Differential Geometry & Discrete Operators

Curves

- Tangent vector to curve \(C(t) = (x(t), y(t)) \) is
 \[
 T = C'(t) = \frac{dC(t)}{dt} = [x'(t), y'(t)]
 \]

- Unit length tangent vector
 \[
 \hat{T} = \frac{C'(t)}{|C'(t)|} = \frac{[x'(t), y'(t)]}{\sqrt{x'(t)^2 + y'(t)^2}}
 \]

- Curvature
 \[
 k(t) = \frac{x'(t)y''(t) - y'(t)x''(t)}{(x'(t)^2 + y'(t)^2)^{3/2}}
 \]
Curvature (Curves)

- Curvature is **independent** of parameterization
 - \(C(t), C(t+5), C(2t) \) have same curvature (at corresponding locations)
- Corresponds to radius of osculating circle \(R=1/k \)
- Measure curve bending

Surfaces

- Tangent plane to surface \(S(u,v) \) is spanned by two partials of \(S \):
 - \(\frac{\partial S(u,v)}{\partial u} \)
 - \(\frac{\partial S(u,v)}{\partial v} \)
- **Normal** to surface
 - \(\vec{n} = \frac{\partial S(u,v)}{\partial u} \times \frac{\partial S(u,v)}{\partial v} \)
 - perpendicular to tangent plane
 - Any vector in tangent plane is tangential to \(S(u,v) \)
Curvature

- **Normal curvature** of surface is defined for each tangential direction

- **Principal curvatures** \(K_{min} & K_{max} \): maximum and minimum of normal curvature
 - Correspond to two orthogonal tangent directions
 - Principal directions
 - Not necessarily partial derivative directions
 - Independent of parameterization

3D Curvature

Isotropic
Equal in all directions

- \(k_{min} = k_{max} > 0 \)
- \(k_{min} = k_{max} = 0 \)
- \(k_{min} = k_{max} < 0 \)

Anisotropic
2 distinct principal directions

- \(k_{min} > 0 \)
- \(k_{max} = 0 \)
- \(k_{min} = 0 \)
- \(k_{max} > 0 \)

Types:
- Spherical
- Planar
- Elliptic
- Parabolic
- Hyperbolic
Curvature

- Typical measures:
 - \textbf{Gaussian} curvature
 \[K = k_{\min} k_{\max} \]
 - \textbf{Mean} curvature
 \[H = \frac{k_{\min} + k_{\max}}{2} \]
Curvature on Mesh

- Approximate curvature of (unknown) underlying surface
 - Continuous approximation
 - Approximate the surface & compute continuous differential measures
 - Discrete approximation
 - Approximate differential measures for mesh

Normal Estimation

- Need surface normal to construct approximate surface
 - Defined for each face
 - Solution 1: average face normals
 - Does not reflect face “influence”
 - Solution 2: weighed average of face normals
 - Weights:
 - Face areas
 - Angles at vertex

- What happens at creases?
Curvature Estimate: Polyhedral Curvature

- Treat mesh as polyhedron with rounded corners with infinitesimally small radius
- Derive discrete properties from integrals across vertex *region*
 - Convention – associate half of each edge & 1/3 of triangle with vertex

Mean Curvature

- Integral of curvature on circular arc
 - β - central angle
 - \[\int k = \frac{1}{R} \text{arclength} = \frac{1}{R} \frac{\beta}{2\pi} \cdot 2\pi R = \beta \]
- On cylindrical parts $H = k_{max}/2$ ($k_{min}=0$)
- On planar faces $H=0$
Mean Curvature

- For entire vertex region
 \[\int H = \sum_i \beta_i / 2 \| e_i \| / 2 = \frac{1}{4} \sum_i \beta_i \| e_i \| \]

- Mean curvature at vertex \((A_i \text{ triangle area})\)
 \[H = \frac{3}{4 \sum A_i} \sum \beta_i \| e_i \| \]

Gaussian Curvature

- Use Gauss-Bonnet Theorem
 \[\int_K = 2\pi - \sum_i \gamma_i - \int_{\partial T} k_{BT} = 2\pi - \sum_i \gamma_i \]

- \(\text{sum of exterior (jump) angles of polygon around } v = \text{sum of face angles at } v \)

- Curvature at vertex
 \[K = \frac{3(2\pi - \sum_i \alpha_i)}{\sum_i A} \]

- Note (Gauss-Bonnet for closed surfaces) - Integral Gaussian curvature \(\approx \pi \text{ genus} \)
Mean Curvature – Another View

- Mean Curvature Flow $K(x) = kn \approx \frac{\nabla A}{A}$

- Area gradient (per triangle):
 \[\nabla A = \frac{1}{2} ((\cot \beta) \ AP + (\cot \alpha) \ BP) \]

- Integrate (sum) on all triangles
 \[\int_A K(x)dA = \frac{1}{2} \sum_{j \in \mathcal{N}(i)} (\cot \alpha_{ij} + \cot \beta_{ij}) \ (x_i - x_j) \]

- To get K (and normal) divide by “control” area

Curvature – Practicalities Example: Gaussian

- Approximation always results in some noise
- Solution
 - Truncate extreme values
 - Can come for instance from division by very small area
 - Smooth
 - More later
Examples: Mean Curvature

Some Applications

Ridges and Valleys
Remeshing
Viewpoint selection