
Unlabelled 3D Motion Examples Improve Cross-View Action Recognition

Ankur Gupta
ankgupta@cs.ubc.ca

Alireza Shafaei
shafaei@cs.ubc.ca

James J. Little
little@cs.ubc.ca

Robert J. Woodham
woodham@cs.ubc.ca

Department of Computer Science
University of British Columbia
Vancouver, Canada

(a) (b)
Figure 1: (a) We exploit the visual similarity between mocap-generated
trajectories (left) and dense trajectories (right) to improve cross-view ac-
tion recognition. (b) For mocap-trajectories, we can easily obtain corre-
sponding features (i.e., descriptors for trajectories that originate from the
same 3D point) in two views. We use these pairs of features to learn the
transformation function for viewpoint change.

1 Overview

A view-invariant representation of human motion is crucial for effective
action recognition. However, most view-invariant representations require
either tracking of body parts or multi-view video data for learning which
may not be a practical approach in many real-life scenarios. We describe
a view-independent model for human action which is flexible, action-
independent, and requires no multi-view video data or additional labelling
effort.

We present a novel method for cross-view action recognition. Using
a large collection of motion capture data we synthesize mocap-trajectory
features from multiple viewpoints. Features originating from the same
3D point on the surface correspond, and this allows us to learn a feature
transformation function for viewpoint change. Given this function, we
can "hallucinate" the action descriptors of a video for different viewing
angles. We use these hallucinated examples as additional training data to
make our model view-invariant. We demonstrate the effectiveness of our
approach on the unsupervised scenario of the INRIA IXMAS dataset.

2 Methodology

The approach has three steps:

Generating training data We adapt the mocap trajectory generation
pipeline of Gupta et al. [1], which uses a human model with cylindri-
cal primitives (see Figure 1(b)). Each limb consists of a collection of
points that are placed on a 3D surface. Given a camera viewpoint, these
points are projected under orthographic projection and tracked for L(=15)
consecutive frames to generate trajectory descriptors similar to the dense-
trajectories of Wang et al. [3]. The resulting displacement vectors are then
used to generate trajectory features. Given two arbitrary viewpoints, we
can find a correspondence between features that originate from the same
point on the surface (see Figure 1(b)).

Learning the transformation function We quantize the mocap trajec-
tory features using a fixed codebook C of size n. Given a source camera
elevation angle θ and relative change in viewpoint given by ∆=(δθ ,δφ),
we define the training set D∆

θ
= {( fi,gi)}m

1 to be the set of m pairs ( f ,g)∈

Method Average accuracy

Ours 71.7%
nCTE based matching [1] 67.4%
w/o aug. 62.1%
Hankelets [2] 56.4%

Table 1: Average accuracy for action recognition over all view pairs of the
INRIA IXMAS dataset. Given the training data from one viewing angle,
the task is to recognize actions from a previously unseen viewpoint. We
compare with other state-of-the-art methods. w/o aug. is our baseline
without any data augmentation.

C×C, where fi and gi are the codewords for two corresponding trajectory
features.

Given the training data D∆
θ

, we can learn a joint probability mass
function P(F,G) which captures the probability of having feature pairs
( fi,gi) in D∆

θ
. We calculate the empirical probability by counting the co-

occurrences of ( fi,gi) in D∆
θ

followed by normalization. After observing
an instance of codeword fi in the source view, P(G|F = fi) allows us to
infer the possible outcomes in the target view.

Synthesizing cross-view descriptors Given a BoW descriptor of an
action, we wish to synthesize another descriptor for a viewpoint ∆ =
(δθ ,δφ) away from the original view. Let x = [x1, . . . ,xn]

T be the BoW
descriptor in the source view, and y = [y1, . . . ,yn]

T be the descriptor we
want to estimate. Using the probabilistic mapping between the codewords
across views, we return an expected transformed descriptor

ȳ = [E[y1], . . . ,E[yn]]
T and E[y j] =

n

∑
i=1

xi ·P(G = f j|F = fi)

By organizing P(G|F) in the form of a matrix (say N) where the i-th
row is the categorical distribution P(G|F = fi), we can rewrite the above
formulation as a matrix multiplication ȳ = NTx. We further l2 normalize
ȳ to make it consistent with the original descriptor.

3 Experiments

To test our method we use the INRIA IXMAS dataset which has short
view clips of 10 actors performing 11 activities (3 trials each) captured
from 5 diverse angles. To learn the mapping between codewords, we
generate mocap trajectories from multiple viewpoints and quantize them
using the same codebook C. We also quantize the viewpoints into 18 bins.

We synthesize multiple descriptors per training examples (one per
viewpoint change), as described above, to augment our original training
data. We train an SVM with χ2 kernel using one-vs-all strategy. The main
results are summarized in Table 1. Our code is publicly available: http:
//cs.ubc.ca/research/motion-view-translation/.
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