
Real-Time Human Motion Capture with Multiple Depth Cameras

Alireza Shafaei, James J. Little
Computer Science Department

The University of British Columbia
Vancouver, Canada

shafaei@cs.ubc.ca, little@cs.ubc.ca

Abstract—Commonly used human motion capture systems
require intrusive attachment of markers that are visually
tracked with multiple cameras. In this work we present an
efficient and inexpensive solution to markerless motion capture
using only a few Kinect sensors. Unlike the previous work
on 3d pose estimation using a single depth camera, we relax
constraints on the camera location and do not assume a co-
operative user. We apply recent image segmentation techniques
to depth images and use curriculum learning to train our
system on purely synthetic data. Our method accurately
localizes body parts without requiring an explicit shape model.
The body joint locations are then recovered by combining
evidence from multiple views in real-time. We also introduce a
dataset of ~6 million synthetic depth frames for pose estimation
from multiple cameras and exceed state-of-the-art results on
the Berkeley MHAD dataset.

Keywords-depth sensors; human motion capture;

I. INTRODUCTION

Human motion capture is a process to localize and track
the 3d location of body joints. It is used to acquire a precise
description of human motion which could be used for a
variety of tasks such as character animation, sports analysis,
smart homes, human computer interaction, and health care.

In this work we are interested in extraction of 3d joint
locations from multiple depth cameras. Unlike previous
work we do not impose contextual assumptions for limited
scenarios such as home entertainment. Instead, we focus on
the problem of pose estimation to get comparable results to
commercial motion capture systems. Our target is to have
a real-time, inexpensive, and non-intrusive solution to the
general human motion capture problem.

While single view pose estimation has been extensively
studied [1]–[4], surprisingly, pose estimation with multiple
depth sensors is relatively unexplored. One possible expla-
nation is the challenge of overcoming the interference of
multiple structured light sources. However, with the recent
adoption of time-of-flight sensors in the Kinect devices the
interference has become unnoticeable.

One of the main challenges in this field is the absence
of datasets for training or even a standard benchmark for
evaluation. At the time of writing the only dataset that
provides depth from more than one viewpoint is the Berkeley
Multimodal Human Action Database (MHAD) [5] with only
two synchronized Kinect readings.

Dense Classifier

View
Aggregation

Pose
Estimation

1

2

3

50 cm

800 cm

Reference

Figure 1: An overview of the problem and our pipeline. The
output depth of the Kinect sensors is first passed through a
dense classifier to identify the target body parts (1). We then
merge all the cameras into a single 3d point cloud (2) and
estimate the posture (3).

Our first contribution is a markerless human motion cap-
ture system. Our pipeline uses an intermediate representation
inspired by the work of Shotton et al. [2]. We split the
multiview pose estimation task into three subproblems of
(i) dense classification, (ii) view aggregation, and (iii) pose
estimation (See Fig. 1). Our approach can be distinguished
from the previous work in several aspects. The context of our
problem is non-intrusive and real-time. We do not assume
co-operation, a shape model or a specific application such
as home entertainment. As a result our method is applicable
to a wider range of scenarios. We only assume availability
of multiple externally calibrated depth cameras.

Our second contribution is three datasets of synthetic
depth data for training multiview or single-view pose estima-
tion systems. Our three datasets contain varying complexity



of shape and pose with a total of 6 million frames. These
datasets are constructed in a way that enables an effective
application of curriculum learning [6]. We show that a
system trained on our synthetic data alone is able to gener-
alize to real-world depth images. We also release an open-
source system for synthetic data generation to encourage and
simplify further applications of computer generated imagery
for interested researchers1.

II. RELATED WORK

The previous work on depth-based pose estimation can
be categorized into two classes of top-down generative and
bottom-up discriminative methods.

At the core of the generative methods there is a parametric
shape model of the human body. The typical approach
is then to find the set of parameters that best describes
the evidence. Approaches to find the best parameters vary,
but the common theme is to frame it as an expensive
optimization problem [1], [3], [7]–[9]. Since a successful
application of generative methods require reasonably accu-
rate shape estimates, it is common practice to estimate the
shape parameters beforehand [3], [8]. This dependence on
the shape estimates limits the applicability of these methods
to controlled environments with co-operative users.

Bottom-up discriminative models directly focus on the
current input, usually down to pixel level classification to
identify individual body parts. For instance, Shotton et al. [2]
present a fast pipeline for single view pose estimation within
a home entertainment context. Their method classifies each
pixel of a depth image independently using randomized
decision forests. The joint information is inferred by running
a mean-shift algorithm on the classification output. Girshick
et al. [10] improve the body estimates by learning a random
forest to predict joint locations as a regression problem on
the classification outputs directly. It should be noted that
neither the data nor the implementation of these methods are
available for independent evaluation. The popular Microsoft
Kinect SDK only feeds data from the sensor directly. More
recently, Yub Jung et al. [4] presented a random-walk based
pose estimation method that outperforms the previous state-
of-the-art on a single view while performing at more than
1000 fps.

In contrast, our solution is a middle ground between the
discriminative and the generative approaches. Although our
approach does not require a parametric shape model, we
integrate high-level spatial relationships of the human body
during dense classification. Specifically, by using convolu-
tional networks one can even explicitly take advantage of
CRF-like inference during classification to achieve smooth
and consistent output [11].

Multiview Depth. Many of the existing methods for sin-
gle view pose estimation, especially the top-down methods,

1All the data and source codes are accessible at the first author’s
homepage at shafaei.ca.

can be naturally extended for the multiview case. Michel et
al. [12] show that through calibration of the depth cameras
one can reconstruct a detailed 3d point cloud of target
subjects to do offline pose estimation by applying particle
swarm optimization methods over the body parameters of
a puppet. The shape parameter of each subject is manually
tuned before the experiments. Phan and Ferrie [13] use opti-
cal flow in the RGB domain together with depth information
to perform multiview pose estimation within a human-robot
collaboration context at the rate of 8 fps. They report a
median joint prediction error of approximately 15 cm on a
T-pose sequence. Zhang et al. [9] combine the depth data
with wearable pressure sensors to estimate shape and track
human subjects at 6 fps. In this work we demonstrate how
the traditional building blocks can be effectively merged to
achieve the state-of-the-art performance in multiview depth-
based pose estimation.

Dense Image Classification. Most current competitive
approaches make use of deep convolutional networks [11],
[14]–[17]. Long et al. [16] introduced the notion of fully
convolutional networks. Their method applies deconvolution
layers fused with the output of the lower layers in the
network to generate fine densely classified output. Zheng
et al. [11] show that it is also possible to integrate the
mean-field approximation on CRFs with Gaussian pairwise
potentials as part of a deep convolutional architecture. This
approach enables end-to-end training of the entire system
to get state-of-the-art accuracy in image segmentation. The
takeaway message is that under certain assumptions and
modelling constraints the machinery of convolutional net-
works can be interpreted as reasoning within the spatial
domain on dense classification tasks. This proves useful
when there are long distance dependencies in the spatial
domain, such as the case when it is necessary to infer the
side of the body to produce correct class labels, something
that can not be decided locally.

Synthetic Data. Shotton et al. [2] augment the training
data with synthetic depth images for training and evaluation
of their method. They also note that synthetic data in this
case can be even more challenging than real data [2]. Park
and Ramanan [18] synthesize image frames of video to
improve hand pose estimation. Rogez et al. [19] use depth
synthesis to estimate hands’ pose in an egocenteric camera
setting. Gupta et al. [20], [21] use synthetically generated
trajectory features to improve cross-view action recognition
by feature augmentation. Since we take a fully supervised
approach, dense labels are required to train the part classifier.
The use of synthetic data saved us a huge data collection and
labelling effort.

Curriculum Learning. Bengio et al. [6] describe curricu-
lum learning as a possible approach to training models that
involve non-convex optimization. The idea is to rank the
training instances by their difficulty. This ranking is then
used for training the system by starting with the simple



Figure 2: Color-coded body texture to identify regions
of interest (left), and two random samples of depth and
groundtruth from our data (right). We define 43 regions and
distinguish left and right side of the body.

instances and then gradually increasing the complexity of the
instances during the training procedure. This strategy is hy-
pothesized to improve the convergence speed and the quality
of the final local minima [6]. Our experiments suggest that a
controlled approach to training deep convolutional networks
can be crucial for training a better model, providing an
example of curriculum learning in practice.

III. SYNTHETIC DATA GENERATION

We build a pipeline to generate samples of synthetic depth
images of human body shapes using a variety of poses and
viewpoints. Our sampling process is described in Alg. 1.

Algorithm 1 Sample data
C: Pool of characters.
L: Range of camera locations.
P: Pool of postures.
n: Number of cameras.

1: procedure SAMPLE(C,L,P, n)
2: c ∼ Unif(C) . select a random character
3: l1:n ∼ Unif(L) . select n random locations
4: p ∼ Unif(P) . select a posture
5: S ← Render depth image and groundtruth
6: return S . S = {(Di, Gi)}ni=1

The character set C is the set of 3d models with variations
in shape, age, clothing, and gender, generated using the
free open-source project Make Human2. We create a special
skin texture for the characters to color-code each region of
interest (see Fig. 2). We found the 43 body regions shown
in Fig. 2 to give sufficiently good results.

The camera location L is an interval description for cam-
era placement. The azimuth spans the [−π,+π) range. The
camera distance from the character is within [1.5, 4]m. Note
that this distance constraint is only on the data generation

2http://www.makehuman.org/

Table I: We generate three datasets as our curriculum. There
are a total of 100,000 different postures. The simple set is
the subset of postures that have the label ‘walk’ or ‘run’.
Going from the first dataset to the second would require
pose adaptation, while going from the second to the third
dataset requires shape adaptation.

Dataset Postures Characters Samples

Easy-Pose simple (~10K) 1 1M
Inter-Pose all (100K) 1 1.3M
Hard-Pose all (100K) 16 300K

process and not on the pose estimation pipeline. We also
need real human postures P to pose our characters. We
prepare this set by clustering all the human postures of the
CMU motion capture3 dataset and picking the 100,000 most
dissimilar poses.

The final parameter n is the number of cameras for
each sample. The function sample returns a set of n
pairs (Di, Gi), where Di is the quantized depth image
and Gi is the groundtruth image as seen from the i-
th camera. While the depth image includes the clothing
items, in the groundtruth image we only render the textured
skin. Rendering is done with Autodesk Maya4. We set the
camera parameters such that the generated data resembles
the Kinect 2 output.

We define three datasets with varying complexity as our
curriculum for training, as described in Table I. The easiest
dataset has only one character with the subset of postures
that are labeled with ‘walk’ or ‘run’ (Easy-Pose). We
then increase the difficulty by varying the set of possible
postures (Inter-Pose), requiring the classifier to handle
larger pose variations. The final dataset includes the set of
all characters with different physical shapes as well as all
the postures from our dataset (Hard-Pose). A transition
from Inter-Pose to Hard-Pose would require learning
shape variations. The entire data is generated with n = 3
cameras and each dataset has train, validation, and
test sets with mutually disjoint postures. The datasets
and the Python script to render customized data are made
publicly accessible5.

IV. MULTIVIEW POSE ESTIMATION

Our framework consists of three stages (see Fig. 1). In the
first stage we process the input of each sensor independently
to generate an intermediate representation. Each depth image
is passed through a Convolutional Neural Network (CNN)
to generate densely classified depth. Having an intermediate
representation gives us the flexibility to add and remove
sensors from the environment with minimal reconfiguration.

3http://mocap.cs.cmu.edu/
4http://www.autodesk.com/products/maya/
5Available at shafaei.ca.



To merge all the data we use the extrinsic camera parameters
and reconstruct a 3d point cloud in the reference space.
This 3d point cloud is then labeled with the classification
probabilities and used for pose estimation. In the following
sections we look at each step in detail.

A. Dense Depth Classification

We use CNNs to generate densely classified depth. Our
architecture is motivated by the work of Long et al. [16].
More specifically we use deconvolution outputs fused with
the information from the lower layers to generate fine
densely classified depth. With this approach we are taking
advantage of the information in the neighboring pixels to
generate densely classified depth. This is in contrast to
random forest based methods such as [2] where each pixel
is evaluated independently.

Preprocessing. The input to our network is a 250 ×
250 pixel depth image with 30 pixels of margin. The depth
values are quantized to 255 levels spanning the [50, 800] cm
range. We translate the average depth of each person to
approximately 160 cm and spatially rescale to fit inside our
window while preserving the aspect ratio.

Classification. The preprocessed image is then fed to the
CNN of Fig. 3. The output of the network is 250×250×44,
representing a 44 dimensional vector of probabilities on
each pixel for all the 43 classes and the background. The
deconvolution kernel size of 19 × 19 at the final stage
enforces the spatial dependency between the adjacent pixels.

Training. We initially attempted to train our network
directly on Hard-Pose, however, in all of the trials with
different optimization settings the accuracy of the network
did not go above 50% in average per-class classification.
Resorting to the curriculum learning idea of Bengio et al. [6]
we simplified the task by defining easier datasets that we call
Easy-Pose and Inter-Pose (see Table I).

We start training the network with the Easy-Pose
dataset. Similar to Long et al. [16] we learned during
our experiments that the entire network could be trained
densely end-to-end from scratch without any class balancing
schemes. Each iteration processes eight depth images and we
stop the initial phase of training at 250K iterations reaching
dense classification accuracy of 87.8% on Easy-Pose.
We then fine-tune the resulting network on Inter-Pose,
initially starting at an accuracy of 78% and terminating
after 150K iterations with an accuracy of 82%. Interestingly
the performance on the Easy-Pose is preserved through-
out this fine-tuning. Finally we start fine-tuning on the
Hard-Pose dataset and stop after 88K iterations. Initially
this network evaluates to 73% and by the termination point
we have an accuracy of 81%. In all of the above steps
we test on the validation sets of each dataset as the
test sets are reserved for the final pose estimation task.
The evolution of our three networks is shown in Table II.
Notice how the final accuracy improved from 50% to 81%

Table II: The dense classification accuracy of the trained
networks on the validation sets of the corresponding
datasets. Net 2 and Net 3 are initialized with the learned
parameters of Net 1 and Net 2 respectively.

Dataset Easy-Pose Inter-Pose Hard-Pose

Start End Start End Start End

Net 1 0% 87% – – – –
Net 2 87% 87% 78% 82% – –
Net 3 87% 85% 82% 79% 73% 81%

by applying curriculum learning. The transition of training
from Net 1 to Net 2 demands generalization of posture,
while the transition from Net 2 to Net 3 requires shape
invariance. Our experiments demonstrate a real application
of curriculum learning in practice.

B. View Aggregation

At this step we have collected n densely classified outputs
from our cameras. We wish to generate a single labeled 3d
point cloud. Using the intrinsic parameters of each Kinect
we can reconstruct a local point cloud. We can merge all
the point clouds using the extrinsic camera parameters to
transform each point cloud to a reference space.

We then collect a set of statistics, namely: (i) the median
of each dimension, (ii) the covariance matrix, (iii) the eigen-
values of the covariance matrix, (iv) the standard deviation
of each dimension, and (v) the minimum and the maximum
of each dimension for each class and use it as features for the
later stage. Since we are interested in real-time performance
we limit ourselves to features that can be extracted quickly.
The redundancy of information in the feature space, such as
including the eigenvalues of the covariance matrix as well
as the covariance itself, is to ensure linear models can take
advantage of all the information that is available. We can
devise filtering approaches for the merge process or perform
temporal smoothing when the data is a sequence. However,
we have found that our computationally inexpensive ap-
proach is sufficient to achieve state-of-the-art results. Our
simple approach gives a feature vector f ∈ R1032, that is,
concatenation of all 24 features per class.

C. Pose Estimation

We treat the problem of pose estimation as regression. For
each joint j in our target skeleton we would like to learn
a function Fj(·) that predicts the location of joint j based
on the feature vector f . After examining a few real-time
performing design choices such as linear regression and neu-
ral networks we learned that simple linear regression gives
the best trade-off between complexity and performance. We
experimented with various neural network architectures, but
the simple linear regression always performed better on
average. Our linear regression is a least squares formulation



(64)
128×128

(64)
42×42

(128)
40×40

(128) 20×20 (256) 16×16 14×14
(44)

16×16
(44)

20×20
(44)

16×16
(44)

Σ

(44)
34×34

(44)
42×42

Σ

(44)
34×34

(1)
250×250

(44)
250×250

Conv (5×5)
Stride (2)
Pad (2)

ReLU+
Pool (3×3)
Stride (3)

Conv (3×3)
Stride (1)

ReLU+
Pool (2×2)
Stride (2)

Conv (5×5)
Stride (1)
+ ReLU

Conv (3×3)
Stride (1)

Deconv (3×3)
Stride (1)

Conv (1×1)

Dropout (0.5)
Deconv (4×4)

Stride (2)

Conv (1×1)

Dropout (0.5)

Deconv (19×19)
Stride (7)

Input

Output

Figure 3: Our CNN dense classifier. The input is a 250 × 250 normalized depth image. The first part of the network
generates a 44× 14× 14 coarse densely classified depth with a high stride. Then it learns deconvolution kernels fused with
the information from lower layers to generate fine densely classified depth. Like [16] we use summation and crop alignment
to fuse information. The input and the output blocks are not drawn to preserve the scale of the image. The number in the
parenthesis within each block denotes the number of the corresponding channels.

with an `2 regularizer which is also known as Ridge Regres-
sion and has a closed-form solution. We also experimented
with the LASSO counterpart to obtain sparser solutions but
the improvements were negligible while the optimization
took substantially more time. If the input data is over a
sequence, we further temporally smooth the predictions by
calculating a weighted average over the previous estimates,
i.e., Ỹi =

∑K
j=0 λjYi−j s.t.

∑K
j=0 λj = 1. The regularizer

hyper-parameters and the optimal smoothing weights are
chosen automatically by cross-validation over the training
data.

V. EVALUATION AND DISCUSSION

In this section we present our evaluation results on three
datasets. Since each dataset has a specific definition of joint
locations we only need to train the regression part of our
pipeline on each dataset. The CNN depth classifier of Sec.
IV-A is trained once and only on the synthetic data. Our
experiments are run with Caffe [22] on a Tesla K40 GPU.
Each forward pass of the CNN takes 6.9ms on the GPU
or 40.5ms on the CPU and requires 25MB of memory per
frame. The entire pipeline can operate at 30 fps on a single
machine while communicating with up to four Kinects.

Evaluation Metrics. There are two evaluation metrics
that are commonly used for pose estimation: mean joint pre-
diction error, and mean average precision at threshold. Mean
joint prediction error is the measure of average error incurred
at prediction of each joint location. Mean average precision
at threshold is the fraction of predictions that are within the
threshold distance of the groundtruth. Because of the errors
in groundtruth annotations it is also common to just report
the mean average precision at 10 cm threshold [1], [3], [4].

Datasets. We provide quantitative evaluations on the
Berkeley MHAD [5] and our synthetic dataset. Although for
single view depth images there are a few datasets such as
EVAL [1], and PDT [8], the only publicly available dataset
for multiview depth at the moment of writing is the Berkeley
MHAD [5].

A. Evaluation on UBC3V Synthetic

For evaluation we use the Test set of the Hard-Pose.
This dataset consists of 19,000 postures with 16 charac-
ters from three cameras placed at random locations. These
19,000 postures are not present in the training set of our
dataset and have not been observed before. The groundtruth
and the extrinsic camera parameters come from the synthetic
data directly and there are no errors associated with them.
Having groundtruth for body part regions and the posture
helps us separate the evaluation of the dense classifier and
the pose estimation technique. That is, we can evaluate the
pose estimation technique assuming perfect dense classifica-
tion is available separately from the case where classification
comes from our CNN. This separation gives us insight on
how improvement on dense classification is likely to affect
pose estimation, and whether one should spend time on
improving the classifier or the pose estimator.

For training we have the multi-step fine-tuning procedure
as described in Sec. IV-A. We refer to the final fine-tuned
network as Net 3 throughout our experiments.

Dense Classification. The Test set of the Hard-Pose
includes 57,057 depth frames with dense class annotations
that are synthetically generated. Figure 4 demonstrates a
few random classification samples and the corresponding
groundtruth. The CNN correctly identifies the direction of



G
ro

un
dt

ru
th

N
et

 3
Figure 4: The groundtruth body part regions versus the
output of Net 3 classifier on the Test set of the
Hard-Pose. Each pixel of the Net 3 output is the color
of the most likely class.

the body and generates true classes for the left and the
right sides, but seems to be ignoring sudden discontinuities
in the depth. For instance in the middle column of Fig. 4
parts of the right shoulder are mixed with the head classes.
The overall accuracy of Net 3 on the Test set is 80.6%,
similar to the reported accuracy on the Validation set in
Table II.

Pose Estimation. We evaluate our linear regression on
the groundtruth class and the classification output of our
CNN. The estimate derived from the groundtruth serves as a
lower bound on the error for the pose estimations algorithm.
The mean average joint prediction error is shown in Fig. 5.
Our system achieves an average pose estimation error of
2.44 cm on groundtruth, and 5.64 cm on the Net 3. The
gap between the two results is due to dense classification
errors. This difference is smaller on easy to recognize body
parts and gets larger on the hard to recognize classes such
as hands or feet. It is possible to reduce this gap by using
more sophisticated pose estimation methods at the cost of
more computation. In Fig. 6 we compare the precision at
threshold. The accuracy at 10 cm for the groundtruth and
the Net 3 is 99.1% and 88.7% respectively.

B. Evaluation on Berkeley MHAD

This dataset includes 12 subjects performing 11 actions
while being recorded by 12 cameras, two Kinect ones, an
Impulse motion capture system, four microphones, and six
accelerometers. The motion capture sequence with 35 joints
is the groundtruth for pose estimation on this dataset (for a
list of joints see Fig. 9a). We only use the depth information
of the two opposing Kinect ones for pose estimation.

At the moment of writing there is no protocol for evalua-
tion of pose estimation techniques on this dataset. The leave-

Head
Neck

Spine2

Spine1

Spine

Hip
RHip

RKnee

RFoot

LHip
LKnee

LFoot

RShoulder

RElbow

RHand

LShoulder

LElbow

LHand

M
ea

n
 A

ve
ra

g
e 

E
rr

o
r 

(c
m

)

0

2

4

6

8

10

12

14

16

18

20

Groundtruth Net 3

Figure 5: Mean average joint prediction error on the
groundtruth and the Net 3 classification output. The error
bar is one standard deviation. The average error on the
groundtruth is 2.44 cm, and on the Net 3 is 5.64 cm.

Threshold (cm)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
ea

n
 A

ve
ra

g
e 

P
re

ci
si

o
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Groundtruth
Net 3

Figure 6: Mean average precision of the groundtruth dense
labels and the Net 3 dense classification output with accu-
racy at threshold 10 cm of 99.1% and 88.7% respectively.

one-out approach is a common practice for single view pose
estimation. However, each action has five repetitions and we
can argue in general that it may not be a fair indicator of
the performance because the method can adapt to the shape
of the subject of the test on other sequences to get a better
result. Furthermore, we are no longer restricted to only a
few sequences of data as in previous datasets.

To evaluate the performance on this dataset we take the
harder leave-one-subject-out approach, that is, for evaluation
on each subject we train our system on all the other subjects.
This protocol ensures that no extra physical information is
leaked during the training and can provide a measure of
robustness to shape variation.

Dense Classification. To use the CNN that we have
trained on the synthetic data we need to rescale the depth
images of this dataset to match the output scale of Kinect 2
sensors. After this step we simply feed the depth image to
the CNN to get dense classification results. Figure 7 shows



Fr
on

t K
in

ec
t

Ba
ck

 K
in

ec
t

50 cm

800 cm

Reference

Figure 7: The dense classification result of Net 3 together
with the original depth image on the Berkeley MHAD [5]
dataset. Net 3 has been trained only on synthetic data.
Each pixel is colored according to the most likely class.

the output of our dense classifier from the two Kinects on a
few random frames. Even though the network has been only
trained on synthetic data, it is generalizing well on the real
test data. As demonstrated in Fig. 7, the network has also
successfully captured the long distance spatial relationships
to correctly classify pixels based on the orientation of the
body. The right column of Fig. 7 shows an instance of
high partial classification error due to occlusion. On the
back image, the network mistakenly believes that the chair
legs are the subject’s hands. However, once the back data
is merged with the front data we get a reasonable estimate
(see Fig. 8).

Pose Estimation. We use the groundtruth motion capture
joint locations to train our system. For each test subject we
train our system on the other subjects’ sequences. The final
result is an average over all the test subjects.

Figure 9a shows the mean average joint prediction error.
The total average joint prediction error is 5.01 cm. The torso
joints are easier for our system to localize than hands’ joints,
a similar behavior to the synthetic data results. However, it
must be noted that even the groundtruth motion capture on
smaller body parts such as hands or feet is biased with a
high variance. During visual inspection of Berkely MHAD
we noticed that on some frames, especially when the subject
bends over, the location of the hands is outside of the body
point cloud or even outside the frame, and clearly erroneous.
The overall average precision at 10 cm is 93%.

An interesting observation is the similarity of performance
on Berkeley MHAD data and the synthetic data in Fig. 5.
This suggests that the synthetic data is a reasonable proxy for
evaluating performance, as has been suggested by Shotton et

Figure 8: The blue color is the groundtruth of Berkeley
MHAD [5] and the red color is our pose estimate.

Table III: Mean and standard deviation of the prediction
error by testing on subjects and actions with the joint
definitions of Michel et al. [12]. We also report and compare
the accuracy at 10 cm threshold.

Subjects Actions

Mean Std Acc (%) Mean Std Acc (%)

OpenNI [12] 5.45 4.62 86.3 5.29 4.95 87.3
Michel et al. [12] 3.93 2.73 96.3 4.18 3.31 94.4
Ours 3.39 1.12 96.8 2.78 1.5 98.1

al. [2]. Figure 9b shows the accuracy at threshold for joint
location predictions.

We also compare our performance with Michel et al. [12]
in Table III. Since they are using an alternative definition
of skeleton that is derived by their shape model, we only
evaluate over a subset of the joints that are closest with
the locations presented in Michel et al. [12]. Note that the
method of [12] uses predefined shape parameters that are
optimized for each subject a priori and does not operate
in real-time. In contrast, our method does not depend on
shape attributes and operates in real-time. Following the
procedure of [12] we evaluate by testing the subjects and
testing the actions. Our method improves the previous mean
joint prediction error from 3.93 to 3.39 (13%) when tested
on subjects and 4.18 to 2.78 (33%) when tested on actions.

VI. CONCLUSION

We presented an efficient and inexpensive markerless
motion capture system that uses only a few Kinect sensors.
Our system only assumes availability of calibrated depth
cameras and is capable of real-time performance without
requiring an explicit shape model or cooperation. We further
presented a dataset of ~6 million synthetic depth frames
for pose estimation from multiple cameras. Our experiments
demonstrated an application of curriculum learning in prac-
tice and our system exceeded state-of-the-art multiview pose
estimation performance on the Berkeley MHAD dataset.



Hip
Spine1

Spine2

Spine3

Neck
Neck1

Head
RLShoulder

RShoulder

RArm
RElbow

RForearm

RHand

RHFingerBase

LLShoulder

LShoulder

LArm
LElbow

LForearm

LHand

LHFingerBase

RHip
RULeg

RKnee

RLLeg

RFoot

RToeBase

RToe
LHip

LULeg

LKnee

LLLeg

LFoot

LToeBase

LToe

M
ea

n
 A

ve
ra

g
e 

E
rr

o
r 

(c
m

)

0
1
2
3
4
5
6
7
8
9

10
11
12

(a)

Threshold (cm)
0 2 4 6 8 10 12 14 16 18 20

M
ea

n
 A

ve
ra

g
e 

P
re

ci
si

o
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 9: (a) Joint prediction mean average error on the Berkeley MHAD [5] dataset. The error bar is one standard deviation.
The total mean average error per joint is 5.01 cm. (b) Mean average precision at threshold for the entire skeleton on the
Berkeley MHAD dataset.

ACKNOWLEDGEMENTS

We would like to thank Ankur Gupta for helpful com-
ments and discussions. We gratefully acknowledge the sup-
port of NVIDIA Corporation with the donation of the
GPUs used for this research. This work was supported in
part by NSERC under Grant CRDPJ 434659-12 and the
ICICS/TELUS People & Planet Friendly Home Initiative at
UBC.

REFERENCES

[1] V. Ganapathi, C. Plagemann, D. Koller, and S. Thrun, “Real-
Time Human Pose Tracking from Range Data,” in ECCV,
2012.

[2] J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio,
A. Blake, M. Cook, and R. Moore, “Real-time Human Pose
Recognition in Parts from Single Depth Images,” Communi-
cations of the ACM, vol. 56, no. 1, 2013.

[3] M. Ye and R. Yang, “Real-time Simultaneous Pose and Shape
Estimation for Articulated Objects Using a Single Depth
Camera,” in CVPR, 2014.

[4] H. Yub Jung, S. Lee, Y. Seok Heo, and I. Dong Yun,
“Random Tree Walk Toward Instantaneous 3D Human Pose
Estimation,” in CVPR, 2015.

[5] F. Ofli, R. Chaudhry, G. Kurillo, R. Vidal, and R. Bajcsy,
“Berkeley MHAD: A Comprehensive Multimodal Human
Action Database,” in WACV, 2013.

[6] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Cur-
riculum Learning,” in ICML, 2009.

[7] V. Ganapathi, C. Plagemann, D. Koller, and S. Thrun, “Real
Time Motion Capture Using a Single Time-of-flight Camera,”
in CVPR, 2010.

[8] T. Helten, A. Baak, G. Bharaj, M. Müller, H.-P. Seidel, and
C. Theobalt, “Personalization and Evaluation of a Real-time
Depth-based Full Body Tracker,” in 3rd joint 3DIM/3DPVT
Conference (3DV), 2013.

[9] P. Zhang, K. Siu, J. Zhang, C. K. Liu, and J. Chai, “Lever-
aging Depth Cameras and Wearable Pressure Sensors for
Full-body Kinematics and Dynamics Capture,” TOG, vol. 33,
no. 6, 2014.

[10] R. Girshick, J. Shotton, P. Kohli, A. Criminisi, and A. Fitzgib-
bon, “Efficient Regression of General-activity Human Poses
from Depth Images,” in ICCV, 2011.

[11] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet,
Z. Su, D. Du, C. Huang, and P. Torr, “Conditional Random
Fields as Recurrent Neural Networks,” in ICCV, 2015.

[12] D. Michel, C. Panagiotakis, and A. A. Argyros, “Tracking
the Articulated Motion of the Human Body with Two RGBD
Cameras,” Machine Vision and Applications, vol. 26, no. 1,
2015.

[13] A. Phan and F. P. Ferrie, “Towards 3D Human Posture
Estimation Using Multiple Kinects Despite Self-Contacts,”
in 15th IAPR International Conference on Machine Vision
Applications, 2015.

[14] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.
Yuille, “Semantic Image Segmentation with Deep Convolu-
tional Nets and Fully Connected CRFs,” in ICLR, 2015.

[15] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik, “Hyper-
columns for Object Segmentation and Fine-grained Localiza-
tion,” in CVPR, 2015.

[16] J. Long, E. Shelhamer, and T. Darrell, “Fully Convolutional
Networks for Semantic Segmentation,” in CVPR, 2015.

[17] G. Papandreou, L. Chen, K. Murphy, and A. L. Yuille,
“Weakly- and Semi-Supervised Learning of a Deep Convolu-
tional Network for Semantic Image Segmentation,” in ICCV,
2015.

[18] D. Park and D. Ramanan, “Articulated Pose Estimation with
Tiny Synthetic Videos,” in CVPR, 2015.

[19] G. Rogez, J. S. Supancic III, and D. Ramanan, “First-Person
Pose Recognition using Egocentric Workspaces,” in CVPR,
2015.

[20] A. Gupta, J. Martinez, J. J. Little, and R. J. Woodham, “3D
Pose from Motion for Cross-view Action Recognition via
Non-linear Circulant Temporal Encoding,” in CVPR, 2014.

[21] A. Gupta, A. Shafaei, J. J. Little, and R. J. Woodham, “Un-
labelled 3D Motion Examples Improve Cross-View Action
Recognition,” in BMVC, 2014.

[22] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,
R. Girshick, S. Guadarrama, and T. Darrell, “Caffe: Convo-
lutional Architecture for Fast Feature Embedding,” in ACM
International Conference on Multimedia, 2014.


