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Kernel Trick Kernel Methods Fenchel Duality

Coordinate Optimization vs. Stochastic Gradient

e Consider optimization problem:

argmin — Z filx

z€R4

@ Coordinate optimization: update one x; based on all examples:

o Fast convergence rate, but iterations must be d times cheaper than gradient method.
e Functions f; must be smooth.



Kernel Trick Kernel Methods Fenchel Duality

Coordinate Optimization vs. Stochastic Gradient

e Consider optimization problem:

argmin — Z filx

z€R4

@ Coordinate optimization: update one x; based on all examples:

o Fast convergence rate, but iterations must be d times cheaper than gradient method.
e Functions f; must be smooth.

@ Stochastic gradient: update all z; based on one example:

o Slow convergence rate, and iterations are d times cheaper than gradient method.
e Functions f; can be non-smooth.



Kernel Trick Kernel Methods Fenchel Duality

Coordinate Optimization vs. Stochastic Gradient

e Consider optimization problem:

argmin — Z filx

z€R4

@ Coordinate optimization: update one x; based on all examples:

o Fast convergence rate, but iterations must be d times cheaper than gradient method.
e Functions f; must be smooth.

@ Stochastic gradient: update all z; based on one example:
o Slow convergence rate, and iterations are d times cheaper than gradient method.
e Functions f; can be non-smooth.

@ SAG: update all z; based on one example (and old versions of others):

o Fast convergence rate, and iterations are d times cheaper than gradient method.
e Functions f; must be smooth.
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Motivation: Multi-Dimensional Polynomial Basis

@ Recall using polynomial basis when we only have one features (x; € R):

Gi = B+ wizi + war}.

@ We can fit these models using a change of basis:

0.2 1 02 (0.2)?
_|-05 |1 —0.5 (-0.5)2
If X = 1 then let ®(X) = 11 12 |
4 1 (42)

and L2-regularized least squares solution is
w= (®(X)TO(X) + ) 'o(X)Ty.

@ How can we do this when we have a lot of features?
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Motivation: Multi-Dimensional Polynomial Basis

@ Approach 1: use polynomial basis for each variable:

0.2 0.3 1 02 (022 03 (0.3)?
X=|1 05|=0X)=|[1 1 ()2 05  (0.5)?
-0.5 —0.1 1 —-05 (-05)2 —0.1 (-0.1)2

@ But this is restrictve:

o We should allow terms like ;12,5 that depend on feature interactions.
e But number of terms in X, would be huge:

o Degree-5 polynomial basis has O(d®) terms:
5 4 4 3.2 3 2 3
Li1y Li1Ti2, Ti1Li3, - -+ L1 L2, Li1Li2, - - -5 L1 Li2T43, - - -

@ If n is not too big, we can do this efficiently using the kernel trick.
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Equivalent Form of Ridge Regression
@ Recall the L2-regularized least squares model,
1 A
argmin = | Xw — yl|* + 5w
weR
@ We showed that the solution is
_(xT 13T
w=(X"X+A;) X'y,
dbyd

where I; is the d by d identity matrix.

Fenchel Duality
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Equivalent Form of Ridge Regression
@ Recall the L2-regularized least squares model,
1 A
argmin = | Xw — yl|* + 5w
weR
@ We showed that the solution is
_(xT 13T
w=(X"X+A;) X'y,
dbyd
where I; is the d by d identity matrix.
@ An equivalent way to write the solution is:
w=XT(XXT 41,) "y,
nbyn

by using a variant of the matrix inversion lemma.
o Computing w with this formula is faster if n << d:
o since XX7 is n by n while XTX is d by d.
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Predictions using Equivalent Form

o Given test data X, we predict § using:

w

XT(XXT 4 2L,) Yy

Y

I
Sy by

o If we define K = XX7 (Gram matrix) and K = X X7 then we have
§=K(K+ \,)™ 1.

@ Key observation behind kernel trick:
o If we have the K and K, we don't need the features.
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Gram Matrix

@ The Gram matrix K is defined by:

— J—
N I
K=XX"= . Tr1 I2
— I
wley alay - ofa,
T T T
T T T
T, T1 TpTy v TpTp

Fenchel Duality
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@ K contains the inner products between all training examples.
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Gram Matrix

@ The Gram matrix K is defined by:

— I
I e
K=XX"= . Tr1 T2 I3
— T
wley alay - ofa,
T T T
T T T
LTIl TpTy - Ty Tn

@ K contains the inner products between all training examples.

@ K contains the inner products between training and test examples.
o If we can compute inner products k(xz;, z;) = :vZTxJ we don't need z; and x;.

Fenchel Duality
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Polynomial Kernel

o Consider two examples x; and x; for a two-dimensional dataset:

v = (131, Ti2),  xj = (T1,752).
o Consider a particular degree-2 basis ¢:

¢(x;) = (931217 \/5551'11"1'271'122)'

Fenchel Duality
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Polynomial Kernel
o Consider two examples x; and x; for a two-dimensional dataset:
i = (T, ®i2), xj = (Tj1,%j2).
o Consider a particular degree-2 basis ¢:
¢(x;) = (wh, V2w mio, 7).

o We can compute inner product ¢(z;)” ¢(z;) without forming ¢(z;) and ¢(x;),
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Polynomial Kernel

o Consider two examples x; and x; for a two-dimensional dataset:
i = (T, ®i2), xj = (Tj1,%j2).

o Consider a particular degree-2 basis ¢:

$(wi) = (251, V2wnwin, 73y).
o We can compute inner product ¢(z;)” ¢(z;) without forming ¢(z;) and ¢(x;),

o(zi)" dlaj) = [2 V2wazn 2h] ¢(w))
= m?lx% + 2w 250751752 + x?yc?z

= (zixj1 + a:igacjg)Q (completing the square)

d 2
= Z LikLjk
k=1

= (] z;).
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Polynomial Kernel with Higher Degrees

o If we want all degree-4 “monomials”, raise to 4" power:
T T,. \4
o(xi)" pxj) = (wj z5)",

N : . 4 3. .2.2 .3 4
where ¢(x;) is weighted version of z;}, z7 Tio, T 5, Ti1 T3y, Tio-
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Polynomial Kernel with Higher Degrees
o If we want all degree-4 “monomials”, raise to 4" power:
¢(i) ¢(wj) = («] 25)*,

where ¢(z;) is weighted version of x?l,xflmig,xflx%, m“:p%,m%.
@ If you want bias or lower-order terms like z;1, add constant inside power:

(1+ xiij)Q =1+ Qx?xj + (:E7T1J)2

=[1 2z 23 23 V2rawe 2%) 5 = ¢(z:)T p(x;),

@ These formulas still work for any dimension of the x;.
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Kernel Trick

@ Using polynomial basis of degree ‘p’ with the kernel trick:
e Compute K and K which have elements:

k(zi,z;) = 1+ ala)P, k(&) = (1427 ;)P

e Make predictions using: R
§=K(K+ )1y
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@ Using polynomial basis of degree ‘p’ with the kernel trick:
e Compute K and K which have elements:

k(zi,z;) = 1+ ala)P, k(&) = (1427 ;)P

e Make predictions using: R
§=K(K+ )1y

o Cost is O(n%d + n?) even though number of features is O(dP).
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Kernel Trick

@ Using polynomial basis of degree ‘p’ with the kernel trick:
e Compute K and K which have elements:

ki, ay) = (L+ala)P,  k(@,x5) = (1+ 2] ;)"
e Make predictions using: .
§=K(K+ ) y.
o Cost is O(n%d + n?) even though number of features is O(dP).

@ Kernel trick lets us fit regression models without explicit feature calculation:
o Features may have exponential or infinite size.
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Guasian-RBF Kernels

@ The most common kernel is the Gaussian-RBF (or ‘squared exponential’) kernel,
2
T
K(wi, 2) = exp (—”J”) |

e What function ¢(z) would lead to this as the inner-product?
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Guasian-RBF Kernels

@ The most common kernel is the Gaussian-RBF (or ‘squared exponential’) kernel,
2
Ti— s
k(zi, z;) = exp (—H ! 5 i ) .
o
e What function ¢(z) would lead to this as the inner-product?
e To simplify, assume d =1 and 0 =1,
k(z;,x;) = exp(—x7 + 2z — x?)

= exp(—a7 ) exp(2z;x;) exp(—a7),
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Guasian-RBF Kernels

@ The most common kernel is the Gaussian-RBF (or ‘squared exponential’) kernel,
2
Ti— s
K(wi, 2) = exp (—””) |
o
e What function ¢(z) would lead to this as the inner-product?
e To simplify, assume d =1 and 0 =1,

k(z;,x;) = exp(—x7 + 2z — x?)
= exp(—a7 ) exp(2z;x;) exp(—a7),

so we need ¢(z;) = exp(—x?)z; where z;z; = exp(2z;x;).
e For this to work for all x; and zj, z; must be infinite-dimensional.
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Guasian-RBF Kernels

@ The most common kernel is the Gaussian-RBF (or ‘squared exponential’) kernel,

2
Ti— s
k(xi, ;) = exp (—W) )
e What function ¢(z) would lead to this as the inner-product?
e To simplify, assume d =1 and 0 =1,

k(z;,xz;) = exp(—a? + 2w — x?)

= exp(—a7 ) exp(2z;x;) exp(—a7),
so we need ¢(z;) = exp(—x?)z; where z;z; = exp(2z;x;).
e For this to work for all x; and zj, z; must be infinite-dimensional.

o If we use that
ok, Ic k

exp(2x;x;) = Z k:' )

k=0
then we obtain

o(x;) = exp(— [ \/>11 \/227,’ \/?)’E"zf }
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Kernel Trick for Structured Data

o Kernel trick is useful for structured data:
o Consider data that doesn't look like this:

0.5377  0.3188  3.5784
1.8339  —1.3077  2.7694 B
292588 —0.4336 —1.3499|° Y~
0.8622  0.3426  3.0349

X =

Fenchel Duality
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o Kernel trick is useful for structured data:
o Consider data that doesn't look like this:

0.5377  0.3188  3.5784
1.8339  —1.3077  2.7694 B
292588 —0.4336 —1.3499|° Y~
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but instead looks like this:

Do you want to go for a drink sometime?
J'achéte du pain tous les jours.
Fais ce que tu veux.
There are inner products between sentences?
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+1
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Kernel Trick for Structured Data

o Kernel trick is useful for structured data:
o Consider data that doesn't look like this:

0.5377  0.3188  3.5784 +1

X — 1.8339 —1.3077 2.7694 -1
T |-22588 —0.4336 —1.3499| YT |-1|"

0.8622  0.3426  3.0349 +1

but instead looks like this:

Do you want to go for a drink sometime? +1
J'achéte du pain tous les jours. -1

X = . ’y =
Fais ce que tu veux. -1
There are inner products between sentences? +1

e We could convert sentences to features, or define kernel between sentences.
e For example, “string” kernels:
o Weighted frequency of common subsequences (dynamic programming).

o There are also “graph kernels”, “image kernels”, and so on...
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o There exists ¢ such that k(z;, x;) = (¢(z:), ¢(z;)).
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We can decompose a (continuous or finite-domain) function k into

k(zi, 25) = (p(@:), p(x5)),

iff it is symmetric and for any finite {x1,x2,...,x,} we have K = 0.
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o Or show it can be constructed from other valid kernels.
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Valid Kernels

e What kernel functions k(z;, ;) can we use?
@ Kernel k£ must be an inner product in some space:
o There exists ¢ such that k(z;, x;) = (¢(z:), ¢(z;)).

We can decompose a (continuous or finite-domain) function k into

k(zi, z5) = (p(x:), p(x5)),

iff it is symmetric and for any finite {x1,x2,...,x,} we have K = 0.

@ Nice in theory, what do we do in practice?

o Show explicitly that k(z;, ;) is an inner product.
o Or show it can be constructed from other valid kernels.

o If we use invalid kernel, lose inner-product interpretation but may work fine.
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Bonus Slide: Constructing Feature Space

@ Why is positive semi-definiteness important?
e With finite domain we can define K over all points.
e The condition K = 0 means it has a spectral decomposition

K =UTAU,

where the eignevalues \; > 0 and so we have a real Az,
o Thus we hav K = UTA2A2U = ||AzU||? and we could use

®(X) =AU, or ¢(x;) = A2U.,;.

@ The above reasoning isn't quite right for continuous domains.

@ The more careful generalization is known as “Mercer’s theorem™ .



Kernel Trick Kernel Methods Fenchel Duality

Constructing Valid Kernels

o If ki(xs,x;) and ka(x;, x;) are valid kernels, then the following are valid kernels:

o ki(p(x:), d(x;)).
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Constructing Valid Kernels

o If ki(xs,x;) and ka(x;, x;) are valid kernels, then the following are valid kernels:

o k1(d(xi), p(z5))-
° akl(xi,xj) + ﬁk‘g(]?i,.fj) foraa>0and 8 > 0.
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o If ki(xs,x;) and ka(x;, x;) are valid kernels, then the following are valid kernels:
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-] kl(mi,xj)kg(xi,xj).



Kernel Trick Kernel Methods Fenchel Duality

Constructing Valid Kernels

o If ki(xs,x;) and ka(x;, x;) are valid kernels, then the following are valid kernels:
o ki(¢(w:), d(x)).
° akl(xi,xj) + ﬁk‘g(.fi,.fj) foraa>0and 8 > 0.
-] kl(mi,xj)kg(xi,xj).

] Qﬁ(l‘l)kl (jS, o:j)qb(x])
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Constructing Valid Kernels

o If ki(xs,x;) and ka(x;, x;) are valid kernels, then the following are valid kernels:
o ki(¢(w:), d(x)).

ozk‘l(xi,xj) + ﬁk‘g(.fi,.fj) foraa>0and 8 > 0.

kl(mi,xj)kg(xi,xj).

O k1 (s, ;) o ().

exp(k1 (i, ;).
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Constructing Valid Kernels

o If ki(xs,x;) and ka(x;, x;) are valid kernels, then the following are valid kernels:
o ki(o(zi), d(xy)).

ak‘l(xi,xj) + ﬁk‘g(l‘i,l‘j) foraa>0and 8 > 0.

k‘l(l‘i,l‘j)k‘g(xi,x]‘).

P(xi)k1 (i, x5)p(x;).

exp(ki(x;, ;).

@ Example: Gaussian-RBF kernel:

L2
k(x;i, x;) = exp (W)

a

1|12 2) 112
= exp (— HOU;H ) exp | — xiTacj exp <— ||3U12|| ) .
o 0%~ o

valid SN—
e a0 é(x)

-~

exp(valid)
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@ Besides ridge regression, when can we apply the kernel trick?
o Distance-based methods (see my undergrad course):

2 — 2 ||° = (w5, 35) — 2w, 25) + (x5, 2;5).

k-nearest neighbours.

Clustering algorithms (k-means, density-based clustering, hierarchical clustering).
Amazon item-to-item product recommendation.

Non-parametric regression.

Outlier ratio.

Multi-dimensional scaling.

Graph-based semi-supervised learning.
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Kernels Trick for Distance-Based Methods

@ Besides ridge regression, when can we apply the kernel trick?
o Distance-based methods (see my undergrad course):

2 — 2 ||° = (w5, 35) — 2w, 25) + (x5, 2;5).

k-nearest neighbours.

Clustering algorithms (k-means, density-based clustering, hierarchical clustering).
Amazon item-to-item product recommendation.

Non-parametric regression.

Outlier ratio.

Multi-dimensional scaling.

o Graph-based semi-supervised learning.

e Eigenvalue methods:

o Principle component analysis (trick for centering in high-dimensional space).
e Canonical correlation analysis.
@ Spectral clustering.

o L2-regularized linear models...
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o Consider linear model differentiable with losses f; and L2-regularization,
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_ A
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Representer Theorem
o Consider linear model differentiable with losses f; and L2-regularization,
g A
argmin Z fi(whzy) + §||wH2
d
weR i=1
@ Setting the gradient equal to zero we get

0= Z flwhz)a; + Mw.
i=1
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Representer Theorem

Consider linear model differentiable with losses f; and L2-regularization,

n
. A
argmin Z fi(whzy) + §||wH2
weRE
=1
Setting the gradient equal to zero we get

0= Z flwhz)a; + Mw.
i=1

So any solution w* can written as a linear combination of features x;,

* 1 - / *\T .
w* = —)\;fi((w ) mi)z; = ;zzxz
=XxT,.

This is called a representer theorem (true under much more general conditions).
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Representer Theorem

o Using representer theorem we can use w = X’z in original problem,

A
argmmez w” ;) §Hw||2

wER4 i=1

AT 2

=argmin fi(zT Xa) + 2| X T2

remi }j (7 Xay) + SIX |
TXT

Fenchel Duality
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Representer Theorem
o Using representer theorem we can use w = X’z in original problem,

A
argmmez w” ;) §Hw||2

wER4 i=1

AT 2

=argmin fi(zT Xa) + 2| X T2

remi §j (7 Xay) + SIX |
TXT

o Now defining f(z) = > fi(z;) for a vector z we have

A
=argmin f(XXT2) 4+ 227X XT2
z€R? 2

A
=argmin f(Kz) + =21 Kz.
z€R? 2

Fenchel Duality
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Representer Theorem

o Using representer theorem we can use w = X’z in original problem,

A
argmmez w” ;) 5“11)”2

wER4 i=1

AT 2

=argmin fi(zT Xa) + 2| X T2

remi §j (7 Xay) + SIX |
TXT

o Now defining f(z) = > fi(z;) for a vector z we have

A
=argmin f(XXT2) 4+ 227X XT2
z€R? 2

A
=argmin f(Kz) + =21 Kz.
ZGR" 2

@ Similarly, at test time we can use the n variables z,

Xw=XXTr=Kz.

Fenchel Duality
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Fenchel Dual

@ For convex f and g and the primal problem

argmin P(w) = f(Xw) + g(w),

weR4

the Fenchel dual is given by

argmax D(2) = —f*(—2) — (X" z),
z€R"

where f* is the convex conjugate.

Fenchel Duality
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@ For convex f and g and the primal problem

argmin P(w) = f(Xw) + g(w),

weR4

the Fenchel dual is given by

argmax D(z) = — [*(—2) — g"(X"2),
z€R™
where f* is the convex conjugate.
@ Why are we interested in this?
e Dual has fewer variables if n < d.

e D(z*) = P(w*) (strong duality): we can solve dual instead of primal.
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Fenchel Dual

@ For convex f and g and the primal problem

argmin P(w) = f(Xw) + g(w),

weR4

the Fenchel dual is given by

argmax D(2) = —f*(—2) — (X" z),
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where f* is the convex conjugate.
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If P is strongly-convex, dual is smooth: smooth formulation of SVMs.
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Fenchel Dual

@ For convex f and g and the primal problem

argmin P(w) = f(Xw) + g(w),

weR4

the Fenchel dual is given by

argmax D(2) = —f*(—2) — (X" z),
z€R"

where f* is the convex conjugate.
@ Why are we interested in this?

Dual has fewer variables if n < d.

D(z*) = P(w*) (strong duality): we can solve dual instead of primal.

D(z) < P(w) for all w and z (weak duality): dual gives lower bound on primal.
If P is strongly-convex, dual is smooth: smooth formulation of SVMs.

Dual sometimes allows sparse kernel representation.
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@ The supremum of a function f is its smallest upper-bound,

I = B



Kernel Trick Kernel Methods

Supremum and Infimum

Fenchel Duality

@ The supremum of a function f is its smallest upper-bound,

I = B

@ Generalization of max that includes limits:

2

max —z> =0, sup—a°=

but

0,

max —e® = DNE, sup—¢e® = 0.

zeR xER

@ The analogy for min is called the infimum.
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Convex Conjugate

Kernel Methods

@ The convex conjugate f* of a function f is given by

f*(y) = sup{y"= — f(2)},
€D

where D is values where sup is finite.

/(@)

0, — ()

Fenchel Duality

http://www.seas.ucla.edu/~vandenbe/236C/lectures/conj.pdf
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Fenchel Duality

Convex Conjugate
@ The convex conjugate f* of a function f is given by

f*(y) = sup{y"z — f(2)},
€D

where D is values where sup is finite.

\f(x) /

| fY
| Maxmaue ]

“‘ gep // ’
VT 0 -rw)

http://www.seas.ucla.edu/~vandenbe/236C/lectures/conj.pdf
@ It's the maximum that the linear function 3”2 can get above f(x).
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Convex Conjugate

@ The convex conjugate f* of a function f is given by
f*(y) = sup{y’z — f(2)},
zeD

where D is values where sup is finite.

f(z)
‘; |y
Mayimu
3Mf e
/S oy bue = {1,
0, =)

http://www.seas.ucla.edu/~vandenbe/236C/lectures/conj.pdf
e If f is differentable, then sup occurs at x where y = V f(x).
@ Note that f* is convex even if f is not.
e If fis convex (and “closed"), then f** = f.


http://www.seas.ucla.edu/~vandenbe/236C/lectures/conj.pdf
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Convex Conjugate Examples

o If f(z) = 1||z|? we have
o f*(y) =sup,{y"z — 3|lz||*} or equivalently (by taking derivative and setting to 0):

O:y_xv

and pluggin in x = y we get

1 1
* _ T, = 2:7 2.
£ ="y~ Il = Sl
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Convex Conjugate Examples
= 1||z||* we have

o f*(y) =sup,{y"z — 3|lz||*} or equivalently (by taking derivative and setting to 0):

0=y—ux,
and pluggin in x = y we get

* _ T _1 271 2
70 = 9"y Sl = 51wl
o If f(x) = alx we have

y=a

oo otherwise.
@ For other examples, see Boyd & Vandenberghe.
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Fenchel Dual of SVMs

o Consider support vector machines,

argmin Zmax{o 1 —ywla;} + —Hsz.

weRd i=1

The Fenchel dual is given by

n
Losr 2
argmax zi— — || X" 2
rgmax s - o5 X7
2TXXT2
where X =diag(y)X, w %X * and constraints come from f* < co.

Fenchel Duality
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Fenchel Dual of SVMs

o Consider support vector machines,

argmin Zmax{o 1 —ywl e} + —Hsz
weR? i=1

The Fenchel dual is given by

1 -
argmaszl X722,
0<2<1 2N D
ZTXXTz
where X =diag(y) X, w* = %XTZ* and constraints come from f* < cc.
@ A couple magical things have happened:
o We can apply kernel trick.
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Fenchel Dual of SVMs

o Consider support vector machines,

argmin Zmax{O 1 —ywl e} + —Hsz
weR? i=1

The Fenchel dual is given by

argmaszl ! X722,
0<z2<1 )\%c—’
2TXXT2
where X =diag(y)X, w* = %XTZ* and constraints come from f* < cc.
@ A couple magical things have happened:
o We can apply kernel trick.
o Dual is differentiable (though not strongly-convex).
e Dual variables z are sparse (non-zeroes are called “support vectors”):
o Can give faster training and testing.



Fenchel Dual of SVMs

o Consider support vector machines,

argmin Zmax{O 1 —ywl e} + —Hsz
weR? i=1

The Fenchel dual is given by

L o7 2
argmax E 2 X'z
0§z<1 p ’ )\H,—/H >

2TXXT2

where X =diag(y) X, w* = %XTZ* and constraints come from f* < cc.

@ A couple magical things have happened:
o We can apply kernel trick.
o Dual is differentiable (though not strongly-convex).

e Dual variables z are sparse (non-zeroes are called “support vectors”):
o Can give faster training and testing.

o Case where coordinate optimization is efficient.

Fenchel Duality
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Stochastic Dual Coordinate Ascent
o If we have an L2-regularized linear model with convex f;,
argmanf (w?'z;) iHsz
wER 7 7 2 b
i=1

then the Fenchel dual is given by

argmax—Zf 2i) ||XTzH2.
zERM R/_/
2T XXT2

separable
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Stochastic Dual Coordinate Ascent
o If we have an L2-regularized linear model with convex f;,

A
argmanfz (w?'z;) §HwH2,

’LUER i=1

then the Fenchel dual is given by

argmax—Zf 2i) ||XTzH2.
ZER” R/_/
2T XXTy

separable

@ We can apply stochastic dual coordinate ascent (SDCA):

o Only looks at one training example on each iteration.
o Obtains O(log(1/¢)) rate if Vf; are L-Lipschitz.

o Performance similar to SAG for many problems, worse if u >> A.
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Stochastic Dual Coordinate Ascent
o If we have an L2-regularized linear model with convex f;,

A
argmanfz (w?'z;) §HwH2,

’LUER i=1
then the Fenchel dual is given by

argmax—Zf 2i) ||XTzH2.
zERM R/_/
ZTXXT2

separable

@ We can apply stochastic dual coordinate ascent (SDCA):

o Only looks at one training example on each iteration
o Obtains O(log(1/¢)) rate if Vf; are L-Lipschitz

o Performance similar to SAG for many problems, worse if © >> X\
e Obtains O(1/e) rate for non-smooth f:

@ Same rate as stochastic subgradient, but we can now use exact/adaptive step-size
@ You could add an L2-regularizer to dual, corresponds to smoothing primal
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@ Kernel trick: allows working with “similarity” instead of features.

@ Valid kernels are typically constructed from other valid kernels.
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Fenchel Duality

Summary

Kernel trick: allows working with “similarity” instead of features.
Valid kernels are typically constructed from other valid kernels.

Representer theorem allows kernel trick for L2-regularized linear models.
Fenchel dual re-writes sum of convex functions with convex conjugates:
e Dual may have nice structure: differentiable, sparse, coordinate optimization.

Final session: we discuss parrallel/distributed methods and non-convex functions.
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