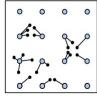
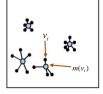


Quantization

Map n values v_i to k<<n values m(v_i), without losing too much information



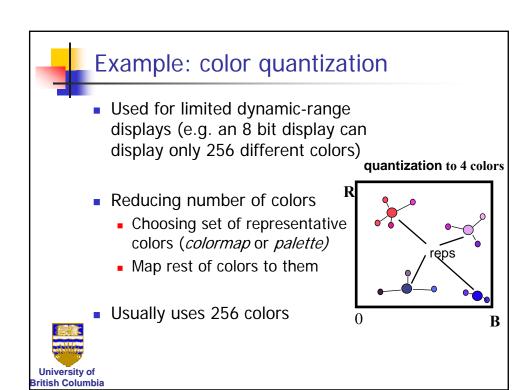


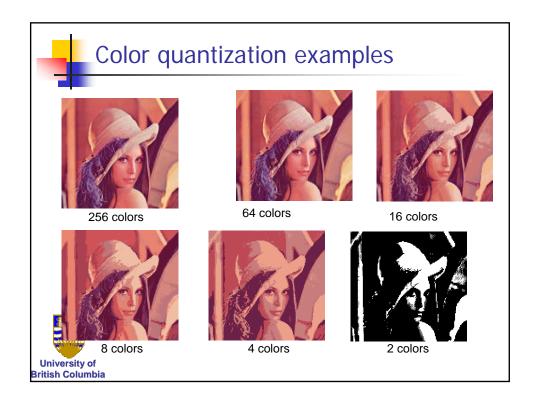
Uniform

Non-uniform

Quantization

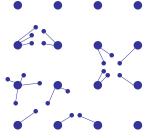
- Applications:
 - Image and voice compression
 - Voice recognition
 - Color display
 - Geometric compression





Uniform quantization

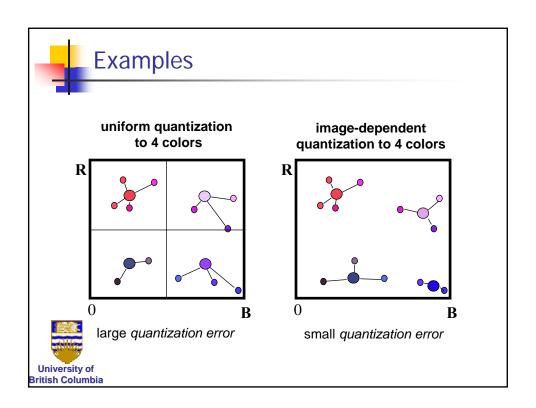
- Quantization space partitioned into equal sized regions (e.g. grid) – colors in each region mapped to its center
- Input independent
- Some representatives may be wasted
- Common way for 24->8 bit color quantization: retain 3+3+2 most significant bits of R, G & B components



Non-uniform quantization

- Quantization space partitioned according to input data
- Goal: choosing "best" representatives
 - Minimal distance error (if "distance" is defined)



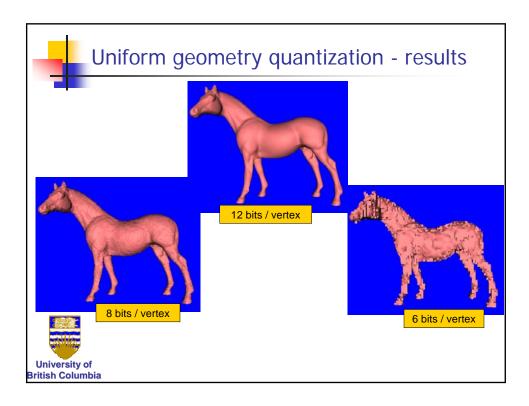


Quantization & Lossy Coding

- Quantization used as lossy coding method when there is notion of distance between symbols to be coded
 - Coordinates
 - Colors
 - Not good for characters

Uniform geometry quantization

- Coordinates can be considered integers in a finite range after quantization
- Quantization is done on the data bounding box/cube
- Geometry quantization to n bits:
 - All integer values in $[0, 2^n-1]$ can be used
 - Scale/transform coordinates to be maximal over given range
 - Quantize each coordinate (rounding to nearest integer)

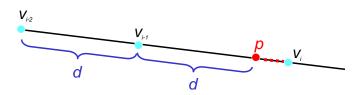


Prediction

- Quantization alone gives poor compression vetex positions evenly (more or less) distributed in range
- To improve use *prediction*
 - Assume vertex positions can be estimated based on neighbours
 - Store & encode (quantize) prediction error
- Good prediction
 - small error range
 - uneven error distribution

Prediction – History Repeats Itself

Linear 2D predictor:



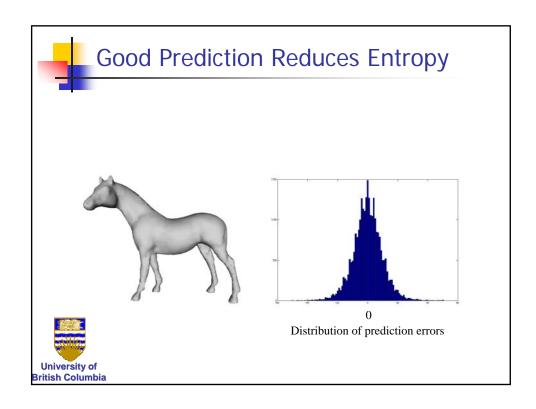
■ Prediction rule: v_i -1 - v_i -2 = p - v_i -1 or: $p = 2 v_i$ -1 - v_i -2

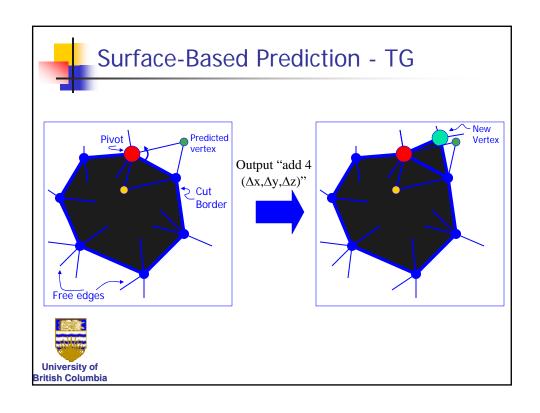
• Prediction error: $e_i = v_i - p$

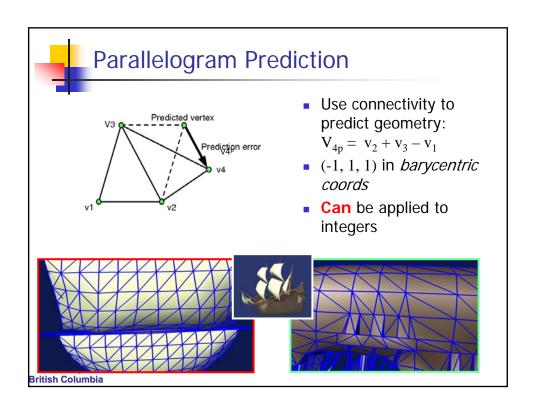
Using Predicted Geometry

- (v₁ v₂ v₃ ...) vertex coordinates
 (e₃ e₄ e₅...) prediction errors
- Naive geometry coding: v₁ v₂ v₃ ...
- Coding using prediction: v₁ v₂ e₃ e₄ e₅ ...
- Decoding: v₁ v₂

$$v_i = 2 v_i - 1 - v_i - 2 + e_i$$
 $i > 2$

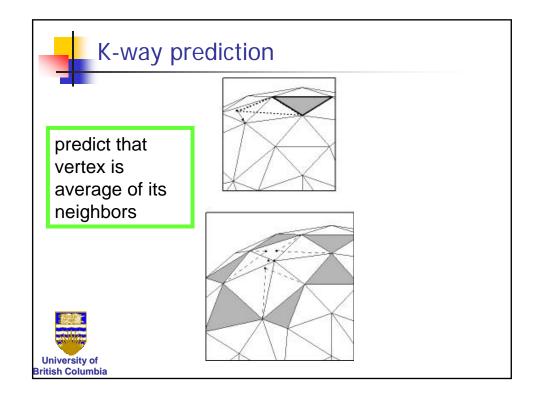






Raw quantized data = 10 bits/coord = 30 bits/vertex

	Model	vertices	line predictor	parallelogram	ratio
	Eight	766	18.8	14.0	1.3
	Triceratops Cow	3100 3078	18.4 18.9	14.1 14.6	1.3 1.3
	Beethoven	2847	22.7	17.3	1.3
	Dodge	10466	19.8	12.4	1.6
	Starship	4468	19.2	13.2	1.5
	Average		19.6	14.3	1.4
University of British Columbia					



Correction

Detail = surface - smooth(surface) = surface- predicted(surface)

$$\boldsymbol{\delta}_i = \mathbf{v}_i - \frac{1}{d_i} \sum_{j \in N(i)} \mathbf{v}_j$$

$$\mathbf{\delta}_i = \sum_{j \in N(i)} \frac{1}{d_i} (\mathbf{v}_i - \mathbf{v}_j)$$

Laplacian matrix

• Transition between δ & xyz is linear:

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \delta_1^{(x)} \\ \delta_2^{(x)} \\ \vdots \\ \vdots \\ \delta_n^{(x)} \end{pmatrix}$$

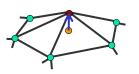
$$A_{ij} = \begin{cases} 1 & i \in N(j) \\ 0 & otherwise \end{cases}$$

$$D_{ij} = \begin{cases} d_i & i = j \\ 0 & otherwise \end{cases}$$

$$L = I - D^{-1}A$$

Laplacian matrix

• Transition between δ & xyz is linear:



$$\boldsymbol{\delta}_{i} = \sum_{j \in N(i)} w_{ij} \left(\mathbf{v}_{i} - \mathbf{v}_{j} \right)$$

$$\mathbf{L}$$
 $\mathbf{v}_{\mathbf{y}} = \mathbf{\delta}_{\mathbf{y}}$

$$L \qquad v_z = \delta_z$$

Basic properties

- Rank(L) = n-c (n-1 for connected meshes)
- Can reconstruct xyz geometry from delta up to translation

$$L\mathbf{x} = \mathbf{\delta}$$

$$\mathbf{x} = L^{-1} \mathbf{\delta}$$
 (almost....)

Quantizing differential coordinates

- Note: even if xyz are integer δ won't be
- Quantize δ-coordinates?
 - Can we still go back to xyz?
 - How does reconstruction error behave?

$$L\mathbf{x} = \mathbf{\delta}$$

$$\delta \rightarrow \delta' = \delta + \varepsilon$$

Quantizing differential coordinates

How does reconstruction error behave?

$$\mathbf{x}' = L^{-1}\mathbf{\delta}' = L^{-1}(\mathbf{\delta} + \varepsilon)$$

