
Parallel/Distributed Optimization Non-Convex

SVAN 2016 Mini-Course
Stochastic Convex Optimization Methods in Machine Learning

Mark Schmidt

University of British Columbia, May 2016

www.cs.ubc.ca/~schmidtm/SVAN16

www.cs.ubc.ca/~schmidtm/SVAN16

Parallel/Distributed Optimization Non-Convex

Motivation for Parallel and Distributed

Two recent trends:

We aren’t making large gains in serial computation speed.
Datasets no longer fit on a single machine.

Result: we must use parallel and distributed computation.

Two major issues:

Synchronization: we can’t wait for the slowest machine.
Communication: we can’t transfer all information.

Parallel/Distributed Optimization Non-Convex

Motivation for Parallel and Distributed

Two recent trends:

We aren’t making large gains in serial computation speed.
Datasets no longer fit on a single machine.

Result: we must use parallel and distributed computation.

Two major issues:

Synchronization: we can’t wait for the slowest machine.
Communication: we can’t transfer all information.

Parallel/Distributed Optimization Non-Convex

Embarassing Parallelism in Machine Learning

A lot of machine learning problems are embarrassingly parallel:

Split task across M machines, solve independently, combine.

E.g., computing the gradient in deterministic gradient method,

1

N

N∑
i=1

∇fi(x) =
1

N

N/M∑
i=1

∇fi(x) +
2N/M∑

i=(N/M)+1

∇fi(x) + . . .

 .

These allow optimal linear speedups.

You should always consider this first!

Parallel/Distributed Optimization Non-Convex

Embarassing Parallelism in Machine Learning

A lot of machine learning problems are embarrassingly parallel:

Split task across M machines, solve independently, combine.

E.g., computing the gradient in deterministic gradient method,

1

N

N∑
i=1

∇fi(x) =
1

N

N/M∑
i=1

∇fi(x) +
2N/M∑

i=(N/M)+1

∇fi(x) + . . .

 .

These allow optimal linear speedups.

You should always consider this first!

Parallel/Distributed Optimization Non-Convex

Embarassing Parallelism in Machine Learning

A lot of machine learning problems are embarrassingly parallel:

Split task across M machines, solve independently, combine.

E.g., computing the gradient in deterministic gradient method,

1

N

N∑
i=1

∇fi(x) =
1

N

N/M∑
i=1

∇fi(x) +
2N/M∑

i=(N/M)+1

∇fi(x) + . . .

 .

These allow optimal linear speedups.

You should always consider this first!

Parallel/Distributed Optimization Non-Convex

Asynchronous Computation

Do we have to wait for the last computer to finish?

No!

Updating asynchronously saves a lot of time.

E.g., stochastic gradient method on shared memory:

xk+1 = xk − α∇fik(x
k−m).

You need to decrease step-size in proportion to asynchrony.

Convergence rate decays elegantly with delay m.[Niu et al., 2011]

Parallel/Distributed Optimization Non-Convex

Asynchronous Computation

Do we have to wait for the last computer to finish?

No!

Updating asynchronously saves a lot of time.

E.g., stochastic gradient method on shared memory:

xk+1 = xk − α∇fik(x
k−m).

You need to decrease step-size in proportion to asynchrony.

Convergence rate decays elegantly with delay m.[Niu et al., 2011]

Parallel/Distributed Optimization Non-Convex

Asynchronous Computation

Do we have to wait for the last computer to finish?

No!

Updating asynchronously saves a lot of time.

E.g., stochastic gradient method on shared memory:

xk+1 = xk − α∇fik(x
k−m).

You need to decrease step-size in proportion to asynchrony.

Convergence rate decays elegantly with delay m.[Niu et al., 2011]

Parallel/Distributed Optimization Non-Convex

Asynchronous Computation

Do we have to wait for the last computer to finish?

No!

Updating asynchronously saves a lot of time.

E.g., stochastic gradient method on shared memory:

xk+1 = xk − α∇fik(x
k−m).

You need to decrease step-size in proportion to asynchrony.

Convergence rate decays elegantly with delay m.[Niu et al., 2011]

Parallel/Distributed Optimization Non-Convex

Reduced Communication: Parallel Coordinate Descnet

It may be expensive to communicate parameters x.

One solution: use parallel coordinate descent:

xj1 = xj1 − αj1∇j1f(x)

xj2 = xj2 − αj2∇j2f(x)

xj3 = xj3 − αj3∇j3f(x)

Only needs to communicate single coordinates.

Again need to decrease step-size for convergence.

Speedup is based on density of graph.[Richtarik & Takac, 2013]

Parallel/Distributed Optimization Non-Convex

Reduced Communication: Parallel Coordinate Descnet

It may be expensive to communicate parameters x.

One solution: use parallel coordinate descent:

xj1 = xj1 − αj1∇j1f(x)

xj2 = xj2 − αj2∇j2f(x)

xj3 = xj3 − αj3∇j3f(x)

Only needs to communicate single coordinates.

Again need to decrease step-size for convergence.

Speedup is based on density of graph.[Richtarik & Takac, 2013]

Parallel/Distributed Optimization Non-Convex

Reduced Communication: Parallel Coordinate Descnet

It may be expensive to communicate parameters x.

One solution: use parallel coordinate descent:

xj1 = xj1 − αj1∇j1f(x)

xj2 = xj2 − αj2∇j2f(x)

xj3 = xj3 − αj3∇j3f(x)

Only needs to communicate single coordinates.

Again need to decrease step-size for convergence.

Speedup is based on density of graph.[Richtarik & Takac, 2013]

Parallel/Distributed Optimization Non-Convex

Reduced Communication: Decentralized Gradient

We may need to distribute the data across machines.

We may not want to update a ‘centralized’ vector x.

One solution: decentralized gradient method:

Each processor has its own data samples f1, f2, . . . fm.
Each processor has its own parameter vector xc.
Each processor only communicates with a limited number of neighbours nei(c).

xc =
1

|nei(c)|
∑

c′∈nei(c)

xc −
αc

M

M∑
i=1

∇fi(xc).

Gradient descent is special case where all neighbours communicate.

With modified update, rate decays gracefully as graph becomes sparse.[Shi et al.,
2014]

Can also consider communication failures.[Agarwal & Duchi, 2011]

Parallel/Distributed Optimization Non-Convex

Reduced Communication: Decentralized Gradient

We may need to distribute the data across machines.

We may not want to update a ‘centralized’ vector x.

One solution: decentralized gradient method:

Each processor has its own data samples f1, f2, . . . fm.
Each processor has its own parameter vector xc.
Each processor only communicates with a limited number of neighbours nei(c).

xc =
1

|nei(c)|
∑

c′∈nei(c)

xc −
αc

M

M∑
i=1

∇fi(xc).

Gradient descent is special case where all neighbours communicate.

With modified update, rate decays gracefully as graph becomes sparse.[Shi et al.,
2014]

Can also consider communication failures.[Agarwal & Duchi, 2011]

Parallel/Distributed Optimization Non-Convex

Reduced Communication: Decentralized Gradient

We may need to distribute the data across machines.

We may not want to update a ‘centralized’ vector x.

One solution: decentralized gradient method:

Each processor has its own data samples f1, f2, . . . fm.
Each processor has its own parameter vector xc.
Each processor only communicates with a limited number of neighbours nei(c).

xc =
1

|nei(c)|
∑

c′∈nei(c)

xc −
αc

M

M∑
i=1

∇fi(xc).

Gradient descent is special case where all neighbours communicate.

With modified update, rate decays gracefully as graph becomes sparse.[Shi et al.,
2014]

Can also consider communication failures.[Agarwal & Duchi, 2011]

Parallel/Distributed Optimization Non-Convex

(pause)

Parallel/Distributed Optimization Non-Convex

Two Classic Perspectives of Non-Convex Optimization

Local non-convex optimization:

Apply method with good properties for convex functions.
First phase is getting near minimizer.
Second phase applies rates from convex optimization.
But how long does the first phase take?

Global non-convex optimization:

Search for global min for general function class.
E.g., search over a sucessively-refined grid.
Optimal rate for Lipschitz functions is O(1/ε1/D).
Can only solve low-dimensional problems.

We’ll go over recent local, global, and hybrid results..

Parallel/Distributed Optimization Non-Convex

Two Classic Perspectives of Non-Convex Optimization

Local non-convex optimization:

Apply method with good properties for convex functions.
First phase is getting near minimizer.
Second phase applies rates from convex optimization.

But how long does the first phase take?

Global non-convex optimization:

Search for global min for general function class.
E.g., search over a sucessively-refined grid.
Optimal rate for Lipschitz functions is O(1/ε1/D).
Can only solve low-dimensional problems.

We’ll go over recent local, global, and hybrid results..

Parallel/Distributed Optimization Non-Convex

Two Classic Perspectives of Non-Convex Optimization

Local non-convex optimization:

Apply method with good properties for convex functions.
First phase is getting near minimizer.
Second phase applies rates from convex optimization.
But how long does the first phase take?

Global non-convex optimization:

Search for global min for general function class.
E.g., search over a sucessively-refined grid.
Optimal rate for Lipschitz functions is O(1/ε1/D).
Can only solve low-dimensional problems.

We’ll go over recent local, global, and hybrid results..

Parallel/Distributed Optimization Non-Convex

Two Classic Perspectives of Non-Convex Optimization

Local non-convex optimization:

Apply method with good properties for convex functions.
First phase is getting near minimizer.
Second phase applies rates from convex optimization.
But how long does the first phase take?

Global non-convex optimization:

Search for global min for general function class.
E.g., search over a sucessively-refined grid.
Optimal rate for Lipschitz functions is O(1/ε1/D).

Can only solve low-dimensional problems.

We’ll go over recent local, global, and hybrid results..

Parallel/Distributed Optimization Non-Convex

Two Classic Perspectives of Non-Convex Optimization

Local non-convex optimization:

Apply method with good properties for convex functions.
First phase is getting near minimizer.
Second phase applies rates from convex optimization.
But how long does the first phase take?

Global non-convex optimization:

Search for global min for general function class.
E.g., search over a sucessively-refined grid.
Optimal rate for Lipschitz functions is O(1/ε1/D).
Can only solve low-dimensional problems.

We’ll go over recent local, global, and hybrid results..

Parallel/Distributed Optimization Non-Convex

PL Inequalty: Expanding the Second Phase

Linear convergence proofs usually assume strong-convexity

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ µ

2
‖y − x‖2.

But you can also show linear convergence under many weaker assumptions:
Essential strong-convexity, weak strong-convexity, restricted secant inequality,
restrictied secant inequality, quadratic growth property, optimal strong-convexity,
error bounds.

In fact, for our proof to work we only required

1

2
‖∇f(x)‖2 ≥ µ[f(x)− f∗],

which we call the Polyak- Lojasiewicz inequality:
Older than all the above, and also weaker than all the above.
Does not imply solution is unique.

Holds for f(Ax) with f strongly-convex even if A is singular.

Does not imply convexity.
Also works for coordinate descent, can be generalized to proximal-gradient.

Parallel/Distributed Optimization Non-Convex

PL Inequalty: Expanding the Second Phase

Linear convergence proofs usually assume strong-convexity

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ µ

2
‖y − x‖2.

But you can also show linear convergence under many weaker assumptions:
Essential strong-convexity, weak strong-convexity, restricted secant inequality,
restrictied secant inequality, quadratic growth property, optimal strong-convexity,
error bounds.

In fact, for our proof to work we only required

1

2
‖∇f(x)‖2 ≥ µ[f(x)− f∗],

which we call the Polyak- Lojasiewicz inequality:

Older than all the above, and also weaker than all the above.
Does not imply solution is unique.

Holds for f(Ax) with f strongly-convex even if A is singular.

Does not imply convexity.
Also works for coordinate descent, can be generalized to proximal-gradient.

Parallel/Distributed Optimization Non-Convex

PL Inequalty: Expanding the Second Phase

Linear convergence proofs usually assume strong-convexity

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ µ

2
‖y − x‖2.

But you can also show linear convergence under many weaker assumptions:
Essential strong-convexity, weak strong-convexity, restricted secant inequality,
restrictied secant inequality, quadratic growth property, optimal strong-convexity,
error bounds.

In fact, for our proof to work we only required

1

2
‖∇f(x)‖2 ≥ µ[f(x)− f∗],

which we call the Polyak- Lojasiewicz inequality:
Older than all the above, and also weaker than all the above.

Does not imply solution is unique.
Holds for f(Ax) with f strongly-convex even if A is singular.

Does not imply convexity.
Also works for coordinate descent, can be generalized to proximal-gradient.

Parallel/Distributed Optimization Non-Convex

PL Inequalty: Expanding the Second Phase

Linear convergence proofs usually assume strong-convexity

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ µ

2
‖y − x‖2.

But you can also show linear convergence under many weaker assumptions:
Essential strong-convexity, weak strong-convexity, restricted secant inequality,
restrictied secant inequality, quadratic growth property, optimal strong-convexity,
error bounds.

In fact, for our proof to work we only required

1

2
‖∇f(x)‖2 ≥ µ[f(x)− f∗],

which we call the Polyak- Lojasiewicz inequality:
Older than all the above, and also weaker than all the above.
Does not imply solution is unique.

Holds for f(Ax) with f strongly-convex even if A is singular.

Does not imply convexity.
Also works for coordinate descent, can be generalized to proximal-gradient.

Parallel/Distributed Optimization Non-Convex

PL Inequalty: Expanding the Second Phase

Linear convergence proofs usually assume strong-convexity

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ µ

2
‖y − x‖2.

But you can also show linear convergence under many weaker assumptions:
Essential strong-convexity, weak strong-convexity, restricted secant inequality,
restrictied secant inequality, quadratic growth property, optimal strong-convexity,
error bounds.

In fact, for our proof to work we only required

1

2
‖∇f(x)‖2 ≥ µ[f(x)− f∗],

which we call the Polyak- Lojasiewicz inequality:
Older than all the above, and also weaker than all the above.
Does not imply solution is unique.

Holds for f(Ax) with f strongly-convex even if A is singular.

Does not imply convexity.
Also works for coordinate descent, can be generalized to proximal-gradient.

Parallel/Distributed Optimization Non-Convex

Global Linear Convergence with the PL Inequalty

Function satisfying the strong-convexity property:
(unique optimum, convex, growing faster than linear)

Function satisfying the PL inequality:

Linear convergence rate for this non-convex function.

Second phase of local solvers is larger than we thought.

Parallel/Distributed Optimization Non-Convex

Global Linear Convergence with the PL Inequalty

Function satisfying the strong-convexity property:
(unique optimum, convex, growing faster than linear)

Function satisfying the PL inequality:

Linear convergence rate for this non-convex function.

Second phase of local solvers is larger than we thought.

Parallel/Distributed Optimization Non-Convex

General Global Non-Convex Rates?

For strongly-convex smooth functions, we have

‖∇f(xt)‖2 = O(ρt), f(xt)− f(x∗) = O(ρt), ‖xt − x∗‖ = O(ρt).

For convex smooth functions, we have

‖∇f(xt)‖2 = O(1/t), f(xt)− f(x∗) = O(1/t).

For non-convex smooth functions, we have

min
k
‖∇f(xk)‖2 = O(1/t).

You can get this rate for a random iteration of stochastic gradient.
[Ghadimi & Lan, 2013].

Parallel/Distributed Optimization Non-Convex

General Global Non-Convex Rates?

For strongly-convex smooth functions, we have

‖∇f(xt)‖2 = O(ρt), f(xt)− f(x∗) = O(ρt), ‖xt − x∗‖ = O(ρt).

For convex smooth functions, we have

‖∇f(xt)‖2 = O(1/t), f(xt)− f(x∗) = O(1/t).

For non-convex smooth functions, we have

min
k
‖∇f(xk)‖2 = O(1/t).

You can get this rate for a random iteration of stochastic gradient.
[Ghadimi & Lan, 2013].

Parallel/Distributed Optimization Non-Convex

General Global Non-Convex Rates?

For strongly-convex smooth functions, we have

‖∇f(xt)‖2 = O(ρt), f(xt)− f(x∗) = O(ρt), ‖xt − x∗‖ = O(ρt).

For convex smooth functions, we have

‖∇f(xt)‖2 = O(1/t), f(xt)− f(x∗) = O(1/t).

For non-convex smooth functions, we have

min
k
‖∇f(xk)‖2 = O(1/t).

You can get this rate for a random iteration of stochastic gradient.
[Ghadimi & Lan, 2013].

Parallel/Distributed Optimization Non-Convex

General Global Non-Convex Rates?

For strongly-convex smooth functions, we have

‖∇f(xt)‖2 = O(ρt), f(xt)− f(x∗) = O(ρt), ‖xt − x∗‖ = O(ρt).

For convex smooth functions, we have

‖∇f(xt)‖2 = O(1/t), f(xt)− f(x∗) = O(1/t).

For non-convex smooth functions, we have

min
k
‖∇f(xk)‖2 = O(1/t).

You can get this rate for a random iteration of stochastic gradient.
[Ghadimi & Lan, 2013].

Parallel/Distributed Optimization Non-Convex

Escaping Saddle Points

Ghadimi & Lan type of rates could be good or bad news:

No dimension dependence (way faster than grid-search).
But gives up on optimality (e.g., approximate saddle points).

Escaping from saddle points:

Classical: trust-region methods allow negative eigenvalues.
Modify eigenvalues in Newton’s method [Dauphin et al., 2014].
Add random noise to stochastic gradient [Ge et al., 2015].
Cubic regularization of Newton [Nesterov & Polyak, 2006],

xk+1 = min
d

{
f(xk) + 〈∇f(xk), d〉+ 1

2
dT∇2f(xk)d+

L

6
‖d‖3

}
,

if within ball of saddle point then next step:

Moves outside of ball.
Has lower objective than saddle-point.

Parallel/Distributed Optimization Non-Convex

Escaping Saddle Points

Ghadimi & Lan type of rates could be good or bad news:

No dimension dependence (way faster than grid-search).
But gives up on optimality (e.g., approximate saddle points).

Escaping from saddle points:

Classical: trust-region methods allow negative eigenvalues.
Modify eigenvalues in Newton’s method [Dauphin et al., 2014].
Add random noise to stochastic gradient [Ge et al., 2015].

Cubic regularization of Newton [Nesterov & Polyak, 2006],

xk+1 = min
d

{
f(xk) + 〈∇f(xk), d〉+ 1

2
dT∇2f(xk)d+

L

6
‖d‖3

}
,

if within ball of saddle point then next step:

Moves outside of ball.
Has lower objective than saddle-point.

Parallel/Distributed Optimization Non-Convex

Escaping Saddle Points

Ghadimi & Lan type of rates could be good or bad news:

No dimension dependence (way faster than grid-search).
But gives up on optimality (e.g., approximate saddle points).

Escaping from saddle points:

Classical: trust-region methods allow negative eigenvalues.
Modify eigenvalues in Newton’s method [Dauphin et al., 2014].
Add random noise to stochastic gradient [Ge et al., 2015].
Cubic regularization of Newton [Nesterov & Polyak, 2006],

xk+1 = min
d

{
f(xk) + 〈∇f(xk), d〉+ 1

2
dT∇2f(xk)d+

L

6
‖d‖3

}
,

if within ball of saddle point then next step:

Moves outside of ball.
Has lower objective than saddle-point.

Parallel/Distributed Optimization Non-Convex

Globally-Optimal Methods for Matrix Problems

Classic: principal component analysis (PCA)

max
WTW=I

‖XTW‖2F ,

and rank-constrained version.
Shamir [2015] gives SAG/SVRG rates for PCA.

Burer & Monteiro [2004] consider SDP re-parameterization

min
{X|X�0,rank(X)≤k}

f(X)⇒ min
V

f(V V T),

and show does not introduce spurious local minimum.

De Sa et al. [2015]: For class of non-convex problems of the form

min
Y

E[‖A− V V T ‖2F].

random initialization leads to global optimum.

Under certain assumptions, can solve UV T dictionary learning and phase retrieval problems [Agarwal et
al., 2014, Candes et al., 2015].

Certain latent variable problems like training HMMs can be solved via SVD and tensor-decomposition
methods [Hsu et al., 2012, Anandkumar et al, 2014].

Parallel/Distributed Optimization Non-Convex

Globally-Optimal Methods for Matrix Problems
Classic: principal component analysis (PCA)

max
WTW=I

‖XTW‖2F ,

and rank-constrained version.
Shamir [2015] gives SAG/SVRG rates for PCA.

Burer & Monteiro [2004] consider SDP re-parameterization

min
{X|X�0,rank(X)≤k}

f(X)⇒ min
V

f(V V T),

and show does not introduce spurious local minimum.

De Sa et al. [2015]: For class of non-convex problems of the form

min
Y

E[‖A− V V T ‖2F].

random initialization leads to global optimum.

Under certain assumptions, can solve UV T dictionary learning and phase retrieval problems [Agarwal et
al., 2014, Candes et al., 2015].

Certain latent variable problems like training HMMs can be solved via SVD and tensor-decomposition
methods [Hsu et al., 2012, Anandkumar et al, 2014].

Parallel/Distributed Optimization Non-Convex

Globally-Optimal Methods for Matrix Problems
Classic: principal component analysis (PCA)

max
WTW=I

‖XTW‖2F ,

and rank-constrained version.
Shamir [2015] gives SAG/SVRG rates for PCA.

Burer & Monteiro [2004] consider SDP re-parameterization

min
{X|X�0,rank(X)≤k}

f(X)⇒ min
V

f(V V T),

and show does not introduce spurious local minimum.

De Sa et al. [2015]: For class of non-convex problems of the form

min
Y

E[‖A− V V T ‖2F].

random initialization leads to global optimum.

Under certain assumptions, can solve UV T dictionary learning and phase retrieval problems [Agarwal et
al., 2014, Candes et al., 2015].

Certain latent variable problems like training HMMs can be solved via SVD and tensor-decomposition
methods [Hsu et al., 2012, Anandkumar et al, 2014].

Parallel/Distributed Optimization Non-Convex

Globally-Optimal Methods for Matrix Problems
Classic: principal component analysis (PCA)

max
WTW=I

‖XTW‖2F ,

and rank-constrained version.
Shamir [2015] gives SAG/SVRG rates for PCA.

Burer & Monteiro [2004] consider SDP re-parameterization

min
{X|X�0,rank(X)≤k}

f(X)⇒ min
V

f(V V T),

and show does not introduce spurious local minimum.

De Sa et al. [2015]: For class of non-convex problems of the form

min
Y

E[‖A− V V T ‖2F].

random initialization leads to global optimum.

Under certain assumptions, can solve UV T dictionary learning and phase retrieval problems [Agarwal et
al., 2014, Candes et al., 2015].

Certain latent variable problems like training HMMs can be solved via SVD and tensor-decomposition
methods [Hsu et al., 2012, Anandkumar et al, 2014].

Parallel/Distributed Optimization Non-Convex

Globally-Optimal Methods for Matrix Problems
Classic: principal component analysis (PCA)

max
WTW=I

‖XTW‖2F ,

and rank-constrained version.
Shamir [2015] gives SAG/SVRG rates for PCA.

Burer & Monteiro [2004] consider SDP re-parameterization

min
{X|X�0,rank(X)≤k}

f(X)⇒ min
V

f(V V T),

and show does not introduce spurious local minimum.

De Sa et al. [2015]: For class of non-convex problems of the form

min
Y

E[‖A− V V T ‖2F].

random initialization leads to global optimum.

Under certain assumptions, can solve UV T dictionary learning and phase retrieval problems [Agarwal et
al., 2014, Candes et al., 2015].

Certain latent variable problems like training HMMs can be solved via SVD and tensor-decomposition
methods [Hsu et al., 2012, Anandkumar et al, 2014].

Parallel/Distributed Optimization Non-Convex

Convex Relaxations/Representations

Convex relaxations approximate non-convex with convex:

Convex relaxations exist for neural nets.
[Bengio et al., 2005, Aslan et al., 2015].

But may solve restricted problem or be a bad approximation.

Can solve convex dual:

Strong-duality holds for some non-convex problems.
Sometimes dual has nicer properties.
Efficiently representation/calculation of neural network dual?

Exact convex re-formulations of non-convex problems:

Laserre [2001].
But the size may be enormous.

Parallel/Distributed Optimization Non-Convex

Convex Relaxations/Representations

Convex relaxations approximate non-convex with convex:

Convex relaxations exist for neural nets.
[Bengio et al., 2005, Aslan et al., 2015].

But may solve restricted problem or be a bad approximation.

Can solve convex dual:

Strong-duality holds for some non-convex problems.
Sometimes dual has nicer properties.
Efficiently representation/calculation of neural network dual?

Exact convex re-formulations of non-convex problems:

Laserre [2001].
But the size may be enormous.

Parallel/Distributed Optimization Non-Convex

Convex Relaxations/Representations

Convex relaxations approximate non-convex with convex:

Convex relaxations exist for neural nets.
[Bengio et al., 2005, Aslan et al., 2015].

But may solve restricted problem or be a bad approximation.

Can solve convex dual:

Strong-duality holds for some non-convex problems.
Sometimes dual has nicer properties.
Efficiently representation/calculation of neural network dual?

Exact convex re-formulations of non-convex problems:

Laserre [2001].
But the size may be enormous.

Parallel/Distributed Optimization Non-Convex

General Non-Convex Rates

Grid-search is optimal, but can be beaten:

Convergence rate of Bayesian optimization [Bull, 2011]:

Slower than grid-search with low level of smoothness.
Faster than grid-search with high level of smoothness:

Improves error from O(1/εd) to O(1/εd/ν).

Regret bounds for Bayesian optimization:

Exponential scaling with dimensionality [Srinivas et al., 2010].
Better under additive assumption [Kandasamy et al., 2015].

Other known faster-than-grid-search rates:

Simulated annealing under complicated non-singular assumption [Tikhomirov, 2010].
Particle filtering can improve under certain conditions [Crisan & Doucet, 2002].
Graduated Non-Convexity for σ-nice functions [Hazan et al., 2014].

Parallel/Distributed Optimization Non-Convex

General Non-Convex Rates

Grid-search is optimal, but can be beaten:

Convergence rate of Bayesian optimization [Bull, 2011]:

Slower than grid-search with low level of smoothness.
Faster than grid-search with high level of smoothness:

Improves error from O(1/εd) to O(1/εd/ν).

Regret bounds for Bayesian optimization:

Exponential scaling with dimensionality [Srinivas et al., 2010].
Better under additive assumption [Kandasamy et al., 2015].

Other known faster-than-grid-search rates:

Simulated annealing under complicated non-singular assumption [Tikhomirov, 2010].
Particle filtering can improve under certain conditions [Crisan & Doucet, 2002].
Graduated Non-Convexity for σ-nice functions [Hazan et al., 2014].

Parallel/Distributed Optimization Non-Convex

General Non-Convex Rates

Grid-search is optimal, but can be beaten:

Convergence rate of Bayesian optimization [Bull, 2011]:

Slower than grid-search with low level of smoothness.
Faster than grid-search with high level of smoothness:

Improves error from O(1/εd) to O(1/εd/ν).

Regret bounds for Bayesian optimization:

Exponential scaling with dimensionality [Srinivas et al., 2010].
Better under additive assumption [Kandasamy et al., 2015].

Other known faster-than-grid-search rates:

Simulated annealing under complicated non-singular assumption [Tikhomirov, 2010].
Particle filtering can improve under certain conditions [Crisan & Doucet, 2002].
Graduated Non-Convexity for σ-nice functions [Hazan et al., 2014].

Parallel/Distributed Optimization Non-Convex

Summary

Parallel and distributed methods will be required in the future.

Need asynchronous methods with low communication and fault tolerance.

We are starting to be able to understand non-convex problems, but there is a lot
of work to do.

Thank you for the invitation and I hope you learned some new things!

	Parallel/Distributed Optimization
	Non-Convex

