© Alla Sheffer

« anchors (triangles/vertices) — moved by user
+ Region of influence (ROI)

© Alla Sheffer

© Alla Sheffer

© Alla Sheffer

Minimize error in reconstructed surface

¢ In least square fashion

E(V) =Y [6, - L(v,)

[+ 2V

iec

1
vV, —u,

© Alla Sheffer

Use your favourite solver to solve A4 x =A"b

© Alla Sheffer

© Alla Sheffer

S, =L(v,)=L(v, +t);Vte R’

© Alla Sheffer

i=1 iec
* Interleave rotate/position (local/global) iterations
Challenge

» Too local... (consistency between adjacent
umbrellas)

© Alla Sheffer

© Alla Sheffer

As-rigid-as-possible (ARAP)

Al

© Alla Sheffer

ARAP in a nutshell...

- Decompose surface into small overlapping “cells”
 Measure local rigidity => define local rotations
* Non-linear but small
* Use to solve globally
 Quadratic

eeeeeeeeeee

Cell Construction

Desired Properties:

Characterize local shape

Used to enforce local rigidity constraints

Overlapping, to prevent shearing/stretching at cell boundaries

© Alla Sheffer

Cell Construction

Simplest logical choice for cells?

Vertex Umbrella
Covers entire surface
One cell per vertex
All triangles exist in 3 cells

Within cell, define translation-invariant “features”:

* Vectors from central vertex to neighbours .
€ij=Pi—Pj

© Alla Sheffer

Gy

« What if they didn’t move as a rigid unit?

Rigid Error? (C;,C';) = Z ||e'ij - R eijllz

JEN(D)
<
¥ Z
Uniform Weights Cotangent Weights p
i
. /
Cotangent weights:
1
wij =E(c0taij +C0tﬂij) ‘

© Alla Sheffer

o Least squares + SVD!!!

Global Rigidity:
All I cells as-rigid-as- ible = global
Shapa Koas-Agidhs-podipiole @ globa
Global energy function:
Energy=z Z Wij”(P'i—P'j)—Ri(Pi—Pj)HZ

T JEN()

© Alla Sheffer

2 2
Energy=z Z Wij”(p’i_p,j)_Ri(pi_pj)” + #ZWU”P'i—ui”

i JEN(D) | iec |

|

soft constraints
Caveats:
* {p';} and {R;} are unknown

* Non-linear optimization problem

© Alla Sheffer

N/
Mesh Deformation
Solution:
Start with initial guess of {p’,}, solve for {R;}
Compute for each cell independently (L.S. + SVD)
Embarrassingly parallel
Given {R;}, minimize energy to find {p’;}
Z wy (0= 7';) = z %(Ri +R)(p: —p;)
JENTD) JENG)
Lp'=b
yBC
.\v/l

Advantages

“L” is.o Ig a function of the cotangent
weight.

Depends only on original mesh

Only needs to be factored ONCE!! FAST!/

Sparse linear system)
Rotations can be computed in parallel

 Each iteration reduces energy
> Updating rotations guaranteed to reduce cell-error
> Updating positions guaranteed to reduce global error

Gauranteed Convergence!!

© Alla Sheffer

10

5 A

AT
Vi
R

© Alla Sheffer

(U JlODa

Advantages:
* Fast

+ Guaranteed convergence (to something...)

* (Almost) Edge-length preserving

« Easy to implement

Disadvantages

* Non-linear optimization

* Depends on mesh resolution

» Not volume-preserving Al Shor

Specify parts to glue — cut boundaries
Align/specify correspondence

Create common connectivity

Define smooth geometry transition

© Alla Sheffer

© preserve shape
+ avoid (as much as possible) self-intersections

© Alla Sheffer

12

© Alla Sheffer

© Alla Sheffer

13

Typically no need for explicit check (assume function does not
have maxima/saddles

Translate problem into: find x such that f(x)=0

© Alla Sheffer

Achieved when
© F'(x)=uc’(x)
« for unknown p
General formulation
© F¥(x,1)=F(x)+ pic(x)
» Find x,u which extremize F*
* Known as min-max
—min on x
—maxon u

© Alla Sheffer

14

Solve the min-max problem (minimum on x, maximum on p)

Reached when all derivatives are zero

Have linear (or non-linear) system of equations
* If non linear - use Newton method to solve

© Alla Sheffer

- Set x to initial guess
+ Solve one equation at a time
— Ax=B, - consider all x; (j #) as constant and compulte x;
b x= (bi'z'ajxj)/ a;
— Repeat (for all i) till convergence
* Works only for a very small set of matrices

© Alla Sheffer

15

— U - upper matrix (has 0’s below diagonal
— Use off-the-shelf algorithm/code

* Take advantage of sparsity (if applicable)

+ Solve:

— Solve Ly=B (use Gauss iterations)

» Works (at each point add ONE variable)
— Solve Ux=y (use Gauss iterations)

> Start from i=n-1 and go “up”

» Works (at each point add ONE variable)

© Alla Sheffer

16

