Parallel /Distributed Optimization Non-Convex

SVAN 2016 Mini-Course

Stochastic Convex Optimization Methods in Machine Learning

Mark Schmidt

University of British Columbia, May 2016

WWw.cs.ubc.ca/~schmidtm/SVAN16

www.cs.ubc.ca/~schmidtm/SVAN16

Parallel /Distributed Optimization Non-Convex

Motivation for Parallel and Distributed

@ Two recent trends:

e We aren't making large gains in serial computation speed.
e Datasets no longer fit on a single machine.

Parallel /Distributed Optimization Non-Convex

Motivation for Parallel and Distributed

@ Two recent trends:
e We aren't making large gains in serial computation speed.
e Datasets no longer fit on a single machine.
@ Result: we must use parallel and distributed computation.
@ Two major issues:

e Synchronization: we can't wait for the slowest machine.
o Communication: we can't transfer all information.

Parallel /Distributed Optimization Non-Convex

Embarassing Parallelism in Machine Learning

@ A lot of machine learning problems are embarrassingly parallel:
e Split task across M machines, solve independently, combine.

Parallel /Distributed Optimization Non-Convex

Embarassing Parallelism in Machine Learning

@ A lot of machine learning problems are embarrassingly parallel:
e Split task across M machines, solve independently, combine.

e E.g., computing the gradient in deterministic gradient method,

N/M 2N/M

N
Vi@ = [S VA0 Y VA
=1 i=1

i=(N/M)+1

Parallel /Distributed Optimization Non-Convex

Embarassing Parallelism in Machine Learning

@ A lot of machine learning problems are embarrassingly parallel:
e Split task across M machines, solve independently, combine.

e E.g., computing the gradient in deterministic gradient method,

| X) N/M 2ON/M
TIVE@ =~ [V@ Y V@)t
= i=1 i=(N/M)+1

@ These allow optimal linear speedups.
e You should always consider this first!

Parallel /Distributed Optimization Non-Convex

Asynchronous Computation

@ Do we have to wait for the last computer to finish?

Parallel /Distributed Optimization Non-Convex

Asynchronous Computation

@ Do we have to wait for the last computer to finish?
e No!

@ Updating asynchronously saves a lot of time.

Parallel /Distributed Optimization Non-Convex

Asynchronous Computation

Do we have to wait for the last computer to finish?
No!
Updating asynchronously saves a lot of time.

E.g., stochastic gradient method on shared memory:

xk-i—l — .%'k _ anZk (xk—m)

Parallel/Distributed Optimization

Asynchronous Computation

Do we have to wait for the last computer to finish?
No!
Updating asynchronously saves a lot of time.

E.g., stochastic gradient method on shared memory:

xk-i—l — .%'k _ avak (xk—m)

You need to decrease step-size in proportion to asynchrony.

Convergence rate decays elegantly with delay m.[Niu et al., 2011]

Parallel /Distributed Optimization Non-Convex

Reduced Communication: Parallel Coordinate Descnet

@ It may be expensive to communicate parameters x.

Parallel /Distributed Optimization Non-Convex

Reduced Communication: Parallel Coordinate Descnet

@ It may be expensive to communicate parameters x.

@ One solution: use parallel coordinate descent:

Lj = Tjy — Q5 vjl f(x)
Ljy = Tjp — Qjy vjzf(x)

Tjy = Tjg — js Vs f()

@ Only needs to communicate single coordinates.

Parallel /Distributed Optimization Non-Convex

Reduced Communication: Parallel Coordinate Descnet

It may be expensive to communicate parameters x.

One solution: use parallel coordinate descent:

Lj = Tjy — Q5 vjl f(aj)
Ljy = Tjp — Qjy vjzf(x)

Tjy = Tjg — js Vs f()

Only needs to communicate single coordinates.

Again need to decrease step-size for convergence.

Speedup is based on density of graph.[Richtarik & Takac, 2013]

Parallel /Distributed Optimization Non-Convex

Reduced Communication: Decentralized Gradient

@ We may need to distribute the data across machines.

@ We may not want to update a ‘centralized’ vector x.

Non-Convex

Parallel /Distributed Optimization

Reduced Communication: Decentralized Gradient

@ We may need to distribute the data across machines.
@ We may not want to update a ‘centralized’ vector x.

@ One solution: decentralized gradient method:
e Each processor has its own data samples f1, fo, ... fin.

e Each processor has its own parameter vector z..
o Each processor only communicates with a limited number of neighbours nei(c).

Parallel /Distributed Optimization

Reduced Communication: Decentralized Gradient

@ We may need to distribute the data across machines.
@ We may not want to update a ‘centralized’ vector x.

@ One solution: decentralized gradient method:
e Each processor has its own data samples f1, fo, ... fin.

e Each processor has its own parameter vector z..
o Each processor only communicates with a limited number of neighbours nei(c)

Z LTe — aczvfz -rc

c’enei(c)

e = |ne|

o Gradient descent is special case where all neighbours communicate.
e With modified update, rate decays gracefully as graph becomes sparse.[Shi et al

2014]
@ Can also consider communication failures.[Agarwal & Duchi, 2011]

(pause)

Parallel /Distributed Optimization Non-Convex

Two Classic Perspectives of Non-Convex Optimization

Parallel /Distributed Optimization Non-Convex

Two Classic Perspectives of Non-Convex Optimization

@ Local non-convex optimization:
o Apply method with good properties for convex functions.
e First phase is getting near minimizer.
e Second phase applies rates from convex optimization.

Parallel /Distributed Optimization Non-Convex

Two Classic Perspectives of Non-Convex Optimization

@ Local non-convex optimization:

o Apply method with good properties for convex functions.
e First phase is getting near minimizer.

e Second phase applies rates from convex optimization.

e But how long does the first phase take?

Parallel /Distributed Optimization Non-Convex

Two Classic Perspectives of Non-Convex Optimization

@ Local non-convex optimization:

o Apply method with good properties for convex functions.
e First phase is getting near minimizer.

e Second phase applies rates from convex optimization.

e But how long does the first phase take?

@ Global non-convex optimization:

e Search for global min for general function class.
e E.g., search over a sucessively-refined grid.
o Optimal rate for Lipschitz functions is O(1/e!/?).

Parallel /Distributed Optimization Non-Convex

Two Classic Perspectives of Non-Convex Optimization

@ Local non-convex optimization:
o Apply method with good properties for convex functions.
e First phase is getting near minimizer.
e Second phase applies rates from convex optimization.
e But how long does the first phase take?

@ Global non-convex optimization:

e Search for global min for general function class.

e E.g., search over a sucessively-refined grid.

o Optimal rate for Lipschitz functions is O(1/e!/?).
e Can only solve low-dimensional problems.

o We'll go over recent local, global, and hybrid results..

Parallel /Distributed Optimization Non-Convex

PL Inequalty: Expanding the Second Phase

@ Linear convergence proofs usually assume strong-convexity

F) = F@) + (V@) —a) + Sy — |

Parallel /Distributed Optimization Non-Convex

PL Inequalty: Expanding the Second Phase

@ Linear convergence proofs usually assume strong-convexity
7
1) = f@)+ (Vf(@)y - 2)+ Sy — o

@ But you can also show linear convergence under many weaker assumptions:
o Essential strong-convexity, weak strong-convexity, restricted secant inequality,
restrictied secant inequality, quadratic growth property, optimal strong-convexity,
error bounds.

@ In fact, for our proof to work we only required

SIVF@I? > ulf @) - £,

which we call the Polyak-tLojasiewicz inequality:

Parallel /Distributed Optimization Non-Convex

PL Inequalty: Expanding the Second Phase

@ Linear convergence proofs usually assume strong-convexity
7
1) = f@)+ (Vf(@)y - 2)+ Sy — o

@ But you can also show linear convergence under many weaker assumptions:
o Essential strong-convexity, weak strong-convexity, restricted secant inequality,
restrictied secant inequality, quadratic growth property, optimal strong-convexity,
error bounds.

@ In fact, for our proof to work we only required

SIVF@I? > ulf @) - £,

which we call the Polyak-tLojasiewicz inequality:
e Older than all the above, and also weaker than all the above.

Parallel /Distributed Optimization Non-Convex

PL Inequalty: Expanding the Second Phase

@ Linear convergence proofs usually assume strong-convexity
7
1) = f@)+ (Vf(@)y - 2)+ Sy — o

@ But you can also show linear convergence under many weaker assumptions:
o Essential strong-convexity, weak strong-convexity, restricted secant inequality,
restrictied secant inequality, quadratic growth property, optimal strong-convexity,
error bounds.

@ In fact, for our proof to work we only required

SIVF@I? > ulf @) - £,

which we call the Polyak-tLojasiewicz inequality:
e Older than all the above, and also weaker than all the above.
e Does not imply solution is unique.
e Holds for f(Ax) with f strongly-convex even if A is singular.

Parallel /Distributed Optimization Non-Convex

PL Inequalty: Expanding the Second Phase

@ Linear convergence proofs usually assume strong-convexity
7
1) = f@)+ (Vf(@)y - 2)+ Sy — o

@ But you can also show linear convergence under many weaker assumptions:
o Essential strong-convexity, weak strong-convexity, restricted secant inequality,
restrictied secant inequality, quadratic growth property, optimal strong-convexity,
error bounds.

@ In fact, for our proof to work we only required

SIVF@I? > ulf @) - £,

which we call the Polyak-tLojasiewicz inequality:
e Older than all the above, and also weaker than all the above.
e Does not imply solution is unique.
e Holds for f(Ax) with f strongly-convex even if A is singular.
e Does not imply convexity.
e Also works for coordinate descent, can be generalized to proximal-gradient.

Parallel /Distributed Optimization Non-Convex

Global Linear Convergence with the PL Inequalty

Function satisfying the strong-convexity property:
(unique optimum, convex, growing faster than linear)

Parallel /Distributed Optimization Non-Convex

Global Linear Convergence with the PL Inequalty

Function satisfying the strong-convexity property:
(unique optimum, convex, growing faster than linear)

Function satisfying the PL inequality:
@ Linear convergence rate for this non-convex function.

@ Second phase of local solvers is larger than we thought.

Parallel /Distributed Optimization Non-Convex

General Global Non-Convex Rates?

@ For strongly-convex smooth functions, we have

IVF@E@)? =0("), fa') = f(z") =0("), e~] = O(").

Parallel /Distributed Optimization Non-Convex

General Global Non-Convex Rates?

@ For strongly-convex smooth functions, we have

IVF@EDI? =00"), f(a)—f@)=00"), llzt—a. =0(").

@ For convex smooth functions, we have

IVF@@h)?=0(/t), fla') — f(z") = O(1/t).

Parallel /Distributed Optimization Non-Convex

General Global Non-Convex Rates?

@ For strongly-convex smooth functions, we have
IVFE@)?=0("), fla') = fa*)=00"), ot~z = O(p").
@ For convex smooth functions, we have
IV S|P =01/t), fla) = fa*) = O(1/t).
@ For non-convex smooth functions, we have

min |V f(@")[[* = O(1/1).

Parallel /Distributed Optimization Non-Convex

General Global Non-Convex Rates?

@ For strongly-convex smooth functions, we have
IVFE@)?=0("), fla') = fa*)=00"), ot~z = O(p").
@ For convex smooth functions, we have
IV S|P =01/t), fla) = fa*) = O(1/t).
@ For non-convex smooth functions, we have
min |V /(4)]|* = 0(1/1).

@ You can get this rate for a random iteration of stochastic gradient.
[Ghadimi & Lan, 2013].

Parallel /Distributed Optimization Non-Convex

Escaping Saddle Points

@ Ghadimi & Lan type of rates could be good or bad news:

e No dimension dependence (way faster than grid-search).
e But gives up on optimality (e.g., approximate saddle points).

Non-Convex

Escaping Saddle Points

@ Ghadimi & Lan type of rates could be good or bad news:

e No dimension dependence (way faster than grid-search).

e But gives up on optimality (e.g., approximate saddle points).
@ Escaping from saddle points:

o Classical: trust-region methods allow negative eigenvalues.
o Modify eigenvalues in Newton's method [Dauphin et al., 2014].
o Add random noise to stochastic gradient [Ge et al., 2015].

Non-Convex

Escaping Saddle Points

@ Ghadimi & Lan type of rates could be good or bad news:

e No dimension dependence (way faster than grid-search).

e But gives up on optimality (e.g., approximate saddle points).
@ Escaping from saddle points:
Classical: trust-region methods allow negative eigenvalues.
Modify eigenvalues in Newton's method [Dauphin et al., 2014].
Add random noise to stochastic gradient [Ge et al., 2015].
Cubic regularization of Newton [Nesterov & Polyak, 2006],

Rt mdin {f(xk) + <Vf(93k)7d> + %dTvzf(xk)d‘i’ g“ds})

if within ball of saddle point then next step:

@ Moves outside of ball.
o Has lower objective than saddle-point.

Parallel /Distributed Optimization Non-Convex

Globally-Optimal Methods for Matrix Problems

Parallel /Distributed Optimization Non-Convex

Globally-Optimal Methods for Matrix Problems

@ Classic: principal component analysis (PCA)

max XTw |2
max [XTWIE,

and rank-constrained version.
Shamir [2015] gives SAG/SVRG rates for PCA.

Parallel /Distributed Optimization Non-Convex

Globally-Optimal Methods for Matrix Problems

@ Classic: principal component analysis (PCA)
max || XTW|%,
Tax . Il I

and rank-constrained version.
Shamir [2015] gives SAG/SVRG rates for PCA.
@ Burer & Monteiro [2004] consider SDP re-parameterization

i X i T
{XIXEO,I?;r?k(X)Sk} FX) = m‘}nf(VV)s

and show does not introduce spurious local minimum.

Parallel /Distributed Optimization Non-Convex

Globally-Optimal Methods for Matrix Problems

@ Classic: principal component analysis (PCA)

max XTw |2
max [XTWIE,

and rank-constrained version.
Shamir [2015] gives SAG/SVRG rates for PCA.

@ Burer & Monteiro [2004] consider SDP re-parameterization

i X i T
{XIXEO,I?;r?k(X)Sk} F(X) = m‘}nf(VV),

and show does not introduce spurious local minimum.
@ De Sa et al. [2015]: For class of non-convex problems of the form

mlinIE[HA —-vvT).

random initialization leads to global optimum.

Parallel /Distributed Optimization Non-Convex

Globally-Optimal Methods for Matrix Problems

Classic: principal component analysis (PCA)

max XTw |2
max [XTWIE,

and rank-constrained version.
Shamir [2015] gives SAG/SVRG rates for PCA.
@ Burer & Monteiro [2004] consider SDP re-parameterization
i X) = min f(VVT),
(xix ooy T = SV
and show does not introduce spurious local minimum.
@ De Sa et al. [2015]: For class of non-convex problems of the form

min B4 — V73],

random initialization leads to global optimum.

@ Under certain assumptions, can solve UV'T dictionary learning and phase retrieval problems [Agarwal et
al., 2014, Candes et al., 2015].

@ Certain latent variable problems like training HMMs can be solved via SVD and tensor-decomposition
methods [Hsu et al., 2012, Anandkumar et al, 2014].

Parallel /Distributed Optimization Non-Convex

Convex Relaxations/Representations

@ Convex relaxations approximate non-convex with convex:

o Convex relaxations exist for neural nets.
[Bengio et al., 2005, Aslan et al., 2015].
e But may solve restricted problem or be a bad approximation.

Parallel /Distributed Optimization Non-Convex

Convex Relaxations/Representations

@ Convex relaxations approximate non-convex with convex:
o Convex relaxations exist for neural nets.
[Bengio et al., 2005, Aslan et al., 2015].
e But may solve restricted problem or be a bad approximation.
@ Can solve convex dual:
e Strong-duality holds for some non-convex problems.
e Sometimes dual has nicer properties.
o Efficiently representation/calculation of neural network dual?

Parallel /Distributed Optimization Non-Convex

Convex Relaxations/Representations

@ Convex relaxations approximate non-convex with convex:
o Convex relaxations exist for neural nets.
[Bengio et al., 2005, Aslan et al., 2015].
e But may solve restricted problem or be a bad approximation.
@ Can solve convex dual:
e Strong-duality holds for some non-convex problems.
e Sometimes dual has nicer properties.
o Efficiently representation/calculation of neural network dual?
@ Exact convex re-formulations of non-convex problems:

o Laserre [2001].
e But the size may be enormous.

Parallel /Distributed Optimization

General Non-Convex Rates

Grid-search is optimal, but can be beaten:
e Convergence rate of Bayesian optimization [Bull, 2011]:

e Slower than grid-search with low level of smoothness.
e Faster than grid-search with high level of smoothness:

o Improves error from O(1/€?) to O(1/e¥").

Non-Convex

Non-Convex

General Non-Convex Rates

Grid-search is optimal, but can be beaten:
e Convergence rate of Bayesian optimization [Bull, 2011]:

e Slower than grid-search with low level of smoothness.
e Faster than grid-search with high level of smoothness:

o Improves error from O(1/€?) to O(1/e¥").
@ Regret bounds for Bayesian optimization:

e Exponential scaling with dimensionality [Srinivas et al., 2010].
o Better under additive assumption [Kandasamy et al., 2015].

Non-Convex

General Non-Convex Rates

Grid-search is optimal, but can be beaten:
e Convergence rate of Bayesian optimization [Bull, 2011]:

e Slower than grid-search with low level of smoothness.
e Faster than grid-search with high level of smoothness:

o Improves error from O(1/€?) to O(1/e¥").
@ Regret bounds for Bayesian optimization:
e Exponential scaling with dimensionality [Srinivas et al., 2010].
o Better under additive assumption [Kandasamy et al., 2015].
@ Other known faster-than-grid-search rates:
o Simulated annealing under complicated non-singular assumption [Tikhomirov, 2010].
o Particle filtering can improve under certain conditions [Crisan & Doucet, 2002].
o Graduated Non-Convexity for o-nice functions [Hazan et al., 2014].

Non-Convex

Summary

o Parallel and distributed methods will be required in the future.
o Need asynchronous methods with low communication and fault tolerance.

@ We are starting to be able to understand non-convex problems, but there is a lot
of work to do.

@ Thank you for the invitation and | hope you learned some new things!

	Parallel/Distributed Optimization
	Non-Convex

