SVAN 2016 Mini-Course
Stochastic Convex Optimization Methods in Machine Learning

Mark Schmidt

University of British Columbia, May 2016

www.cs.ubc.ca/~schmidtm/SVAN16
Motivation for Parallel and Distributed

- Two recent trends:
 - We aren’t making large gains in serial computation speed.
 - Datasets no longer fit on a single machine.
Motivation for Parallel and Distributed

- Two recent trends:
 - We aren’t making large gains in serial computation speed.
 - Datasets no longer fit on a single machine.
- Result: we must use **parallel and distributed** computation.
- Two major issues:
 - **Synchronization**: we can’t wait for the slowest machine.
 - **Communication**: we can’t transfer all information.
Embarassing Parallelism in Machine Learning

- A lot of machine learning problems are embarrassingly parallel:
 - Split task across M machines, solve independently, combine.
A lot of machine learning problems are **embarrassingly parallel**:
- Split task across M machines, solve independently, combine.

E.g., computing the gradient in deterministic gradient method,

$$
\frac{1}{N} \sum_{i=1}^{N} \nabla f_i(x) = \frac{1}{N} \left(\sum_{i=1}^{N/M} \nabla f_i(x) + \sum_{i=(N/M)+1}^{2N/M} \nabla f_i(x) + \ldots \right).
$$
A lot of machine learning problems are *embarrassingly parallel*:
- Split task across M machines, solve independently, combine.

E.g., computing the gradient in deterministic gradient method,

$$\frac{1}{N} \sum_{i=1}^{N} \nabla f_i(x) = \frac{1}{N} \left(\sum_{i=1}^{N/M} \nabla f_i(x) + \sum_{i=(N/M)+1}^{2N/M} \nabla f_i(x) + \ldots \right).$$

These allow optimal linear speedups.
- You should always consider this first!
Asynchronous Computation

Do we have to wait for the last computer to finish?

\[x_{k+1} = x_k - \alpha \nabla f_i(x_k - m) \]

You need to decrease step-size in proportion to asynchrony. Convergence rate decays elegantly with delay \(m \).

[Niu et al., 2011]
Asynchronous Computation

- Do we have to wait for the last computer to finish?
- No!
- Updating asynchronously saves a lot of time.

\[x_{k+1} = x_k - \alpha \nabla f_i(x_k - m) \]

You need to decrease step-size in proportion to asynchrony. Convergence rate decays elegantly with delay \(m \).

[Niu et al., 2011]
Do we have to wait for the last computer to finish?
No!
Updating asynchronously saves a lot of time.
E.g., stochastic gradient method on shared memory:

$$x^{k+1} = x^k - \alpha \nabla f_{i_k}(x^{k-m}).$$
Do we have to wait for the last computer to finish?
No!
Updating asynchronously saves a lot of time.
E.g., stochastic gradient method on shared memory:

$$x^{k+1} = x^k - \alpha \nabla f_{i_k}(x^{k-m}).$$

You need to decrease step-size in proportion to asynchrony.
Convergence rate decays elegantly with delay m. [Niu et al., 2011]
Reduced Communication: Parallel Coordinate Descnet

- It may be expensive to communicate parameters x.

One solution: use parallel coordinate descent:

\[
\begin{align*}
 x_j^1 &= x_j^1 - \alpha_j^1 \nabla_j^1 f(x) \\
 x_j^2 &= x_j^2 - \alpha_j^2 \nabla_j^2 f(x) \\
 x_j^3 &= x_j^3 - \alpha_j^3 \nabla_j^3 f(x)
\end{align*}
\]

Only needs to communicate single coordinates.

Again need to decrease step-size for convergence.

Speedup is based on density of graph. [Richtarik & Takac, 2013]
Reduced Communication: Parallel Coordinate Descent

- It may be expensive to communicate parameters x.
- One solution: use parallel coordinate descent:

 \[
 \begin{align*}
 x_{j_1} &= x_{j_1} - \alpha_{j_1} \nabla_{j_1} f(x) \\
 x_{j_2} &= x_{j_2} - \alpha_{j_2} \nabla_{j_2} f(x) \\
 x_{j_3} &= x_{j_3} - \alpha_{j_3} \nabla_{j_3} f(x)
 \end{align*}
 \]

- Only needs to communicate single coordinates.

Again need to decrease step-size for convergence.

Speedup is based on density of graph. [Richtarik & Takac, 2013]
Reduced Communication: Parallel Coordinate Descnet

- It may be expensive to communicate parameters \(x \).
- One solution: use parallel coordinate descent:

\[
\begin{align*}
 x_{j1} &= x_{j1} - \alpha_{j1} \nabla_{j1} f(x) \\
 x_{j2} &= x_{j2} - \alpha_{j2} \nabla_{j2} f(x) \\
 x_{j3} &= x_{j3} - \alpha_{j3} \nabla_{j3} f(x)
\end{align*}
\]

- Only needs to communicate single coordinates.
- Again need to decrease step-size for convergence.
- Speedup is based on density of graph.\[\text{[Richtarik & Takac, 2013]}\]
Reduced Communication: Decentralized Gradient

- We may need to distribute the data across machines.
- We may not want to update a ‘centralized’ vector x.

\[x_c = \frac{1}{|\text{nei}(c)|} \sum_{c' \in \text{nei}(c)} x_{c'} - \alpha c M \sum_{i=1}^{M} \nabla f_i(x_c). \]

Gradient descent is a special case where all neighbours communicate. With modified update, the rate decays gracefully as the graph becomes sparse.

[Shi et al., 2014] Can also consider communication failures. [Agarwal & Duchi, 2011]
Reduced Communication: Decentralized Gradient

- We may need to distribute the data across machines.
- We may not want to update a ‘centralized’ vector x.
- One solution: **decentralized gradient method**:
 - Each processor has its own data samples $f_1, f_2, \ldots f_m$.
 - Each processor has its own parameter vector x_c.
 - Each processor only communicates with a limited number of neighbours $\text{nei}(c)$.

Gradient descent is a special case where all neighbours communicate.
With modified update, rate decays gracefully as the graph becomes sparse.

[Shi et al., 2014]
Can also consider communication failures.
[Agarwal & Duchi, 2011]
Reduced Communication: Decentralized Gradient

- We may need to distribute the data across machines.
- We may not want to update a ‘centralized’ vector x.
- One solution: decentralized gradient method:
 - Each processor has its own data samples f_1, f_2, \ldots, f_m.
 - Each processor has its own parameter vector x_c.
 - Each processor only communicates with a limited number of neighbours $\text{nei}(c)$.

\[
x_c = \frac{1}{|\text{nei}(c)|} \sum_{c' \in \text{nei}(c)} x_{c'} - \frac{\alpha_c}{M} \sum_{i=1}^{M} \nabla f_i(x_c).
\]

- Gradient descent is special case where all neighbours communicate.
- With modified update, rate decays gracefully as graph becomes sparse.[Shi et al., 2014]
- Can also consider communication failures.[Agarwal & Duchi, 2011]
(pause)
Two Classic Perspectives of Non-Convex Optimization

Local non-convex optimization:
- Apply method with good properties for convex functions.
- First phase is getting near minimizer.
- Second phase applies rates from convex optimization.
- But how long does the first phase take?

Global non-convex optimization:
- Search for global min for general function class.
- E.g., search over a successively-refined grid.
- Optimal rate for Lipschitz functions is $O\left(\frac{1}{\epsilon^{1/D}}\right)$.
- Can only solve low-dimensional problems.

We'll go over recent local, global, and hybrid results.
Two Classic Perspectives of Non-Convex Optimization

- **Local** non-convex optimization:
 - Apply method with good properties for convex functions.
 - First phase is getting near minimizer.
 - Second phase applies rates from convex optimization.

But how long does the first phase take?

- **Global** non-convex optimization:
 - Search for global min for general function class.
 - E.g., search over a successively-refined grid.
 - Optimal rate for Lipschitz functions is $O\left(\frac{1}{\epsilon^{1/D}}\right)$.
 - Can only solve low-dimensional problems.

We'll go over recent local, global, and hybrid results.
Two Classic Perspectives of Non-Convex Optimization

- **Local non-convex optimization:**
 - Apply method with good properties for convex functions.
 - First phase is getting near minimizer.
 - Second phase applies rates from convex optimization.
 - But how long does the first phase take?
Two Classic Perspectives of Non-Convex Optimization

- **Local** non-convex optimization:
 - Apply method with good properties for convex functions.
 - First phase is getting near minimizer.
 - Second phase applies rates from convex optimization.
 - But how long does the first phase take?

- **Global** non-convex optimization:
 - Search for global min for general function class.
 - E.g., search over a successively-refined grid.
 - Optimal rate for Lipschitz functions is $O(1/\epsilon^{1/D})$.
Two Classic Perspectives of Non-Convex Optimization

- **Local** non-convex optimization:
 - Apply method with good properties for convex functions.
 - First phase is getting near minimizer.
 - Second phase applies rates from convex optimization.
 - But how long does the first phase take?

- **Global** non-convex optimization:
 - Search for global min for general function class.
 - E.g., search over a sucessively-refined grid.
 - Optimal rate for Lipschitz functions is $O(1/\epsilon^{1/D})$.
 - Can only solve low-dimensional problems.

We'll go over recent local, global, and hybrid results.
PL Inequality: Expanding the Second Phase

- Linear convergence proofs usually assume strong-convexity

\[f(y) \geq f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} \| y - x \|^2. \]
PL Inequality: Expanding the Second Phase

- Linear convergence proofs usually assume strong-convexity
 \[f(y) \geq f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} \| y - x \|^2. \]

- But you can also show linear convergence under many weaker assumptions:
 - Essential strong-convexity, weak strong-convexity, restricted secant inequality,
 restricted secant inequality, quadratic growth property, optimal strong-convexity,
 error bounds.

- In fact, for our proof to work we only required
 \[\frac{1}{2} \| \nabla f(x) \|^2 \geq \mu [f(x) - f^*], \]
 which we call the Polyak-Łojasiewicz inequality:
PL Inequality: Expanding the Second Phase

- Linear convergence proofs usually assume **strong-convexity**
 \[f(y) \geq f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} \|y - x\|^2. \]
- But you can also show linear convergence under many weaker assumptions:
 - Essential strong-convexity, weak strong-convexity, restricted secant inequality,
 restricted secant inequality, quadratic growth property, optimal strong-convexity,
 error bounds.
- In fact, for our proof to work we only required
 \[
 \frac{1}{2} \|\nabla f(x)\|^2 \geq \mu[f(x) - f^*],
 \]
 which we call the **Polyak-Łojasiewicz inequality**:
 - Older than all the above, and also **weaker than all the above**.
PL Inequality: Expanding the Second Phase

- Linear convergence proofs usually assume strong-convexity
 \[f(y) \geq f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} \|y - x\|^2. \]

- But you can also show linear convergence under many weaker assumptions:
 - Essential strong-convexity, weak strong-convexity, restricted secant inequality,
 restricted secant inequality, quadratic growth property, optimal strong-convexity,
 error bounds.

- In fact, for our proof to work we only required
 \[\frac{1}{2} \|\nabla f(x)\|^2 \geq \mu [f(x) - f^*], \]
 which we call the Polyak-Łojasiewicz inequality:
 - Older than all the above, and also weaker than all the above.
 - Does not imply solution is unique.
 - Holds for \(f(Ax) \) with \(f \) strongly-convex even if \(A \) is singular.
PL Inequality: Expanding the Second Phase

- Linear convergence proofs usually assume **strong-convexity**
 \[f(y) \geq f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} \|y - x\|^2. \]

- But you can also show linear convergence under many weaker assumptions:
 - Essential strong-convexity, weak strong-convexity, restricted secant inequality, restricted secant inequality, quadratic growth property, optimal strong-convexity, error bounds.

- In fact, for our proof to work we only required
 \[\frac{1}{2} \|\nabla f(x)\|^2 \geq \mu [f(x) - f^*], \]

 which we call the **Polyak-Łojasiewicz inequality**:
 - Older than all the above, and also **weaker than all the above**.
 - Does not imply solution is unique.
 - Holds for \(f(Ax) \) with \(f \) strongly-convex even if \(A \) is singular.
 - Does **not imply convexity**.
 - Also works for coordinate descent, can be generalized to proximal-gradient.
Function satisfying the strong-convexity property:
(unique optimum, convex, growing faster than linear)
Global Linear Convergence with the PL Inequality

Function satisfying the strong-convexity property:
(unique optimum, convex, growing faster than linear)

Function satisfying the PL inequality:
- Linear convergence rate for this non-convex function.
- Second phase of local solvers is larger than we thought.
For strongly-convex smooth functions, we have

\[\| \nabla f(x^t) \|^2 = O(\rho^t), \quad f(x^t) - f(x^*) = O(\rho^t), \quad \| x_t - x_* \| = O(\rho^t). \]
General Global Non-Convex Rates?

- For **strongly-convex** smooth functions, we have
 \[\| \nabla f(x^t) \|^2 = O(\rho^t), \quad f(x^t) - f(x^*) = O(\rho^t), \quad \| x_t - x^* \| = O(\rho^t). \]

- For **convex** smooth functions, we have
 \[\| \nabla f(x^t) \|^2 = O(1/t), \quad f(x^t) - f(x^*) = O(1/t). \]
General Global Non-Convex Rates?

- For strongly-convex smooth functions, we have
 \[\|\nabla f(x^t)\|^2 = O(\rho^t), \quad f(x^t) - f(x^*) = O(\rho^t), \quad \|x_t - x_*\| = O(\rho^t). \]

- For convex smooth functions, we have
 \[\|\nabla f(x^t)\|^2 = O(1/t), \quad f(x^t) - f(x^*) = O(1/t). \]

- For non-convex smooth functions, we have
 \[\min_k \|\nabla f(x^k)\|^2 = O(1/t). \]
General Global Non-Convex Rates?

- For strongly-convex smooth functions, we have
 \[\| \nabla f(x^t) \|^2 = O(\rho^t), \quad f(x^t) - f(x^*) = O(\rho^t), \quad \|x_t - x_*\| = O(\rho^t). \]

- For convex smooth functions, we have
 \[\| \nabla f(x^t) \|^2 = O(1/t), \quad f(x^t) - f(x^*) = O(1/t). \]

- For non-convex smooth functions, we have
 \[\min_k \| \nabla f(x^k) \|^2 = O(1/t). \]

- You can get this rate for a random iteration of stochastic gradient.
 [Ghadimi & Lan, 2013].
Escaping Saddle Points

- Ghadimi & Lan type of rates could be good or bad news:
 - No dimension dependence (way faster than grid-search).
 - But gives up on optimality (e.g., approximate saddle points).
Ghadimi & Lan type of rates could be good or bad news:
- No dimension dependence (way faster than grid-search).
- But gives up on optimality (e.g., approximate saddle points).

Escaping from saddle points:
- Classical: trust-region methods allow negative eigenvalues.
- Modify eigenvalues in Newton’s method [Dauphin et al., 2014].
- Add random noise to stochastic gradient [Ge et al., 2015].
Escaping Saddle Points

- Ghadimi & Lan type of rates could be good or bad news:
 - No dimension dependence (way faster than grid-search).
 - But gives up on optimality (e.g., approximate saddle points).

- Escaping from saddle points:
 - Classical: trust-region methods allow negative eigenvalues.
 - Modify eigenvalues in Newton’s method [Dauphin et al., 2014].
 - Add random noise to stochastic gradient [Ge et al., 2015].
 - Cubic regularization of Newton [Nesterov & Polyak, 2006],

\[x^{k+1} = \min_d \left\{ f(x^k) + \langle \nabla f(x^k), d \rangle + \frac{1}{2} d^T \nabla^2 f(x^k) d + \frac{L}{6} \|d\|^3 \right\} , \]

if within ball of saddle point then next step:
 - Moves outside of ball.
 - Has lower objective than saddle-point.
Globally-Optimal Methods for Matrix Problems
Globally-Optimal Methods for Matrix Problems

- Classic: principal component analysis (PCA)

\[
\max_{W^TW = I} \|X^TW\|_F^2,
\]

and rank-constrained version.
Shamir [2015] gives SAG/SVRG rates for PCA.
Globally-Optimal Methods for Matrix Problems

- Classic: principal component analysis (PCA)
 \[
 \max_{W^T W = I} \|X^T W\|_F^2,
 \]
 and rank-constrained version.
 Shamir [2015] gives SAG/SVRG rates for PCA.

- Burer & Monteiro [2004] consider SDP re-parameterization
 \[
 \min_{\{X \mid X \succeq 0, \text{rank}(X) \leq k\}} f(X) \Rightarrow \min_V f(VV^T),
 \]
 and show does not introduce spurious local minimum.
Globally-Optimal Methods for Matrix Problems

- Classic: principal component analysis (PCA)
 \[
 \max_{W^TW = I} \|X^T W\|_F^2,
 \]
 and rank-constrained version. Shamir [2015] gives SAG/SVRG rates for PCA.
- Burer & Monteiro [2004] consider SDP re-parameterization
 \[
 \min_{\{X \mid X \succeq 0, \text{rank}(X) \leq k\}} f(X) \Rightarrow \min_V f(VV^T),
 \]
 and show does not introduce spurious local minimum.
- De Sa et al. [2015]: For class of non-convex problems of the form
 \[
 \min_Y \mathbb{E}[\|A - VV^T\|_F^2].
 \]
 random initialization leads to global optimum.
Globally-Optimal Methods for Matrix Problems

- Classic: principal component analysis (PCA)
 \[\max_{W^TW = I} \|X^TW\|_F^2, \]
 and rank-constrained version.
 Shamir [2015] gives SAG/SVRG rates for PCA.
- Burer & Monteiro [2004] consider SDP re-parameterization
 \[\min_{\{X | X \succeq 0, \text{rank}(X) \leq k\}} f(X) \Rightarrow \min_V f(VV^T), \]
 and show does not introduce spurious local minimum.
- De Sa et al. [2015]: For class of non-convex problems of the form
 \[\min_Y \mathbb{E}[\|A - VV^T\|_F^2]. \]
 random initialization leads to global optimum.
- Under certain assumptions, can solve UV^T dictionary learning and phase retrieval problems [Agarwal et al., 2014, Candes et al., 2015].
- Certain latent variable problems like training HMMs can be solved via SVD and tensor-decomposition methods [Hsu et al., 2012, Anandkumar et al, 2014].
Convex Relaxations/Representations

- **Convex relaxations** approximate non-convex with convex:
 - Convex relaxations exist for neural nets. [Bengio et al., 2005, Aslan et al., 2015].
 - But may solve restricted problem or be a bad approximation.
Convex Relaxations/Representations

- **Convex relaxations** approximate non-convex with convex:
 - Convex relaxations exist for neural nets. [Bengio et al., 2005, Aslan et al., 2015].
 - But may solve restricted problem or be a bad approximation.

- Can solve **convex dual**:
 - Strong-duality holds for some non-convex problems.
 - Sometimes dual has nicer properties.
 - Efficiently representation/calculation of neural network dual?
Convex Relaxations/Representations

- **Convex relaxations** approximate non-convex with convex:
 - Convex relaxations exist for neural nets. [Bengio et al., 2005, Aslan et al., 2015].
 - But may solve restricted problem or be a bad approximation.

- Can solve **convex dual**:
 - Strong-duality holds for some non-convex problems.
 - Sometimes dual has nicer properties.
 - Efficiently representation/calculation of neural network dual?

- **Exact convex re-formulations** of non-convex problems:
 - Laserre [2001].
 - But the size may be enormous.
Grid-search is optimal, but can be beaten:

- Convergence rate of Bayesian optimization [Bull, 2011]:
 - Slower than grid-search with low level of smoothness.
 - Faster than grid-search with high level of smoothness:
 - Improves error from $O(1/\epsilon^{d})$ to $O(1/\epsilon^{d/\nu})$.
General Non-Convex Rates

Grid-search is optimal, but can be beaten:

- Convergence rate of **Bayesian optimization** [Bull, 2011]:
 - Slower than grid-search with low level of smoothness.
 - Faster than grid-search with high level of smoothness:
 - Improves error from $O(1/\epsilon^d)$ to $O(1/\epsilon^{d/\nu})$.

- Regret bounds for Bayesian optimization:
 - Exponential scaling with dimensionality [Srinivas et al., 2010].
 - Better under additive assumption [Kandasamy et al., 2015].
Grid-search is optimal, but can be beaten:

- **Convergence rate of Bayesian optimization** [Bull, 2011]:
 - Slower than grid-search with low level of smoothness.
 - Faster than grid-search with high level of smoothness:
 - Improves error from $O(1/\epsilon^d)$ to $O(1/\epsilon^{d/\nu})$.

- **Regret bounds for Bayesian optimization:**
 - Exponential scaling with dimensionality [Srinivas et al., 2010].
 - Better under additive assumption [Kandasamy et al., 2015].

- **Other known faster-than-grid-search rates:**
 - Simulated annealing under complicated non-singular assumption [Tikhomirov, 2010].
 - Particle filtering can improve under certain conditions [Crisan & Doucet, 2002].
 - Graduated Non-Convexity for σ-nice functions [Hazan et al., 2014].
Parallel and distributed methods will be required in the future.
- Need asynchronous methods with low communication and fault tolerance.
We are starting to be able to understand non-convex problems, but there is a lot of work to do.

Thank you for the invitation and I hope you learned some new things!