Re-Meshing Surfaces

- Given input mesh generate new mesh which is “better”
 - Element sizing
 - Element shape
- BUT is near (geometrically) to original surface
Hausdorff Metric

Given two sets (surfaces) P and Q

\[
H_p(Q) = \max_p \min_q ||p,q|| \\
H(P,Q) = \max(H_q(P), H_p(Q))
\]

- Point to point
- On mesh approximate by
 - Measuring vertex to surface distance
 - Measuring vertex to vertex distance
- Expensive to compute
 - Public Domain Code: Metro

How to (re)mesh surfaces?

- Can we apply Delaunay triangulation?
 - What is Delaunay criterion on surface?
 - Option 1: Use sphere instead of circle
 - Works for volumetric meshes (tets)
 - Option 2: Use pairwise test only
 - Theoretical Delaunay properties do not hold
 - Boundary recovery = Approximation quality
Approaches

- Mesh adaptation/Local Remeshing
 - Modify existing mesh using sequence of local operations
 - Evaluate approximation quality at every step

- Reduction to 2D/Global Remeshing
 - Segment surface into parameterizable pieces
 - Parameterize in 2D
 - Mesh in 2D (Delaunay)
 - Project back

Reduction to 2D/Global Remeshing

- Segment surface into parameterizable charts
 - distortion/chart size (count) trade-off
- Parameterize in 2D
 - Distortion affects 3D mesh quality
- Mesh charts in 2D (Delaunay)
 - Take parametric distortion into account (sizing)
 - Take care of shared boundaries
- Project back
Parameterization

- Projection to/from 2D should not distort mesh
- Can handle some stretch
 - Measure & take into account during 2D meshing
 - Use as component of local sizing
- MUST be conformal
 - If care about quality
 - Want: Equilateral (Delaunay) in 2D = equilateral (Delaunay) in 3D

Impact of distortion
Segmentation

- Chart Properties
 - parameterizable: open + genus 0
 - Low distortion
 - Ideal: Developable charts

- Approaches
 - Single chart
 - Generate (short) cuts to reduce genus
 - Cut through high curvature/distortion vertices
 - Multiple charts
 - More convex boundaries - easier to handle

Lloyd Segmentation Framework

- Lloyd iterations:
 - Select random triangles to act as seeds
 - Grow charts around seeds using a greedy approach
 - Find new seed for each chart
 - Typically chart center
 - Repeat from step 2 until convergence
Proxies

- Charts represented by proxies – used for reseeding and growth
- Example I: Planar charts
 - Proxy: Normal to plane N_c
 - Compute: Average normal of chart triangles
 - Growth metric: Normal difference $F(C,t) = N_c \cdot n_t$

Example II: D-Charts (Developmental Charts)

- Constant angle between surface normal and axis → Developable chart
- Proxy: $\langle \text{axis, angle} \rangle = \langle N_c, \theta_c \rangle$
- Compute:
 $\min_{N_c \in A_c} \frac{1}{A_c} \sum_{t \in C} A_f(C,t)$ s.t. $\|N_c\| = 1$
- Growth metric:
 $F(C,t) = (N_c \cdot n_t - \cos \theta_c)^2$
- Combine with compactness
Examples

Example Results
Meshing - sizing

- Measure parametric stretch (3D to 2D)
- Measure stretch per edge $||e_{3D}||/||e_{2D}||$
- Vertex stretch = average of edges
- Multiply sizing function (at vertices) by stretch

Example (use WCVD)
Boundary

- Need mesh consistency along boundaries
- Enforce shared boundary vertex positions

Boundaries

- Consistent but visible...
Features

- Preserving features - locate surface creases and prevent removing them
 - Special handling by segmentation and/or 2D meshing

Global Methods - Properties

- Three major components:
 - Segment
 - Parameterize
 - Mesh in 2D

- Strongly depends on parameterization quality
 - In turn depends on segmentation
 - More “formal”

- Typically more complex to implement from scratch