Re-Meshing Surfaces

- Given input mesh, generate new mesh which is "better"
 - Element sizing
 - Element shape
- BUT is near (geometrically) to original surface
Hausdorff Metric

- Given two sets (surfaces) P and Q
 \[H_P(Q) = \max_{p} \min_{q} ||p,q|| \]
 \[H(P,Q) = \max(H_P(P), H_Q(Q)) \]
- Point to point
- On mesh approximate by
 - measuring vertex to surface distance
 - measuring vertex to vertex distance
- Expensive to compute
 - Public Domain Code: Metro

How to (re)mesh surfaces?

- Can we apply Delaunay triangulation?
 - What is Delaunay criterion on surface?
 - Option 1: Use sphere instead of circle
 - Works for volumetric meshes (tets)
 - Option 2: Use pairwise test only
 - Theoretical Delaunay properties do not hold
 - Boundary recovery = Approximation quality
Approaches

- Mesh adaptation/Local Remeshing
 - Modify existing mesh using sequence of local operations
 - Evaluate approximation quality at every step

- Reduction to 2D/Global Remeshing
 - Segment surface into parameterizable pieces
 - Parameterize in 2D
 - Mesh in 2D (Delaunay)
 - Project back

Mesh adaptation

- Store original for approximation evaluation
- Connectivity modification
 - Edge flips
 - Refinement/Coarsening
- Geometry modification - mesh smoothing
- Typical Sequence:
 - Refine/Coarsen to satisfy sizing
 - Smooth mesh (sizing + quality)
 - Perform flips after every other operation
 - Repeat entire sequence several times
Mesh adaptation: Edge Flip

- Given 2 triangles flip one diagonal if longer than the other
- 3D equivalent of Delaunay test in 2D (why?)
- Test impact on approximation (why?)
 - Approximate Hausdorff metric
 - Normal error
 - Smoothness
 - Test self-intersection
 - Distance based
 - Very expensive test - often ignored

Normal Error

- Based on normals only
- Defined for a face
- Normals N_j, N_2, N_3 - from original mesh
 - Store original locations for each vertex
- N_f - current face normal
- Distance:
 \[
 E_{gap}(f) = \max_{i \in \{1,2,3\}} \langle N_{f,i}, N_{f,i+1} \rangle < \cos \theta_{gap}
 \]
- Why?
Smoothness

\[E_{\text{smooth}}(f) = \max_{i \in \{1,2,3\}} \langle N_I, N_i \rangle \leq \cos \theta_{\text{smooth}} \]

Example

Before (avg min 30)

After (avg min 33)
Mesh Adaptation: Refinement

- Add vertices - reach desired sizing or element count
- Strategy:
 - Split long edges - insert mid-points
- Vertex positioning
 - Project to original mesh
- Hard to achieve good spacing
 - Improve by smoothing

Example

Before (avg min 33)

Second round of flips (avg min 37)
Projection to Original Mesh

- **Nearest point**
 - Requires search
 - Find original face closest to (estimated) new vertex
 - Expensive
 - Unlimited Hausdorff error

- **Local parameterization**
 - Compute new location in terms of barycentric coordinates of new face vertices
 - Locally parameterize old mesh to get corresponding location
 - Use sophisticated data structures for efficiency
 - Better approximation

Local Parameterization

Input:
- New mesh face: 3 vertices
 - known locations (face+ coords) on original mesh
- New vertex: barycentric coordinates on new face
- Compute small patch of old mesh containing all 3 vertices
- Parameterize patch in 2D
- Compute new location on parameterized patch
- Project to 3D
Mesh Adaptation: Coarsening

- Similar to simplification
- Operations:
 - Vertex removal
 - Edge collapse
 - Project new vertex to original surface as in refinement
- Approximation Error
 - Quadrics
 - Normal based

Mesh Adaptation: Smoothing

- Move vertices ON surface to improve sizing/quality
- Moving One Vertex:
 - Compute vertex location as function of neighbors in new mesh
 - E.g. convex combination
 - Use local parameterization
 - Project to original mesh
 - Check approximation error
 - If too large, keep previous location
Local Parameterization

- Project vertex + neighbors to current normal plane
- Relocate vertex in plane
- Find new triangle in which vertex is located
- Compute barycentric coordinates in this triangle
- Use for placement on original mesh

Example

Before (avg min 30)

Smoothing + Flips (avg min 45)
Smoothing: Centroidal Voronoi Diagram

- Relocate vertices (smoothing) to control sizing (sampling)
- Lloyd algorithm on surface mesh
 - On 2D umbrella compute VD of vertex + neighbors
 - Place vertex at center of mass of it’s cell
 - Repeat

Michelangelo's David

Original: 350k faces
Remesh: 100k faces
Mesh Adaptation

- Modify existing mesh using sequence of local operations
 - Fast
 - Simple to implement
 - Depending on choice of local operations
 - Hard to find GOOD spacing of vertices
 - WCVD does the trick but at a cost...
 - Heuristic
 - How many iterations of each operation to do?