Mesh Simplification

Simplifier

University of British Columbia

Motivation

- Reduce information content
- Accelerate rendering
- Multi-resolution models

University of British Columbia
Level of Detail (LOD)

- Refined mesh for close objects
- Simplified mesh for far

Progressive Meshes

- Single operation
 - Typically focus on quality

Continuous - Progressive mesh
- Focus on speed
- Requires preprocessing
- Time/space/quality tradeoff
Quality (e.g. Creases Preserving)

Methodology

- Sequence of local operations
 - Involve near neighbors - only small *patch* affected in each operation
 - Each operation introduces error
 - Find and apply operation which introduces the least error
Simplification Operations (1)

- Decimation
 - Vertex removal:
 - $v \leftarrow v-1$
 - $f \leftarrow f-2$

 Remaining vertices - subset of original vertex set

Simplification Operations (2)

- Decimation
 - Edge collapse
 - $v \leftarrow v-1$
 - $f \leftarrow f-2$

 Vertices may move
Simplification Operations (3)

- Contraction
 - Pair contraction

- Vertices may move

Error Control

- Local error: Compare new patch with previous iteration
 - Fast
 - Accumulates error
 - Memory-less

- Global error: Compare new patch with original mesh
 - Slow
 - Better quality control
 - Can be used as termination condition
 - Must remember the original mesh throughout the algorithm
Local vs. Global Error

2000 faces 488 faces 488 faces

Simplification Error Metrics

- Measures
 - Distance to plane
 - Curvature
 - Usually approximated
 - Average plane
 - Discrete curvature

\[\Sigma \alpha / 2\pi \]
The Basic Algorithm

- Repeat
 - Select the element with minimal error
 - Perform simplification operation (remove/contract)
 - Update error (local/global)

- Until mesh size / quality is achieved

Implementation Details

- Vertices/Edges/Faces data structure
 - Easy access from each element to neighboring elements
 - Use priority queue (e.g. heap)
 - Fast access to element with minimal error
 - Fast update
Vertex Removal Algorithm

- **Simplification operation:** Vertex removal
- **Error metric:** Distance to average plane
- **May preserve mesh features (creases)**

Algorithm Outline

- Characterize local topology/geometry
- Classify vertices as removable or not
- Repeat
 - Remove vertex
 - Triangulate resulting hole
 - Update error of affected vertices
- Until reduction goal is met
Characterizing Local Topology/Geometry

Decimation Criterion

- E_{MAX} - user defined parameter
- Simple vertex:
 - Distance of vertex to the face loop average plane $< E_{MAX}$
- Boundary vertices:
 - Distance of the vertex to the new boundary edge $< E_{MAX}$
Triangulating the Hole

- Vertex removal produces non-planar loop
 - Split loop recursively
 - Split plane orthogonal to the average plane
- Control aspect ratio
- Triangulation may fail
 - Vertex is not removed

Example

Simplifier
Pros and Cons

- **Pros:**
 - Efficient
 - Simple to implement and use
 - Few input parameters to control quality
 - Reasonable approximation
 - Works on very large meshes
 - Preserves topology
 - Vertices are a subset of the original mesh
- **Cons:**
 - Error is not bounded
 - Local error evaluation causes error to accumulate

Edge Collapse Algorithm

- **Simplification operation:**
 - Edge collapse (pair contraction)
- **Error metric:**
 - Distance, pseudo-global
Distance Metric: Quadrics

- Choose point closest to set of planes (triangles)

- Sum of squared distances to set of planes is quadratic ⇒ has a minimum

Quadrics

- Plane
 - \(Ax + By + Cz + D = 0\), where \(A^2 + B^2 + C^2 = 1\)
 - \(p = [A, B, C, D]\), \(v = [x, y, z, 1]\), \(v^T p = 0\)

- Quadratic distance between \(v\) and \(p\):
 \[
 \Delta_p(v) = (v^T p)^2 = (v^T p) (v^T v) = v^T (p^T p) v
 \]
 \[
 K_p = \begin{bmatrix}
 A^2 & AB & AC & AD \\
 AB & B^2 & BC & BD \\
 AC & BC & C^2 & CD \\
 AD & BD & CD & D^2
 \end{bmatrix}
 \]
Distance to Set of Planes

\[\Delta(v) = \sum_{p \in \text{planes}(v)} \Delta_p(v) \]
\[= \sum_{p \in \text{planes}(v)} (v K_p v^T) \]
\[= v (\sum_{p \in \text{planes}(v)} K_p) v^T \]
\[= v Q_v v^T \]

After \(v_1, v_2\) are contracted to \(v\),
\[Q_v \leftarrow Q_{v_1} + Q_{v_2} \]

Pseudo-global

All original planes persist during the entire simplification process

Contracting Two Vertices

- Goal: Given edge \(e = (v_1, v_2)\), find contracted \(v = (x, y, z, 1)\) that minimizes \(\Delta(v)\):
 \[\frac{\partial \Delta}{\partial x} = \frac{\partial \Delta}{\partial y} = \frac{\partial \Delta}{\partial z} = 0 \]
- Solve system of linear normal equations:
 \[
 \begin{bmatrix}
 q_{11} & q_{12} & q_{13} & q_{14} \\
 q_{21} & q_{22} & q_{23} & q_{24} \\
 q_{31} & q_{32} & q_{33} & q_{34} \\
 0 & 0 & 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 v_1 \\
 v_2 \\
 v_3 \\
 v_4
 \end{bmatrix}
 =
 \begin{bmatrix}
 0 \\
 0 \\
 0 \\
 1
 \end{bmatrix}
 \]

- If no solution - select the edge midpoint
Selecting Valid Pairs for Contraction

- **Edges:**
 \[\{(v_1, v_2) : (v_1v_2) \text{ is in the mesh} \} \]

- **Close vertices:**
 \[\{(v_1, v_2) : ||v_1 - v_2|| < T \} \]

 - Threshold T is input parameter

Algorithm

- Compute \(Q_v \) for all the mesh vertices
- Identify all valid pairs
- Compute for each valid pair \((v_1, v_2)\) the contracted vertex \(v \) and its error \(\Delta(v) \)
- Store all valid pairs in a priority queue (according to \(\Delta(v) \))
- While reduction goal not met
 - Contract edge \((v_1, v_2)\) with the smallest error to \(v \)
 - Update the priority queue with new valid pairs
Examples

Dolphin (Flipper)

Original - 12,337 faces

2,000 faces

300 faces (142 vertices)

Examples

Budha

Simplifier

Original - 12,000

2,000 faces

298 faces (140 vertices)
Pros and Cons

Pros
- Error is bounded
- Allows topology simplification
- High quality result
- Quite efficient

Cons
- Difficulties along boundaries
- Difficulties with coplanar planes
- Introduces new vertices not present in the original mesh