6: Mesh simplification of a human face (Nefertiti) (a) original mesh;
(b) virtual faces resulting from clustering; (c) simplified mesh with big ele-
ment size; (d) the smooth polynomial surface over mesh (c); (e) simplified
mesh with small element size; (f) The smooth polynomial surface over mesh

(e)-
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Figure 7: The mesh simplification of the VW mesh; (a) original mesh; (b)
virtual faces resulting from clustering; (c) the quadrilateral mesh of the car;
(d) the reconstructed smooth surface.
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