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Kernel Trick Kernel Methods Fenchel Duality

Coordinate Optimization vs. Stochastic Gradient

Consider optimization problem:

argmin
x∈Rd

1

n

n∑
i=1

fi(x).

Coordinate optimization: update one xj based on all examples:

Fast convergence rate, but iterations must be d times cheaper than gradient method.
Functions fi must be smooth.

Stochastic gradient: update all xi based on one example:

Slow convergence rate, and iterations are d times cheaper than gradient method.
Functions fi can be non-smooth.

SAG: update all xi based on one example (and old versions of others):

Fast convergence rate, and iterations are d times cheaper than gradient method.
Functions fi must be smooth.
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Motivation: Multi-Dimensional Polynomial Basis

Recall using polynomial basis when we only have one features (xi ∈ R):

ŷi = β + w1xi + w2x
2
i .

We can fit these models using a change of basis:

If X =


0.2
−0.5

1
4

 then let Φ(X) =


1 0.2 (0.2)2

1 −0.5 (−0.5)2

1 1 (1)2

1 4 (42)

 ,
and L2-regularized least squares solution is

w = (Φ(X)TΦ(X) + λI)−1Φ(X)T y.

How can we do this when we have a lot of features?
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Motivation: Multi-Dimensional Polynomial Basis

Approach 1: use polynomial basis for each variable:

X =

 0.2 0.3
1 0.5
−0.5 −0.1

⇒ Φ(X) =

1 0.2 (0.2)2 0.3 (0.3)2

1 1 (1)2 0.5 (0.5)2

1 −0.5 (−0.5)2 −0.1 (−0.1)2



But this is restrictve:

We should allow terms like xi1xi2 that depend on feature interactions.
But number of terms in Xpoly would be huge:

Degree-5 polynomial basis has O(d5) terms:

x5i1, x
4
i1xi2, x

4
i1xi3, . . . , x

3
i1x

2
i2, x

3
i1x

2
i2, . . . , x

3
i1xi2xi3, . . .

If n is not too big, we can do this efficiently using the kernel trick.
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Equivalent Form of Ridge Regression

Recall the L2-regularized least squares model,

argmin
w∈Rd

1

2
‖Xw − y‖2 +

λ

2
‖w‖2.

We showed that the solution is

w = (XTX︸ ︷︷ ︸
d by d

+λId)
−1XT y,

where Id is the d by d identity matrix.

An equivalent way to write the solution is:

w = XT (XXT︸ ︷︷ ︸
n by n

+λIn)−1y,

by using a variant of the matrix inversion lemma.
Computing w with this formula is faster if n << d:

since XXT is n by n while XTX is d by d.
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Predictions using Equivalent Form

Given test data X̂, we predict ŷ using:

ŷ = X̂w

= X̂XT (XXT + λIn)−1y

If we define K = XXT (Gram matrix) and K̂ = X̂XT , then we have

ŷ = K̂(K + λIn)−1y.

Key observation behind kernel trick:

If we have the K and K̂, we don’t need the features.
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Gram Matrix

The Gram matrix K is defined by:

K = XXT =


— x1 —
— x2 —

...
— xn —


x1 x2 x3



=


xT1 x1 xT1 x2 · · · xT1 xn
xT2 x1 xT2 x2 · · · xT2 xn

...
...

. . .
...

xTnx1 xTnx2 · · · xTnxn


K contains the inner products between all training examples.

K̂ contains the inner products between training and test examples.

If we can compute inner products k(xi, xj) = xTi xj , we don’t need xi and xj .
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Polynomial Kernel

Consider two examples xi and xj for a two-dimensional dataset:

xi = (xi1, xi2), xj = (xj1, xj2).

Consider a particular degree-2 basis φ:

φ(xi) = (x2i1,
√

2xi1xi2, x
2
i2).

We can compute inner product φ(xi)
Tφ(xj) without forming φ(xi) and φ(xj),

φ(xi)
Tφ(xj) =

[
x2i1

√
2xi1xi2 x2i2

]
φ(xj)

= x2i1x
2
j1 + 2xi1xi2xj1xj2 + x2i2x

2
j2

= (xi1xj1 + xi2xj2)
2 (completing the square)

=

(
d∑

k=1

xikxjk

)2

= (xTi xj)
2.
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Polynomial Kernel with Higher Degrees

If we want all degree-4 “monomials”, raise to 4th power:

φ(xi)
Tφ(xj) = (xTi xj)

4,

where φ(xi) is weighted version of x4i1, x
3
i1xi2, x

2
i1x

2
i2, xi1x

3
i2, x

4
i2.

If you want bias or lower-order terms like xi1, add constant inside power:

(1 + xTi xj)
2 = 1 + 2xTi xj + (xTi xj)

2

=
[
1 2xi1 2xi2 x2i1

√
2xi1xi2 x2i2

]


1
2xj1
2xj2
x2j1√

2xj1xj2
x2j2

 = φ(xi)
Tφ(xj),

These formulas still work for any dimension of the xi.
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Kernel Trick

Using polynomial basis of degree ‘p’ with the kernel trick:

Compute K and K̂ which have elements:

k(xi, xj) = (1 + xTi xj)
p, k̂(x̂i, xj) = (1 + x̂Ti xj)

p.

Make predictions using:
ŷ = K̂(K + λI)−1y.

Cost is O(n2d+ n3) even though number of features is O(dp).

Kernel trick lets us fit regression models without explicit feature calculation:

Features may have exponential or infinite size.
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Guasian-RBF Kernels
The most common kernel is the Gaussian-RBF (or ‘squared exponential’) kernel,

k(xi, xj) = exp

(
−‖xi − xj‖

2

σ2

)
.

What function φ(x) would lead to this as the inner-product?

To simplify, assume d = 1 and σ = 1,

k(xi, xj) = exp(−x2i + 2xixj − x2j )

= exp(−x2i ) exp(2xixj) exp(−x2j ),

so we need φ(xi) = exp(−x2i )zi where zizj = exp(2xixj).
For this to work for all xi and xj , zi must be infinite-dimensional.

If we use that

exp(2xixj) =

∞∑
k=0

2kxki x
k
j

k!
,

then we obtain

φ(xi) = exp(−x2i )
[
1
√

2
1!xi

√
22

2! x
2
i

√
23

3! x
3
i · · ·

]
.
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Kernel Trick for Structured Data

Kernel trick is useful for structured data:
Consider data that doesn’t look like this:

X =


0.5377 0.3188 3.5784
1.8339 −1.3077 2.7694
−2.2588 −0.4336 −1.3499
0.8622 0.3426 3.0349

 , y =


+1
−1
−1
+1

 ,

but instead looks like this:

X =


Do you want to go for a drink sometime?

J’achète du pain tous les jours.
Fais ce que tu veux.

There are inner products between sentences?

 , y =


+1
−1
−1
+1

 .
We could convert sentences to features, or define kernel between sentences.
For example, “string” kernels:

Weighted frequency of common subsequences (dynamic programming).

There are also “graph kernels”, “image kernels”, and so on...
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Valid Kernels

What kernel functions k(xi, xj) can we use?

Kernel k must be an inner product in some space:

There exists φ such that k(xi, xj) = 〈φ(xi), φ(xj)〉.

We can decompose a (continuous or finite-domain) function k into

k(xi, xj) = 〈φ(xi), φ(xj)〉,

iff it is symmetric and for any finite {x1, x2, . . . , xn} we have K � 0.

Nice in theory, what do we do in practice?

Show explicitly that k(xi, xj) is an inner product.
Or show it can be constructed from other valid kernels.

If we use invalid kernel, lose inner-product interpretation but may work fine.
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Bonus Slide: Constructing Feature Space

Why is positive semi-definiteness important?

With finite domain we can define K over all points.
The condition K � 0 means it has a spectral decomposition

K = UT ΛU,

where the eignevalues λi ≥ 0 and so we have a real Λ
1
2 .

Thus we hav K = UT Λ
1
2 Λ

1
2U = ‖Λ 1

2U‖2 and we could use

Φ(X) = Λ
1
2U, or φ(xi) = Λ

1
2U:,i.

The above reasoning isn’t quite right for continuous domains.

The more careful generalization is known as “Mercer’s theorem”.
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Constructing Valid Kernels

If k1(xi, xj) and k2(xi, xj) are valid kernels, then the following are valid kernels:
k1(φ(xi), φ(xj)).

αk1(xi, xj) + βk2(xi, xj) for α ≥ 0 and β ≥ 0.
k1(xi, xj)k2(xi, xj).
φ(xi)k1(xi, xj)φ(xj).
exp(k1(xi, xj)).

Example: Gaussian-RBF kernel:

k(xi, xj) = exp

(
−‖xi − xj‖

2

σ2

)

= exp

(
−‖xi‖

2

σ2
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Kernel Trick Kernel Methods Fenchel Duality

Kernels Trick for Distance-Based Methods

Besides ridge regression, when can we apply the kernel trick?

Distance-based methods (see my undergrad course):

‖xi − xj‖2 = 〈xi, xj〉 − 2〈xi, xj〉+ 〈xj , xj〉.

k-nearest neighbours.
Clustering algorithms (k-means, density-based clustering, hierarchical clustering).
Amazon item-to-item product recommendation.
Non-parametric regression.
Outlier ratio.
Multi-dimensional scaling.
Graph-based semi-supervised learning.

Eigenvalue methods:

Principle component analysis (trick for centering in high-dimensional space).
Canonical correlation analysis.
Spectral clustering.

L2-regularized linear models...
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Representer Theorem

Consider linear model differentiable with losses fi and L2-regularization,

argmin
w∈Rd

n∑
i=1

fi(w
Txi) +

λ

2
‖w‖2.

Setting the gradient equal to zero we get

0 =

n∑
i=1

f ′i(w
Txi)xi + λw.

So any solution w∗ can written as a linear combination of features xi,

w∗ = − 1

λ

n∑
i=1

f ′i((w
∗)Txi)xi =

n∑
i=1

zixi

= XT z.

This is called a representer theorem (true under much more general conditions).
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Representer Theorem
Using representer theorem we can use w = XT z in original problem,

argmin
w∈Rd

n∑
i=1

fi(w
Txi) +

λ

2
‖w‖2

= argmin
z∈Rn

n∑
i=1

fi(z
TXxi︸ ︷︷ ︸
xTi X

T z

) +
λ

2
‖XT z‖2

Now defining f(z) =
∑n

i=1 fi(zi) for a vector z we have

= argmin
z∈Rn

f(XXT z) +
λ

2
zTXXT z

= argmin
z∈Rn

f(Kz) +
λ

2
zTKz.

Similarly, at test time we can use the n variables z,

X̂w = X̂XT z = K̂z.
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(pause)
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Fenchel Dual

For convex f and g and the primal problem

argmin
w∈Rd

P (w) = f(Xw) + g(w),

the Fenchel dual is given by

argmax
z∈Rn

D(z) = −f∗(−z)− g∗(XT z),

where f∗ is the convex conjugate.

Why are we interested in this?

Dual has fewer variables if n < d.
D(z∗) = P (w∗) (strong duality): we can solve dual instead of primal.
D(z) ≤ P (w) for all w and z (weak duality): dual gives lower bound on primal.
If P is strongly-convex, dual is smooth: smooth formulation of SVMs.
Dual sometimes allows sparse kernel representation.
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Supremum and Infimum

The supremum of a function f is its smallest upper-bound,

sup f(x) = min
y|y≥f(x)

y.

Generalization of max that includes limits:

max
x∈R
−x2 = 0, sup

x∈R
−x2 = 0,

but
max
x∈R
−ex = DNE, sup

x∈R
−ex = 0.

The analogy for min is called the infimum.
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Convex Conjugate

The convex conjugate f∗ of a function f is given by

f∗(y) = sup
x∈D
{yTx− f(x)},

where D is values where sup is finite.

http://www.seas.ucla.edu/~vandenbe/236C/lectures/conj.pdf

It’s the maximum that the linear function yTx can get above f(x).

http://www.seas.ucla.edu/~vandenbe/236C/lectures/conj.pdf
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Convex Conjugate

The convex conjugate f∗ of a function f is given by

f∗(y) = sup
x∈D
{yTx− f(x)},

where D is values where sup is finite.

http://www.seas.ucla.edu/~vandenbe/236C/lectures/conj.pdf

If f is differentable, then sup occurs at x where y = ∇f(x).

Note that f∗ is convex even if f is not.

If f is convex (and “closed”), then f∗∗ = f .

http://www.seas.ucla.edu/~vandenbe/236C/lectures/conj.pdf
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Convex Conjugate Examples

If f(x) = 1
2‖x‖

2 we have

f∗(y) = supx{yTx− 1
2‖x‖

2} or equivalently (by taking derivative and setting to 0):

0 = y − x,

and pluggin in x = y we get

f∗(y) = yT y − 1

2
‖y‖2 =

1

2
‖y‖2.

If f(x) = aTx we have

f∗(y) = sup
x
{yTx− aTx} = sup

x
{(y − a)Tx} =

{
0 y = a

∞ otherwise.

For other examples, see Boyd & Vandenberghe.
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Fenchel Dual of SVMs

Consider support vector machines,

argmin
w∈Rd

n∑
i=1

max{0, 1− yiwTxi}+
λ

2
‖w‖2.

The Fenchel dual is given by

argmax
0≤z≤1

n∑
i=1

zi −
1

2λ
‖X̃T z‖2︸ ︷︷ ︸
zT X̃X̃T z

,

where X̃ =diag(y)X, w∗ = 1
λX̃

T z∗ and constraints come from f∗ <∞.

A couple magical things have happened:
We can apply kernel trick.
Dual is differentiable (though not strongly-convex).
Dual variables z are sparse (non-zeroes are called “support vectors”):

Can give faster training and testing.

Case where coordinate optimization is efficient.
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Stochastic Dual Coordinate Ascent

If we have an L2-regularized linear model with convex fi,

argmin
w∈Rd

n∑
i=1

fi(w
Txi) +

λ

2
‖w‖2,

then the Fenchel dual is given by

argmax
z∈Rn

−
n∑
i=1

f∗i (zi)︸ ︷︷ ︸
separable

− 1

2λ
‖XT z‖2︸ ︷︷ ︸
zTXXT z

.

We can apply stochastic dual coordinate ascent (SDCA):
Only looks at one training example on each iteration.
Obtains O(log(1/ε)) rate if ∇fi are L-Lipschitz.

Performance similar to SAG for many problems, worse if µ >> λ.
Obtains O(1/ε) rate for non-smooth f :

Same rate as stochastic subgradient, but we can now use exact/adaptive step-size.
You could add an L2-regularizer to dual, corresponds to smoothing primal.
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Only looks at one training example on each iteration.
Obtains O(log(1/ε)) rate if ∇fi are L-Lipschitz.

Performance similar to SAG for many problems, worse if µ >> λ.

Obtains O(1/ε) rate for non-smooth f :
Same rate as stochastic subgradient, but we can now use exact/adaptive step-size.
You could add an L2-regularizer to dual, corresponds to smoothing primal.
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Summary

Kernel trick: allows working with “similarity” instead of features.

Valid kernels are typically constructed from other valid kernels.

Representer theorem allows kernel trick for L2-regularized linear models.

Fenchel dual re-writes sum of convex functions with convex conjugates:

Dual may have nice structure: differentiable, sparse, coordinate optimization.

Final session: we discuss parrallel/distributed methods and non-convex functions.
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