
1

© Alla Sheffer

Mesh Editing: Deformation & Other Operations

© Alla Sheffer

Deformation

Modify global shape
• preserve local features & global continuity

Control mechanism
• anchors (triangles/vertices) – moved by user
• Region of influence (ROI)

2

© Alla Sheffer

Capturing Geometry - Local Coordinates

Define local geometry
• Vertex Based
• Triangle Based

Preserve under deformation

© Alla Sheffer

Local coordinates - Laplacian

 
()

1
i i j

j N i id

 δ v v

()

1
i i j

j N iid 

  δ v v

v correlates to  via

=L v 

0
i

ij

d i j
D

otherwise


 



 


otherwise

jNi
Aij 0

)(1

1L I D A 

Can always add weights:

 ()

()

ij i jj N i
i

ijj N i

w

w
 








v v

3

© Alla Sheffer

Surface Reconstruction

Pose new constraints on mesh
•

• c = set of constraints

Minimize error in reconstructed surface
• In least square fashion

ciii  ;uv





ci

ii

n

i
ii LE

2

1

2
')'()'(uvvV 

© Alla Sheffer

Least Square Fitting

Ax=b with m equations, n unknowns

Least square solution: x=(ATA)-1ATb

Use your favourite solver to solve ATA x = ATb

4

© Alla Sheffer

Problem

Only translation invariant

© Alla Sheffer

Laplacian Coordinates

Translation invariant
Not rotation/scale invariant

3);()( ttvv iii LL

δi

δi
δi

5

© Alla Sheffer

Solution

Add rotations into framework

• Interleave rotate/position (local/global) iterations

Challenge
• Too local… (consistency between adjacent

umbrellas)





ci

ii

n

i
iii LRE

2

1

2
')'()'(uvvV 

© Alla Sheffer

As-Rigid-As-Possible Surface
Modelling

12

6

© Alla Sheffer

As-rigid-as-possible (ARAP)

13

© Alla Sheffer

ARAP in a nutshell…

• Decompose surface into small overlapping “cells”
• Measure local rigidity => define local rotations

• Non-linear but small
• Use to solve globally

• Quadratic

15

7

© Alla Sheffer

Cell Construction

Characterize local shape
Used to enforce local rigidity constraints
Overlapping, to prevent shearing/stretching at cell boundaries

Desired Properties:

16

© Alla Sheffer

Cell Construction

Vertex Umbrella
• Covers entire surface
• One cell per vertex
• All triangles exist in 3 cells

Within cell, define translation-invariant “features”:

• Vectors from central vertex to neighbours

pi

pj1

pj2

eij1

Simplest logical choice for cells?

17

8

© Alla Sheffer

Local “Rigidity”
If cell i moved as a rigid unit, we could write:

pi

pj1

eij1

p'i

p'j1

e'ij1

• What if they didn’t move as a rigid unit?

7

© Alla Sheffer

Edge Weights

Cotangent weights:

Should all edge vectors be weighted equally?

19

Uniform Weights Cotangent Weights pi

pj

ij

ij

9

© Alla Sheffer

Global Rigidity

All local cells as-rigid-as-possible  global
shape is as-rigid-as-possible

Global energy function:

Rigid Errorଶ ሺ𝐶௜, 𝐶′௜ሻ ൌ ෍ 𝑤௜௝ ሺ𝒑ᇱ
௜ െ 𝒑′௝ሻ െ 𝑅௜ሺ𝒑௜ െ 𝒑௝ሻ

ଶ

௝∈ேሺ௜ሻ

• Given ሼ𝒑௜ሽ and ሼ𝒑ᇱ
௜ሽ, what are the optimal rigid transforms {𝑅௜ሽ?

◦ Least squares + SVD!!!

20

Local Rigidity:

Energy ൌ ෍ ෍ 𝑤௜௝ ሺ𝒑ᇱ
௜ െ 𝒑′௝ሻ െ 𝑅௜ሺ𝒑௜ െ 𝒑௝ሻ

ଶ

௝∈ேሺ௜ሻ௜

Global Rigidity:

© Alla Sheffer

Mesh Deformation

soft constraints

• Positional constraints: 𝒑ᇱ
௜ ൌ 𝒖௜, 𝑖 ∈ 𝐶

• Determine locations ሼ𝒑ᇱ
௜ሽ for all points by minimizing global

energy

Energy ൌ ෍ ෍ 𝑤௜௝ ሺ𝒑ᇱ
௜ െ 𝒑′௝ሻ െ 𝑅௜ሺ𝒑௜ െ 𝒑௝ሻ

ଶ

௝∈ேሺ௜ሻ௜

൅ 𝜇 ෍ 𝑤௜௝ 𝒑ᇱ
௜ െ 𝒖௜

ଶ

௜∈஼

Caveats:

• ሼ𝒑ᇱ
௜ሽ and ሼ𝑅௜ሽ are unknown

• Non-linear optimization problem

21

10

© Alla Sheffer

Mesh Deformation
Solution:
• Start with initial guess of ሼ𝒑ᇱ

௜ሽ, solve for ሼ𝑅௜ሽ
– Compute for each cell independently (L.S. + SVD)

– Embarrassingly parallel

• Given ሼ𝑅௜ሽ, minimize energy to find ሼ𝒑ᇱ
௜ሽ

෍ 𝑤௜௝ 𝒑ᇱ
௜ െ 𝒑ᇱ

௝
௝∈ேሺ௜ሻ

ൌ ෍
𝑤௜௝

2
𝑅௜ ൅ 𝑅௝ 𝒑௜ െ 𝒑௝

௝∈ேሺ௜ሻ

𝐿𝒑′ ൌ 𝒃

22

© Alla Sheffer

Advantages

“L” is only a function of the cotangent
weights

• Depends only on original mesh
• Only needs to be factored ONCE!!
• Sparse linear system

Rotations can be computed in parallel

FAST!!

• Each iteration reduces energy
◦ Updating rotations guaranteed to reduce cell-error
◦ Updating positions guaranteed to reduce global error

Gauranteed Convergence!!
12

11

© Alla Sheffer

Results (vs Poisson)

Poisson:

ARAP:

25

© Alla Sheffer

ARAP summary
Method tries to keep “cells” as-rigid-as-possible
Requires:
• Estimating rotation per umbrella

• Minimizing global energy iteratively

Advantages:
• Fast

• Guaranteed convergence (to something...)

• (Almost) Edge-length preserving

• Easy to implement

Disadvantages
• Non-linear optimization

• Depends on mesh resolution

• Not volume-preserving 29

12

© Alla Sheffer

More Model Editing: Composition

Specify parts to glue – cut boundaries
Align/specify correspondence
Create common connectivity
Define smooth geometry transition

© Alla Sheffer

More Model Editing: Morphing

Require common connectivity & feature correspondence
Vertex trajectories
• preserve shape
• avoid (as much as possible) self-intersections

13

© Alla Sheffer

More Model Editing: Blending

Special case of morphing
• Single frame with non-uniform (smooth) time parameter

=

+

+
3K 3.5K

4K 4.5K

© Alla Sheffer

Numerical Issues

14

© Alla Sheffer

Minimization (Unconstrained)

To find x that minimizes F(x) – find x such that F’(x)=0
• Check if got minimum/maximum/saddle point
• Note: finds LOCAL minimum

Typically no need for explicit check (assume function does not
have maxima/saddles

Translate problem into: find x such that f(x)=0

© Alla Sheffer

Minimization with Constraints

Need to
• Find x such that F(x) minimal
• WHEN constraints c(x) = 0 satisfied

Achieved when
• F’(x)=c’(x)

• for unknown 
General formulation
• F*(x,)=F(x)+c(x)
• Find x, which extremize F*
• Known as min-max

– min on x

– max on 

15

© Alla Sheffer

Solution

Use Lagrange Multipliers

Solve the min-max problem (minimum on x, maximum on )

Reached when all derivatives are zero

Have linear (or non-linear) system of equations
• If non linear - use Newton method to solve

F*(x,)=F(x)+c(x)

© Alla Sheffer

Solving Linear System

Solve Ax=B (A nn matrix)
Choice I: Compute A-1 O(n3) TERRIBLY expensive
Choice II: Iterative (Gauss/Gauss-Seidel)
• Set x to initial guess
• Solve one equation at a time

– Aix=Bi - consider all xj (j i) as constant and compute xi

xi = (bi-ajxj)/ai

– Repeat (for all i) till convergence

• Works only for a very small set of matrices

16

© Alla Sheffer

Solving Linear System

Choice III: LU (or LDLT) decomposition
• Compute matrices L & U such that

– LU=A

– L – lower matrix (has 1’s on diagonal & 0’s above)

– U – upper matrix (has 0’s below diagonal

– Use off-the-shelf algorithm/code
Take advantage of sparsity (if applicable)

• Solve:
– Solve Ly=B (use Gauss iterations)
Works (at each point add ONE variable)

– Solve Ux=y (use Gauss iterations)
Start from i=n-1 and go “up”

Works (at each point add ONE variable)

