University of
British Columbia

* Compression

i Motivation

= Bandwidth: Communicate large complex &
highly detailed 3D models through low-
bandwidth connection (e.g. VRML over the
Internet)

= Storage: Store large & complex 3D models
(e.g. 3D scanner output)

University of
British Columbia

Mesh Compression

+

University of
British Columbia

i Compression

= Represent data by short (shortest) sequence
of bits

= Compression achieved by using data
coherence & distribution

= have small set of symbols (bit strings)
encoding data

= use shorter encodings for frequent symbols
= works for uneven distribution

University of
British Columbia

i Mesh Encoding

= Input: 3D triangle mesh
= Assumed to be orientable manifold

= Output: bit stream

University of
British Columbia

i Mesh Decoding

= Input: Bit stream

= Output: Reconstruction of original 3D
triangle mesh

University of
British Columbia

Mesh Compression (Coding)

£ 3

e Geometry Connectivity

g oy

University of VRML = 278K, zipped VRML = 70K, compressed = 9K

British Columbia

Definitions

= Alphabet: Finite set containing at least one element:
A={a b, cd e}

= Symbol: Alphabet element: s € A

= String (over alphabet): Sequence of symbols:
ccdabdcaad...

= Codeword: Sequence of bits representing coded
symbol or string:

110101001101010100...
= p;: Occurrence probability of symbol s; in input string
Z P =1
ﬂ VieA

|y w

WA)

W e
University of
British Columbia

i Entropy

= Entropy of set of elements e,,...,e, with probabilities

Py P

H(p,... p,)==> p;log, p,

Vi
= Entropy = smallest number of bits needed on

average to represent symbol
= average on all symbols code lengths

= log,p; is uncertainty in symbol e; (or “surprise”

when we see this symbol)
= Entropy — average “surprise”

appearances

University of
British Columbia

= Assumption: No dependencies between symbols’

i Entropy example

Entropy calculation for two symbol alphabet

Example 1: A p,=0.5
B pg=0.5

Example 2: A p,=0.8
B pg=0.2

H(A,B)=—-p,log, p,— Pg 109, ps =
= -0.8log,0.8-0.2l0g, 0.2 = 0.7219

University of
British Columbia

Requires one bit

H(A, B)=—p, l0g, p, —Pg 109, Py = Requires one
=-0.5log, 0.5-0.5log, 0.5=1 average to

represent the data

It requires less
than one bit per
symbol on
average to
represent data

How can we
code this ?

i Entropy examples

= Entropy of e,,...e, is maximized when
p,=p,=...=p,=1/n > H(e,,....e,)=log,n

= No symbol is “better” than the other or
contains more information

= 2K symbols may be represented by k bits
= Entropy of p,,...p, is minimized when

p.=1, p,=...=p,=0 > H(ey,....e,)=0

University of
British Columbia

i Entropy coding

= Entropy is /ower bound on average number of
bits needed to represent symbols =data
compression limit

= Entropy coding methods:

= Aspire to achieve the entropy for given alphabet
BPS—>Entropy

= Code achieving the entropy limit is optimal
= BPS : bits per symbol

lencoded message]

BPS=1—"
loriginal message|

University of
British Columbia

i Code types

s Fixed-length codes - all codewords have same
length (number of bits)

A - 000, B - 001, C-010, D -011, E-100, F -
101

= Variable-length codes - may give different
lengths to codewords

A-0,B-00,C-110,D - 111, E- 1000, F -
1011

University of
British Columbia

i Code types (cont.)

= Prefix code - No codeword is prefix of any other
codeword
A=0; B=10; C=110; D=111

= Uniquely decodable code - Has only one
possible source string producing it
= Unambigously decoded

= Examples:

= Prefix code - end of codeword immediately
recognized (without ambiguity) : 010011001110 >
0|10]0]110]0|111|O

= Fixed-length code

University of
British Columbia

i Huffman coding

= Each symbol assigned variable-length code
depending on its frequency

= Higher frequency =shorter codeword

Prefix code

Huffman code is gptimal prefix and variable-
length code given symbols’ probabilities of
occurrence

= Codewords generated by building Huffman Tree

University of
British Columbia

i Huffman tree example

Each codeword
determined according
to path from root to
symbol

Example:
decoding input
“110" (D)

When decoding tree
traverse tree from
root.

Probabilities

codewords: A-01 C-00 B-10 D-110 E-111

University of
British Columbia

i Huffman encoding

Use codewords from previous slide to encode the
string “BCAE”:

String: B C A E
Encoded: 10 00 01 111

Number of bits used: 9
BPS (9 bits/4 symbols) = 2.25

Entropy: - 0.25log0.25 - 0.25l0g0.25 - 0.210g0.2 -
0.15l0g0.15 - 0.15l0g0.15 = 2.2854

BPS is lower than entropy - WHY ?

University of
British Columbia

i Symbol probabilities

= How are probabilities known?

= Counting symbols in input string
« Data given in advance
= Requires extra pass on input string

= Data source’s distribution is known

« Data not necessarily known in advance, but we
know its distribution

University of
British Columbia

Example

“Global” English frequencies table:

Letter Prob. Letter Prob.
A 0.0721 N 0.0638
B 0.0240 0 0.0681
c 0.0390 P 0.0290
D 0.0372 Q 0.0023
E 0.1224 R 0.0638
F 0.0272 S 0.0728
G 0.0178 T 0.0908
H 0.0449 U 0.0235
I 0.0779 v 0.0094
J 0.0013 w 0.0130
K 0.0054 X 0.0077
L 0.0426 Y 0.0126
M 0.0282 z 0.0026
£ 13
?"": Total: 1.0000

University of
British Columbia

Huffman summary

= Achieve entropy when occurrence probabilities
are negative powers of 2

= Alphabet & its distribution must be known in
advance

= Given Huffman tree, very easy (and fast) to
encode and decode

= Not unique
e u arbltrary decisions in tree construction

g oy

University of
British Columbia

10

