

Compressing Connectivity

- Encode mesh structure
 - adjacency + orientation
- User can control traversal order
 order (+ info stored) define encoding

- Compression = Utilize redundancy
 - In mesh
 - Face has 3 vertices
 - Most edges have 2 faces => Edgebreaker
 - Most vertices have valence 6 => TG coder

TG Connectivity Coder: Intuition

<u>demo</u>

- Vertex based traversal
- Edges incident on any vertex can be ordered consistently counter-clockwise
 - True in any planar graph
 - Determines order

TG Encoding Algorithm: Output

Output command sequence:

Add 7, Add 6, Add 7, Add 5, Add 4 Add dummy 10 Add 3, Add 4, Add 4, Add 4, Add 4, Add 4

- Entropy compressed bitstream:
 - Huffman code:
 Add 4 Add 7 Add 5 Add 6 Add dummy 10 Add 3
 1 00 0100 0101 0110 0111
 - Resulting in 27 bits = 2.25 bits/vertex

More TG Special Cases

- Genus > 0: Merge operation required
 - Occurs when two different cut-borders intersect

Non-manifolds: Cut into manifold pieces

Typical Command Distribution

Coded to 2.0 bits/vertex

TG Algorithm Performance

- Disadvantages:
 - No theoretical upper bound on code length
- Advantages:
 - Gives very good compression rates (approx 2 bits/vertex) on typical meshes
 - Gives excellent rates on highly regular meshes

Lower Bound on Connectivity Coding Performance

Theorem (Tutte, 1960): Asymptotically (as n→∞) number of different planar triangulations on n vertices tends to

$$\Psi_n \approx \frac{1}{16} \sqrt{\frac{3}{2\pi}} n^{-\frac{5}{2}} \left(\frac{256}{27}\right)^{n+1}$$

 Entropy of this (uniform) distribution per vertex is

$$\frac{\log_2(\Psi_n)}{n} \rightarrow \log_2(\frac{256}{27}) \approx 3.24...$$
 bits/vertex