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Differential Geometry 
& Discrete Operators
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Tangent vector to curve C(t)=(x(t),y(t)) is 
T=C’(t):

Unit length tangent vector 

Curvature

Curves
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Curvature (Curves)

Curvature is independent
of parameterization 

C(t), C(t+5), C(2t) have 
same curvature (at 
corresponding locations)

Corresponds to radius of 
osculating circle R=1/k

Measure curve bending

R=1/k
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Tangent plane to surface S(u,v) is spanned by 
two partials of S:

Normal to surface

perpendicular to tangent plane
Any vector in tangent plane is tangential to 
S(u,v)

Surfaces
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Curvature

Normal curvature of surface is defined for 
each tangential direction  

Principal curvatures Kmin & Kmax:  
maximum and minimum of normal curvature

Correspond to two orthogonal tangent 
directions

Principal directions 
Not necessarily partial derivative directions
Independent of parameterization 
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3D Curvature

IsotropicIsotropic

Equal in all directionsEqual in all directions

spherical planar

kkminmin==kkmaxmax > 0> 0
kkminmin==kkmaxmax = 0= 0

AnisotropicAnisotropic

2 distinct principal 
directions

elliptic parabolic hyperbolic

kkmaxmax > 0> 0

kkminmin > 0> 0

kmin = 0

kkmaxmax > 0> 0

kkminmin < 0< 0

kkmaxmax > 0> 0
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Principal Directions

min curvaturemin curvature max curvaturemax curvature
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Curvature

Typical measures:
Gaussian curvature 

Mean curvature
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Curvature on Mesh

Approximate curvature of (unknown) 
underlying  surface

Continuous approximation
Approximate the surface & compute continuous 
differential measures

Discrete approximation
Approximate differential measures for mesh
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Normal Estimation

Need surface normal to construct 
approximate surface

Defined for each face 
Solution 1: average face normals

Does not reflect face “influence”
Solution 2: weighed average of face normals

Weights:
Face areas
Angles at vertex

What happens at creases?
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Curvature Estimate: Polyhedral Curvature

Treat mesh as polyhedron with rounded 
corners with infinitesimally small radius
Derive discrete properties from integrals 
across vertex region

Convention – associate half of each edge & 
1/3 of triangle with vertex
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Mean Curvature 

Integral of curvature on circular arc 
β - central angle

On cylindrical parts  H= kmax/2 (kmin=0)
On planar faces H=0
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Mean Curvature 

For entire vertex region

Mean curvature at vertex (Ai triangle area)
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Gaussian Curvature

Use Gauss-Bonnet Theorem  

sum of exterior (jump) angles of polygon around v = 
sum of face angles at v

Curvature at vertex

Note (Gauss-Bonnet for closed surfaces) –
Integral Gaussian curvature ≈ π genus 
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Mean Curvature – Another View

Mean Curvature Flow

Area gradient (per triangle):

Integrate (sum) on all triangles

To get K (and normal) divide by “control”
area

A
AknxK ∇

≈=)(

University ofUniversity of
British ColumbiaBritish Columbia

Curvature – Practicalities Example: Gaussian

Approximation always results in some noise
Solution

Truncate extreme values
Can come for instance from division by very small area

Smooth 
More later
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Examples: Mean Curvature
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Some Applications

Remeshing

Viewpoint 
selection

Ridges and Valleys


