SVAN 2016 Mini-Course
Stochastic Convex Optimization Methods in Machine Learning

Mark Schmidt
University of British Columbia, May 2016

www.cs.ubc.ca/~schmidtm/SVAN16
Big-N Problems

- We can write our standard regularized optimization problem as

\[
\min_{x \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} f_i(x) + r(x)
\]

\[
\text{data fitting term} + \text{regularizer}
\]
We can write our standard regularized optimization problem as

$$\min_{x \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} f_i(x) + r(x)$$

data fitting term + regularizer

Gradient methods are effective when d is very large.

What if number of training examples n is very large?
 * E.g., ImageNet has more than 14 million annotated images.
Stochastic vs. Deterministic Gradient Methods

We consider minimizing \(f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x) \).
Stochastic vs. Deterministic Gradient Methods

- We consider minimizing \(f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x) \).

- **Deterministic** gradient method [Cauchy, 1847]:

 \[
 x^{t+1} = x^t - \alpha_t \nabla f(x^t) = x^t - \frac{\alpha_t}{n} \sum_{i=1}^{n} \nabla f_i(x^t).
 \]

 - Iteration cost is **linear in** \(n \).
 - Convergence with constant \(\alpha_t \) or line-search.

- **Stochastic** gradient method [Robbins & Monro, 1951]:

 Random selection of \(i_t \) from \(\{1, 2, \ldots, n\} \).

 \[
 x^{t+1} = x^t - \alpha_t \nabla f_{i_t}(x^t).
 \]

 - Direction is an unbiased estimate of true gradient, \(ES[f'_{i_t}(x)] = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(x^t) = \nabla f(x^t) \).
 - Iteration cost is independent of \(n \).
 - Convergence requires \(\alpha_t \to 0 \).
Stochastic vs. Deterministic Gradient Methods

- We consider minimizing $f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x)$.
- **Deterministic** gradient method [Cauchy, 1847]:

 $$x^{t+1} = x^t - \alpha_t \nabla f(x^t) = x^t - \frac{\alpha_t}{n} \sum_{i=1}^{n} \nabla f_i(x^t).$$

 - Iteration cost is **linear in n**.
 - Convergence with constant α_t or line-search.

- **Stochastic** gradient method [Robbins & Monro, 1951]:
 - Random selection of i_t from $\{1, 2, \ldots, n\}$.

 $$x^{t+1} = x^t - \alpha_t \nabla f_{i_t}(x^t).$$
Stochastic vs. Deterministic Gradient Methods

We consider minimizing $f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x)$.

Deterministic gradient method [Cauchy, 1847]:

$$x^{t+1} = x^t - \alpha_t \nabla f(x^t) = x^t - \frac{\alpha_t}{n} \sum_{i=1}^{n} \nabla f_i(x^t).$$

- Iteration cost is linear in n.
- Convergence with constant α_t or line-search.

Stochastic gradient method [Robbins & Monro, 1951]:

- Random selection of i_t from $\{1, 2, \ldots, n\}$.

$$x^{t+1} = x^t - \alpha_t \nabla f_{i_t}(x^t).$$

- Direction is an unbiased estimate of true gradient,

$$\mathbb{E}[f'_{i_t}(x)] = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(x) = \nabla f(x).$$

- Iteration cost is independent of n.
Stochastic vs. Deterministic Gradient Methods

- We consider minimizing $f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x)$.

- **Deterministic** gradient method [Cauchy, 1847]:
 $$x^{t+1} = x^t - \alpha_t \nabla f(x^t) = x^t - \frac{\alpha_t}{n} \sum_{i=1}^{n} \nabla f_i(x^t).$$

 - Iteration cost is **linear in** n.
 - Convergence with constant α_t or line-search.

- **Stochastic** gradient method [Robbins & Monro, 1951]:
 - Random selection of i_t from $\{1, 2, \ldots, n\}$.
 $$x^{t+1} = x^t - \alpha_t \nabla f_{i_t}(x^t).$$

 - Direction is an unbiased estimate of true gradient,
 $$\mathbb{E}[f'_{i_t}(x)] = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(x) = \nabla f(x).$$

 - Iteration cost is **independent of** n.
 - Convergence requires $\alpha_t \to 0$.
We consider minimizing $f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x)$.

Deterministic gradient method [Cauchy, 1847]:

Stochastic gradient method [Robbins & Monro, 1951]:
Stochastic vs. Deterministic Gradient Methods

Stochastic iterations are \(n \) times faster, but how many iterations?
Stochastic vs. Deterministic Gradient Methods

Stochastic iterations are \(n \) times faster, but how many iterations?

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Deterministic</th>
<th>Stochastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convex</td>
<td>(O(1/\sqrt{\epsilon}))</td>
<td>(O(1/\epsilon^2))</td>
</tr>
<tr>
<td>Strongly Convex</td>
<td>(O(\log(1/\epsilon)))</td>
<td>(O(1/\epsilon))</td>
</tr>
</tbody>
</table>

Stochastic has low iteration cost but slow convergence rate. Sublinear rate even in strongly-convex case. Bounds are unimprovable if only unbiased gradient available. Nesterov acceleration and momentum do not improve rate.
Stochastic vs. Deterministic Gradient Methods

Stochastic iterations are \(n \) times faster, but how many iterations?

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Deterministic</th>
<th>Stochastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convex</td>
<td>(O(1/\sqrt{\epsilon}))</td>
<td>(O(1/\epsilon^2))</td>
</tr>
<tr>
<td>Strongly</td>
<td>(O(\log(1/\epsilon)))</td>
<td>(O(1/\epsilon))</td>
</tr>
</tbody>
</table>

- Stochastic has low iteration cost but slow convergence rate.
 - Sublinear rate even in strongly-convex case.
 - Bounds are unimprovable if only unbiased gradient available.
Stochastic vs. Deterministic Gradient Methods

Stochastic iterations are n times faster, but how many iterations?

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Deterministic</th>
<th>Stochastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convex</td>
<td>$O(1/\sqrt{\epsilon})$</td>
<td>$O(1/\epsilon^2)$</td>
</tr>
<tr>
<td>Strongly</td>
<td>$O(\log(1/\epsilon))$</td>
<td>$O(1/\epsilon)$</td>
</tr>
</tbody>
</table>

- Stochastic has low iteration cost but slow convergence rate.
 - Sublinear rate even in strongly-convex case.
 - Bounds are unimprovable if only unbiased gradient available.
- Nesterov acceleration and momentum do not improve rate
Stochastic vs. Deterministic Convergence Rates

Plot of convergence rates in strongly-convex case:

\[
\begin{align*}
\text{time} & \\
\log(\text{excess cost}) & \\
\text{stochastic} & \\
\text{deterministic} &
\end{align*}
\]

Stochastic will be superior for low-accuracy/time situations.
Stochastic vs. Deterministic for Non-Smooth

The story changes for non-smooth problems.

Consider the binary support vector machine objective:

\[f(w) = \sum_{i=1}^{n} \max\{0, 1 - y_i(w^T x_i)\} + \frac{\lambda}{2} \|w\|^2. \]
The story changes for non-smooth problems. Consider the binary support vector machine objective:

\[f(w) = \sum_{i=1}^{n} \max\{0, 1 - y_i(w^T x_i)\} + \frac{\lambda}{2} \|w\|^2. \]

Rates for subgradient methods for non-smooth objectives:

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Deterministic</th>
<th>Stochastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convex</td>
<td>(O(1/\epsilon^2))</td>
<td>(O(1/\epsilon^2))</td>
</tr>
<tr>
<td>Strongly</td>
<td>(O(1/\epsilon))</td>
<td>(O(1/\epsilon))</td>
</tr>
</tbody>
</table>

Other black-box methods (cutting plane) are not faster.
Stochastic vs. Deterministic for Non-Smooth

- The story changes for non-smooth problems.
- Consider the binary support vector machine objective:

\[f(w) = \sum_{i=1}^{n} \max\{0, 1 - y_i(w^T x_i)\} + \frac{\lambda}{2} \|w\|^2. \]

- Rates for subgradient methods for non-smooth objectives:

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Deterministic</th>
<th>Stochastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convex</td>
<td>(O(1/\epsilon^2))</td>
<td>(O(1/\epsilon^2))</td>
</tr>
<tr>
<td>Strongly</td>
<td>(O(1/\epsilon))</td>
<td>(O(1/\epsilon))</td>
</tr>
</tbody>
</table>

- Other black-box methods (cutting plane) are not faster.
- For non-smooth problems:
 - Deterministic methods are not faster than stochastic method.
 - So use stochastic (iterations are \(n\) times faster).
Sub-Gradients and Sub-Differentials

Recall that for \textit{differentiable} convex functions we have

\[f(y) \geq f(x) + \nabla f(x)^T (y - x), \forall x, y. \]
Sub-Gradients and Sub-Differentials

Recall that for *differentiable* convex functions we have

$$f(y) \geq f(x) + \nabla f(x)^T(y - x), \forall x, y.$$

A vector d is a *subgradient* of a convex function f at x if

$$f(y) \geq f(x) + d^T(y - x), \forall y.$$
Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

\[f(y) \geq f(x) + \nabla f(x)^T (y - x), \forall x, y. \]

A vector \(d \) is a subgradient of a convex function \(f \) at \(x \) if

\[f(y) \geq f(x) + d^T (y - x), \forall y. \]
Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

\[f(y) \geq f(x) + \nabla f(x)^T (y - x), \forall x, y. \]

A vector \(d \) is a subgradient of a convex function \(f \) at \(x \) if

\[f(y) \geq f(x) + d^T (y - x), \forall y. \]
Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

\[f(y) \geq f(x) + \nabla f(x)^T (y - x), \forall x, y. \]

A vector \(d \) is a subgradient of a convex function \(f \) at \(x \) if

\[f(y) \geq f(x) + d^T (y - x), \forall y. \]
Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

\[f(y) \geq f(x) + \nabla f(x)^T (y - x), \forall x, y. \]

A vector \(d \) is a subgradient of a convex function \(f \) at \(x \) if

\[f(y) \geq f(x) + d^T (y - x), \forall y. \]
Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

\[f(y) \geq f(x) + \nabla f(x)^T (y - x), \forall x, y. \]

A vector \(d \) is a subgradient of a convex function \(f \) at \(x \) if

\[f(y) \geq f(x) + d^T (y - x), \forall y. \]
Sub-Gradients and Sub-Differentials

Recall that for *differentiable* convex functions we have

$$f(y) \geq f(x) + \nabla f(x)^T (y - x), \forall x, y.$$

A vector d is a *subgradient* of a convex function f at x if

$$f(y) \geq f(x) + d^T (y - x), \forall y.$$
Sub-Gradients and Sub-Differentials

Recall that for *differentiable* convex functions we have

\[f(y) \geq f(x) + \nabla f(x)^T (y - x), \forall x, y. \]

A vector \(d \) is a *subgradient* of a convex function \(f \) at \(x \) if

\[f(y) \geq f(x) + d^T (y - x), \forall y. \]
Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

\[f(y) \geq f(x) + \nabla f(x)^T (y - x), \forall x, y. \]

A vector \(d \) is a subgradient of a convex function \(f \) at \(x \) if

\[f(y) \geq f(x) + d^T (y - x), \forall y. \]
Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

$$f(y) \geq f(x) + \nabla f(x)^T (y - x), \forall x, y.$$

A vector d is a subgradient of a convex function f at x if

$$f(y) \geq f(x) + d^T (y - x), \forall y.$$

- At differentiable x:
 - Only subgradient is $\nabla f(x)$.

- At non-differentiable x:
 - We have a set of subgradients.
 - Called the sub-differential, $\partial f(x)$.
 - Sub-differential is always non-empty for (almost) all convex functions.

- Note that $0 \in \partial f(x)$ iff x is a global minimum (generalizes $\nabla f(x) = 0$).
Sub-Differential of Absolute Value and Max Functions

- Sub-differential of absolute value function:

\[\partial |x| = \begin{cases}
1 & x > 0 \\
-1 & x < 0 \\
[-1, 1] & x = 0
\end{cases} \]

(sign of the variable if non-zero, anything in \([-1, 1]\) at 0)
Sub-Differential of Absolute Value and Max Functions

• Sub-differential of absolute value function:

$$\partial |x| = \begin{cases}
1 & x > 0 \\
-1 & x < 0 \\
[-1, 1] & x = 0
\end{cases}$$

(sign of the variable if non-zero, anything in $[-1, 1]$ at 0)
Sub-Differential of Absolute Value and Max Functions

- Sub-differential of absolute value function:

\[\partial |x| = \begin{cases}
1 & x > 0 \\
-1 & x < 0 \\
[-1, 1] & x = 0
\end{cases} \]

(sign of the variable if non-zero, anything in \([-1, 1]\) at 0)
Sub-Differential of Absolute Value and Max Functions

- Sub-differential of absolute value function:

\[\partial |x| = \begin{cases}
1 & x > 0 \\
-1 & x < 0 \\
[-1, 1] & x = 0
\end{cases} \]

(sign of the variable if non-zero, anything in \([-1, 1]\) at 0)
Sub-Differential of Absolute Value and Max Functions

- Sub-differential of **absolute value** function:

\[
\partial |x| = \begin{cases}
1 & x > 0 \\
-1 & x < 0 \\
[-1, 1] & x = 0
\end{cases}
\]

(sign of the variable if non-zero, anything in \([-1, 1]\) at 0)
Sub-Differential of Absolute Value and Max Functions

- Sub-differential of **absolute value** function:

\[
\partial |x| = \begin{cases}
1 & x > 0 \\
-1 & x < 0 \\
[-1, 1] & x = 0
\end{cases}
\]

(sign of the variable if non-zero, anything in \([-1, 1]\) at 0)
Sub-Differential of Absolute Value and Max Functions

Sub-differential of **absolute value** function:

$$
\partial |x| = \begin{cases}
1 & x > 0 \\
-1 & x < 0 \\
[-1, 1] & x = 0
\end{cases}
$$

(sign of the variable if non-zero, anything in $[-1, 1]$ at 0)
Sub-Differential of Absolute Value and Max Functions

- Sub-differential of **absolute value** function:

\[
\partial |x| = \begin{cases}
1 & x > 0 \\
-1 & x < 0 \\
[-1, 1] & x = 0
\end{cases}
\]

(sign of the variable if non-zero, anything in $[-1, 1]$ at 0)
Sub-Differential of Absolute Value and Max Functions

- Sub-differential of absolute value function:

\[\partial |x| = \begin{cases}
1 & x > 0 \\
-1 & x < 0 \\
[-1, 1] & x = 0
\end{cases} \]

(sign of the variable if non-zero, anything in \([-1, 1]\) at 0)
Sub-Differential of Absolute Value and Max Functions

- Sub-differential of **absolute value** function:

\[
\partial |x| = \begin{cases}
1 & x > 0 \\
-1 & x < 0 \\
[-1, 1] & x = 0
\end{cases}
\]

(sign of the variable if non-zero, anything in \([-1, 1]\) at 0)
Sub-Differential of Absolute Value and Max Functions

- Sub-differential of absolute value function:
 \[
 \partial |x| = \begin{cases}
 1 & x > 0 \\
 -1 & x < 0 \\
 [-1, 1] & x = 0
 \end{cases}
 \]
 (sign of the variable if non-zero, anything in \([-1, 1]\) at 0)

- Sub-differential of sum of convex \(f_1\) and \(f_2\):
 \[
 \partial (f_1(x) + f_2(x)) = \partial f_1(x) + \partial f_2(x).
 \]
Sub-Differential of Absolute Value and Max Functions

- Sub-differential of **absolute value** function:
 \[
 \partial |x| = \begin{cases}
 1 & x > 0 \\
 -1 & x < 0 \\
 [-1, 1] & x = 0
 \end{cases}
 \]
 (sign of the variable if non-zero, anything in \([-1, 1]\) at 0)

- Sub-differential of **sum** of convex \(f_1\) and \(f_2\):
 \[
 \partial (f_1(x) + f_2(x)) = \partial f_1(x) + \partial f_2(x).
 \]

- Sub-differential of **max** of convex \(f_1\) and \(f_2\):
 \[
 \partial \max\{f_1(x), f_2(x)\} =
 \]
Sub-Differential of Absolute Value and Max Functions

- Sub-differential of **absolute value** function:

\[
\partial |x| = \begin{cases}
1 & x > 0 \\
-1 & x < 0 \\
[-1, 1] & x = 0
\end{cases}
\]

(sign of the variable if non-zero, anything in \([-1, 1]\) at 0)

- Sub-differential of **sum** of convex \(f_1\) and \(f_2\):

\[
\partial (f_1(x) + f_2(x)) = \partial f_1(x) + \partial f_2(x).
\]

- Sub-differential of **max** of convex \(f_1\) and \(f_2\):

\[
\partial \max\{f_1(x), f_2(x)\} = \begin{cases}
\nabla f_1(x) & f_1(x) > f_2(x) \\
\nabla f_2(x) & f_2(x) > f_1(x) \\
\theta \nabla f_1(x) + (1 - \theta) \nabla f_2(x) & f_1(x) = f_2(x)
\end{cases}
\]

(any “convex combination” of the gradients of the argmax)
Subgradient Method

- The basic subgradient method:

\[x^{t+1} = x^t - \alpha_t g_t, \]

for some \(g_t \in \partial f(x^t) \).
Subgradient Method

- The basic subgradient method:
 \[x^{t+1} = x^t - \alpha_t g_t, \]
 for some \(g_t \in \partial f(x^t) \).
- Unfortunately, may increase the objective even for small \(\alpha_t \).
- But, distance to solution decreases:
 - \(\|x^{t+1} - x^*\| < \|x^t - x^*\| \) for small enough \(\alpha \).
Subgradient Method

- The basic subgradient method:

\[x^{t+1} = x^t - \alpha_t g_t, \]

for some \(g_t \in \partial f(x^t) \).

- Unfortunately, may increase the objective even for small \(\alpha_t \).

- But, distance to solution decreases:

 \[\|x^{t+1} - x^*\| < \|x^t - x^*\| \] for small enough \(\alpha \).
Subgradient Method

- The basic subgradient method:

\[x^{t+1} = x^t - \alpha_t g_t, \]

for some \(g_t \in \partial f(x^t) \).

- Unfortunately, may increase the objective even for small \(\alpha_t \).

- But, distance to solution decreases:
 - \(||x^{t+1} - x^*|| < ||x^t - x^*|| \) for small enough \(\alpha \).
Subgradient Method

- The basic subgradient method:

\[x^{t+1} = x^t - \alpha_t g_t, \]

for some \(g_t \in \partial f(x^t) \).

- Unfortunately, may increase the objective even for small \(\alpha_t \).

- But, distance to solution decreases:
 - \(||x^{t+1} - x^*|| < ||x^t - x^*|| \) for small enough \(\alpha \).
The basic subgradient method:

\[x^{t+1} = x^t - \alpha_t g_t, \]

for some \(g_t \in \partial f(x^t) \).

Unfortunately, may increase the objective even for small \(\alpha_t \).

But, distance to solution decreases:

\[\|x^{t+1} - x^*\| < \|x^t - x^*\| \]

for small enough \(\alpha \).
Strong-Convexity Inequalities for Non-Differentiable f

A “first-order” relationship between subgradient and strong-convexity:
- If f is μ-strongly convex then for all x and y we have

$$f(y) \geq f(x) + f'(y)^T(y - x) + \frac{\mu}{2}\|y - x\|^2,$$

for $f'(y) \in \partial f(x)$.

The first-order definition of strong-convexity, but with subgradient replacing gradient.
A “first-order” relationship between subgradient and strong-convexity:

If f is μ-strongly convex then for all x and y we have

$$f(y) \geq f(x) + f'(y)^T(y - x) + \frac{\mu}{2} \|y - x\|^2,$$

for $f'(y) \in \partial f(x)$.

The first-order definition of strong-convexity, but with subgradient replacing gradient.

Reversing y and x we can write

$$f(x) \geq f(y) + f'(x)^T(x - y) + \frac{\mu}{2} \|x - y\|^2,$$

for $f'(x) \in \partial f(x)$.

Adding the above together gives

$$(f'(y) - f'(x)^T(y - x)) \geq \mu \|y - x\|^2.$$
Stochastic Subgradient Method

- The basic stochastic subgradient method:

\[x^{t+1} = x^t - \alpha g_{i_t}, \]

for some \(g_{i_t} \in \partial f_{i_t}(x^t) \) for some random \(i_t \in \{1, 2, \ldots, n\} \).
The basic **stochastic** subgradient method:

\[x^{t+1} = x^t - \alpha g_{i_t}, \]

for some \(g_{i_t} \in \partial f_{i_t}(x^t) \) for some random \(i_t \in \{1, 2, \ldots, n\} \).

- Stochastic subgradient is \(n \) times faster with similar convergence properties.
- We’ll consider it under the standard assumptions that
 - \(f \) is \(\mu \)-strongly-convex:
 - \(\mathbb{E}[\|g_t\|^2] \leq B^2 \) (finite variance and bounded subgradients).
Since function value may not decrease, we analyze distance to x^*:

$$
\|x^t - x^*\|^2 = \|(x^{t-1} - \alpha_t g_i) - x^*\|^2
= \|(x^{t-1} - x^*) - \alpha_t g_i\|^2
= \|x^{t-1} - x^*\|^2 - 2\alpha_t g_i^T (x^{t-1} - x^*) + \alpha_t^2 \|g_i\|^2.
$$
Since function value may not decrease, we analyze distance to x^*:

$$\|x^t - x^*\|^2 = \|(x^{t-1} - \alpha_t g_{it}) - x^*\|^2$$
$$= \|(x^{t-1} - x^*) - \alpha_t g_{it}\|^2$$
$$= \|x^{t-1} - x^*\|^2 - 2\alpha_t g_{it}^T(x^{t-1} - x^*) + \alpha_t^2 \|g_{it}\|^2.$$

Many analyses of distance to x^* start this way.

First term is what we want, we need to bound the second/third terms.
Convergence Rate of Stochastic Subgradient

- Expansion of distance:

\[\|x^t - x^*\|^2 = \|x^{t-1} - x^*\|^2 - 2\alpha_t g^T_i (x^{t-1} - x^*) + \alpha_t^2 \|g^i_t\|^2. \]
Convergence Rate of Stochastic Subgradient

- Expansion of distance:
 \[\|x^t - x^*\|^2 = \|x^{t-1} - x^*\|^2 - 2\alpha_t g_i^T (x^{t-1} - x^*) + \alpha_t^2 \|g_i\|^2. \]

- Take expectation with respect to \(i_t\):
 \[
 \mathbb{E}[\|x^t - x^*\|^2] = \mathbb{E}[\|x^{t-1} - x^*\|^2] - 2\alpha_t \mathbb{E}[g_i^T (x^{t-1} - x^*)] + \alpha_t^2 \mathbb{E}[\|g_i\|^2]
 \]
 \[
 \|x^{t-1} - x^*\|^2 - 2\alpha_t \mathbb{E}[g_i^T (x^{t-1} - x^*)] + \alpha_t^2 \mathbb{E}[\|g_i\|^2]
 \]
 \[
 \leq \|x^{t-1} - x^*\|^2 - 2\alpha_t g_i^T (x^{t-1} - x^*) + \alpha_t^2 B^2.
 \]
Convergence Rate of Stochastic Subgradient

- Expansion of distance:
 \[\| x^t - x^* \|^2 = \| x^{t-1} - x^* \|^2 - 2\alpha_t g_{i_t}^T (x^{t-1} - x^*) + \alpha_t^2 \| g_{i_t} \|^2. \]

- Take expectation with respect to \(i_t \):
 \[
 \mathbb{E}[\| x^t - x^* \|^2] = \mathbb{E}[\| x^{t-1} - x^* \|^2] - 2\alpha_t \mathbb{E}[g_{i_t}^T (x^{t-1} - x^*)] + \alpha_t^2 \mathbb{E}[\| g_{i_t} \|^2] \\
 \leq \| x^{t-1} - x^* \|^2 - 2\alpha_t \mathbb{E}[g_{i_t}^T (x^{t-1} - x^*)] + \alpha_t^2 \mathbb{E}[\| g_{i_t} \|^2] \\
 \leq \| x^{t-1} - x^* \|^2 - 2\alpha_t g_{i_t}^T (x^{t-1} - x^*) + \alpha_t^2 B^2.
 \]

- Using strong-convexity inequality,
 \[(g_t - 0)^T (x^{t-1} - x^*) \geq \mu \| y - x \|^2,
 \]
gives
 \[
 \mathbb{E}[\| x^t - x^* \|^2] \leq \| x^{t-1} - x^* \|^2 - 2\alpha_t \mu \| x^{t-1} - x^* \|^2 + \alpha_t^2 B^2 \\
 = (1 - 2\alpha_t \mu) \| x^{t-1} - x^* \|^2 + \alpha_t^2 B^2.
 \]
Stochastic Gradient with Constant Step Size

- Our bound on expected distance:
 \[\mathbb{E}[\|x^t - x^*\|^2] \leq (1 - 2\alpha_t \mu)\|x^{t-1} - x^*\|^2 + \alpha_t^2 B^2. \]

- If \(\alpha_t \) is small enough, shows distance to solution decreases.
Stochastic Gradient with Constant Step Size

- Our bound on expected distance:
 \[\mathbb{E}[\|x_t - x^*\|^2] \leq (1 - 2\alpha_t \mu)\|x_{t-1} - x^*\|^2 + \alpha_t^2 B^2. \]

- If \(\alpha_t \) is small enough, shows distance to solution decreases.

- Taking full expectation and applying recursively with constant \(\alpha_t = \alpha \) gives:
 \[\mathbb{E}[\|x_t - x^*\|^2] \leq (1 - 2\alpha \mu)^t \|x^0 - x^*\|^2 + \frac{\alpha B^2}{2\mu}, \]
 after some of math (last term comes from bounding a geometric series).

- First term looks like linear convergence, but second term does not go to zero.
Stochastic Gradient with Constant Step Size

- Our bound on expected distance:
 \[
 \mathbb{E}[\|x^t - x^*\|^2] \leq (1 - 2\alpha\mu)^t \|x^0 - x^*\|^2 + \frac{\alpha B^2}{2\mu}.
 \]

- First term looks like linear convergence, but second term does not go to zero.
Stochastic Gradient with Constant Step Size

- Our bound on expected distance:
 \[\mathbb{E}[\|x^t - x^*\|^2] \leq (1 - 2\alpha\mu)^t \|x^0 - x^*\|^2 + \frac{\alpha B^2}{2\mu}. \]

- First term looks like linear convergence, but second term does not go to zero.
Stochastic Gradient with Constant Step Size

- Our bound on expected distance:

\[\mathbb{E}[\|x^t - x^*\|^2] \leq (1 - 2\alpha \mu)^t \|x^0 - x^*\|^2 + \frac{\alpha B^2}{2\mu}. \]

- First term looks like **linear convergence**, but second term does not go to zero.
Stochastic Gradient with Constant Step Size

- Our bound on expected distance:

 \[\mathbb{E}[\|x^t - x^*\|^2] \leq (1 - 2\alpha\mu)^t \|x^0 - x^*\|^2 + \frac{\alpha B^2}{2\mu}. \]

- First term looks like *linear convergence*, but second term does not go to zero.
To get convergence, we need a decreasing step size.

- Region that we converge to shrinks over time.
- But it can’t shrink too quickly or we may never reach x^*.
Stochastic Subgradient Convergence Rate of SSG Practical Subgradient Methods Stochastic Average Gradient Infinite Data Sets

Stochastic Gradient with Decreasing Step Size

- To get convergence, we need a decreasing step size.
 - Region that we converge to shrinks over time.
 - But it can’t shrink too quickly or we may never reach x^*.
 - Classic approach is to choose α_t such that

$$\sum_{t=1}^{\infty} \alpha_t = \infty, \quad \sum_{t=1}^{\infty} \alpha_t^2 < \infty,$$

 which suggests setting $\alpha_t = O(1/t)$.
Stochastic Gradient with Decreasing Step Size

- To get convergence, we need a decreasing step size.
 - Region that we converge to shrinks over time.
 - But it can’t shrink too quickly or we may never reach \(x^* \).
 - Classic approach is to choose \(\alpha_t \) such that

\[
\sum_{t=1}^{\infty} \alpha_t = \infty, \quad \sum_{t=1}^{\infty} \alpha_t^2 < \infty,
\]

which suggests setting \(\alpha_t = O(1/t) \).
- We can obtain convergence rates with decreasing steps:
 - If \(\alpha_t = \frac{1}{\mu t} \) we can show

\[
\mathbb{E}[f(\bar{x}^t) - f(x^*)] = O(\log(t)/t) \quad \text{(non-smooth } f) \\
= O(1/t) \quad \text{(smooth } f)
\]

for the average iteration \(\bar{x}^t = \frac{1}{k} \sum_{k=1}^{T} x_{k-1} \).
- Note that \(O(1/t) \) error implies \(O(1/\epsilon) \) iterations required.
(pause)
What is the best subgradient?

- We analyzed the subgradient method,

\[x^{t+1} = x^t - \alpha_t g_t, \text{ where } g_t \in \partial f(x^t), \]

under any choice of subgradient.
What is the best subgradient?

- We analyzed the subgradient method,

\[x^{t+1} = x^t - \alpha_t g_t, \text{ where } g_t \in \partial f(x^t), \]

under any choice of subgradient.

- But what is the “best” subgradient to use?
 - Convex functions have directional derivatives everywhere.
 - Direction \(-z^t\) that minimizes directional derivative is minimum-norm subgradient,

\[z^t = \arg\min_{z \in \partial f(x^t)} ||z|| \]

- This is the steepest descent direction for non-smooth convex optimization problems.
What is the best subgradient?

- We analyzed the subgradient method,

\[x^{t+1} = x^t - \alpha_t g_t, \quad \text{where} \quad g_t \in \partial f(x^t), \]

under any choice of subgradient.

- But what is the “best” subgradient to use?

 - Convex functions have directional derivatives everywhere.
 - Direction \(-z^t\) that minimizes directional derivative is minimum-norm subgradient,

\[z^t = \arg\min_{z \in \partial f(x^t)} ||z|| \]

 - This is the steepest descent direction for non-smooth convex optimization problems.
 - You can compute this for L1-regularization, but not many other problems.
 - Basis for best L1-regularization methods, combined (carefully) with Newton.
Stochastic Subgradient with Sparse Features

- For many datasets, our feature vectors \(x_i \) are very sparse:

<table>
<thead>
<tr>
<th>"CPSC"</th>
<th>"Expedia"</th>
<th>"vicodin"</th>
<th><recipient name></th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>...</td>
</tr>
</tbody>
</table>

- Consider case where \(d \) is huge but each row \(x_i \) has at most \(k \) non-zeroes:
 - The \(O(d) \) cost of stochastic subgradient might be too high.
 - We can often modify stochastic subgradient to have \(O(k) \) cost.
Digression: Operations on Sparse Vectors

- Consider a vector \(g \in \mathbb{R}^d \) with at most \(k \) non-zeroes:

\[
g^T = [0 \ 0 \ 0 \ 1 \ 2 \ 0 \ -0.5 \ 0 \ 0 \ 0].
\]

- If \(k \ll d \), we can store the vector using \(O(k) \) storage instead of \(O(d) \):
Digression: Operations on Sparse Vectors

- Consider a vector $g \in \mathbb{R}^d$ with at most k non-zeroes:
 \[
g^T = [0 \ 0 \ 0 \ 1 \ 2 \ 0 \ -0.5 \ 0 \ 0 \ 0].
 \]

- If $k << d$, we can store the vector using $O(k)$ storage instead of $O(d)$:
 - Store the non-zero values:
 \[
g_{\text{value}}^T = [1 \ 2 \ -0.5].
 \]
 - Store a pointer to where the non-zero values go:
 \[
g_{\text{point}}^T = [4 \ 5 \ 7].
 \]
Digression: Operations on Sparse Vectors

- Consider a vector $g \in \mathbb{R}^d$ with at most k non-zeros:

 $$g^T = [0 \ 0 \ 0 \ 1 \ 2 \ 0 \ -0.5 \ 0 \ 0 \ 0].$$

- If $k \ll d$, we can store the vector using $O(k)$ storage instead of $O(d)$:

 - Store the non-zero values:

 $$g^T_{value} = [1 \ 2 \ -0.5].$$

 - Store a pointer to where the non-zero values go:

 $$g^T_{point} = [4 \ 5 \ 7].$$

- With this representation, we can do standard vector operations in $O(k)$:

 - Compute αg in $O(k)$ by computing αg_{value}.
 - For dense w, set $w = (w - g)$ in $O(k)$ by subtracting g_{value} from w at positions g_{point}.
Stochastic Subgradient with Sparse Features

Consider optimizing the hinge-loss,

$$
\arg\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} \max\{0, 1 - y_i(w^T x_i)\},
$$

when \(d\) is huge but each row has at most \(k\) non-zeroes.
Stochastic Subgradient with Sparse Features

- Consider optimizing the hinge-loss,

\[
\arg\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} \max\{0, 1 - y_i(w^T x_i)\},
\]

when \(d\) is huge but each row has at most \(k\) non-zeroes.

- A stochastic subgradient method could use

\[
w^{t+1} = w^t - \alpha_t g_i, \quad \text{where} \quad g_i = \begin{cases}
- y_i x_i & \text{if } 1 - y_i(w^T x_i) > 0 \\
0 & \text{otherwise}
\end{cases}
\]
Stochastic Subgradient with Sparse Features

- Consider optimizing the hinge-loss,

$$\arg\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} \max\{0, 1 - y_i (w^T x_i)\},$$

when \(d\) is huge but each row has at most \(k\) non-zeroes.

- A stochastic subgradient method could use

$$w^{t+1} = w^t - \alpha_t g_t,$$

where \(g_i = \begin{cases} -y_i x_i & \text{if } 1 - y_i (w^T x_i) > 0 \\ 0 & \text{otherwise} \end{cases}\)

- Notice that \(g_i\) has at most \(k\) non-zeroes:
 - Computing \(\alpha_t g_i\) costs \(O(k)\): multiply \(\alpha_t\) by non-zeroes.
 - Computing \(w^t - \alpha_t g_i\) costs \(O(k)\): subtract non-zeroes.

- So stochastic subgradient is fast if \(k\) is small even if \(d\) is large.
Stochastic Subgradient with Sparse Features

Consider the L2-regularized hinge-loss in the same setting,

$$\arg\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} \max\{0, 1 - y_i(w^T x_i)\} + \frac{\lambda}{2} \|w\|^2,$$

using a stochastic subgradient method,

$$w^{t+1} = w^t - \alpha_t g_{it} - \alpha_t \lambda w^t,$$

where g_{it} is same as before.
Stochastic Subgradient with Sparse Features

- Consider the **L2-regularized** hinge-loss in the same setting,

\[
\text{argmin}_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} \max\{0, 1 - y_i (w^T x_i)\} + \frac{\lambda}{2} \|w\|^2,
\]

using a stochastic subgradient method,

\[
w^{t+1} = w^t - \alpha_t g_{it} - \alpha_t \lambda w^t,
\]

where \(g_{it}\) is same as before.

- While \(g_{it}\) has at most \(k\) non-zeros, \(w^t\) could have \(d\) non-zeroes:
 - So adding L2-regularization increases cost from \(O(k)\) to \(O(d)\)?
Stochastic Subgradient with Sparse Features

Consider the L2-regularized hinge-loss in the same setting,

\[
\text{argmin}_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} \max\{0, 1 - y_i (w^T x_i)\} + \frac{\lambda}{2} \|w\|^2,
\]

using a stochastic subgradient method,

\[
w^{t+1} = w^t - \alpha_t g_{it} - \alpha_t \lambda w^t,
\]

where \(g_{it}\) is same as before.

While \(g_{it}\) has at most \(k\) non-zeroes, \(w^t\) could have \(d\) non-zeroes:

- So adding L2-regularization increases cost from \(O(k)\) to \(O(d)\)?

To use L2-regularization and keep \(O(k)\) cost, re-write iteration as

\[
w^{t+1} = w^t - \alpha_t g_{it} - \alpha_t \lambda w^t
\]

\[
= (1 - \alpha_t \lambda)w^t - \alpha_t g_{it}.
\]

changes scale of \(w^t\) sparse update
Stochastic Subgradient with Sparse Features

Let’s write the update as two steps

\[w^{t+\frac{1}{2}} = (1 - \alpha_t \lambda)w^t, \quad w^{t+1} = w^{t+\frac{1}{2}} - \alpha_t g_{i_t}. \]
Stochastic Subgradient with Sparse Features

- Let’s write the update as two steps
 \[w^{t+\frac{1}{2}} = (1 - \alpha_t \lambda)w^t, \quad w^{t+1} = w^{t+\frac{1}{2}} - \alpha_t g_i. \]

- We can implement both steps in \(O(k) \) if we re-parameterize as
 \[w^t = \beta^t v^t, \]

for some scalar \(\beta^t \) and vector \(v^t \).
Stochastic Subgradient with Sparse Features

Let’s write the update as two steps

\[w^{t+\frac{1}{2}} = (1 - \alpha_t \lambda)w^t, \quad w^{t+1} = w^{t+\frac{1}{2}} - \alpha_t g_{i_t}. \]

We can implement both steps in \(O(k)\) if we re-parameterize as

\[w^t = \beta^t v^t, \]

for some scalar \(\beta^t\) and vector \(v^t\).

For the first step we need

\[\beta^{t+\frac{1}{2}} v^{t+\frac{1}{2}} = (1 - \alpha_t \lambda) \beta^t v^t, \]

which we can satisfy in \(O(1)\) using \(\beta^{t+\frac{1}{2}} = (1 - \alpha_t \lambda) \beta^t\) and \(v^{t+\frac{1}{2}} = v^t\).
Stochastic Subgradient with Sparse Features

- Let’s write the update as two steps
 \[w^{t+\frac{1}{2}} = (1 - \alpha_t \lambda)w^t, \quad w^{t+1} = w^{t+\frac{1}{2}} - \alpha_t g_i. \]

- We can implement both steps in \(O(k) \) if we re-parameterize as
 \[w^t = \beta^t v^t, \]
 for some scalar \(\beta^t \) and vector \(v^t \).

- For the first step we need
 \[\beta^{t+\frac{1}{2}} v^{t+\frac{1}{2}} = (1 - \alpha_t \lambda)\beta^t v^t, \]
 which we can satisfy in \(O(1) \) using \(\beta^{t+\frac{1}{2}} = (1 - \alpha_t \lambda)\beta^t \) and \(v^{t+\frac{1}{2}} = v^t \).

- For the second step we need
 \[\beta^{t+1} v^{t+1} = \beta^{t+\frac{1}{2}} v^{t+\frac{1}{2}} - \alpha_t g_i, \]
 which we can satisfy in \(O(k) \) using \(\beta^{t+1} = \beta^{t+\frac{1}{2}} \) and \(v^{t+1} = v^{t+\frac{1}{2}} - \frac{\alpha_t}{\beta^{t+\frac{1}{2}}} g_i \).
Stochastic Subgradient with Sparse Features

- So we can implement the subgradient method with L2-regularization,

\[w^{t+1} = w^t - \alpha_t g_t - \alpha_t \lambda w^t, \]

in \(O(k) \) by using the \(w^t = \beta^t v^t \) representation and the update

\[\beta^{t+1} = (1 - \alpha_t \lambda) \beta^t, \quad v^{t+1} = v^t - \frac{\alpha_t}{\beta^{t+1}} g_t. \]

assuming that computing \(g_t \) can be done in \(O(k) \) given \(\beta^t \) and \(v^t \).
Stochastic Subgradient with Sparse Features

- So we can implement the subgradient method with L2-regularization,

\[w^{t+1} = w^t - \alpha_t g_i^t - \alpha_t \lambda w^t, \]

in \(O(k) \) by using the \(w^t = \beta^t v^t \) representation and the update

\[\beta^{t+1} = (1 - \alpha_t \lambda) \beta^t, \quad v^{t+1} = v^t - \frac{\alpha_t}{\beta^{t+1}} g_i^t. \]

assuming that computing \(g_i^t \) can be done in \(O(k) \) given \(\beta^t \) and \(v^t \).

- There exists efficient sparse updates in other scenarios too:
 - Duchi & Singer [2009]: L1-regularization proximal operator ("lazy updates").
 - Xu [2010]: L2-regularization and iterate average \(\bar{w}^t \).
Stochastic Subgradient Methods in Practice

- Last time we argued that α_t must go to zero for convergence.
- Theory says using $\alpha_t = 1/\mu t$ and averaging is close to optimal:
Stochastic Subgradient Methods in Practice

- Last time we argued that α_t must go to zero for convergence.
- Theory says using $\alpha_t = 1/\mu t$ and averaging is close to optimal:
 - Except for some special cases, you should not do this.
 - Usually $\mu = O(1/n)$ or $O(1/\sqrt{n})$ so initial steps are huge.
 - Later steps are tiny: $1/t$ gets small very quickly.
 - Convergence rate slows dramatically if μ isn’t accurate.
 - No adaptation to “easier” problems than worst case.

Tricks that can improve theoretical and practical properties:

1. Use smaller initial step-sizes, that go to zero more slowly: $\alpha_t = \gamma/\sqrt{t}$ or $\alpha_t = \gamma$.
2. Take a (weighted) average of the iterations or gradients:
 $$\bar{x}_t = \frac{t}{\sum_{i=1}^t \omega_t z_t},$$
 where ω_t is weight at iteration t.

These tricks usually help, but tuning is often required: stochastic subgradient is not a black box.
Last time we argued that \(\alpha_t \) must go to zero for convergence.

Theory says using \(\alpha_t = 1/\mu t \) and averaging is close to optimal:

- Except for some special cases, you should not do this.
- Usually \(\mu = O(1/n) \) or \(O(1/\sqrt{n}) \) so initial steps are huge.
- Later steps are tiny: \(1/t \) gets small very quickly.
- Convergence rate slows dramatically if \(\mu \) isn’t accurate.
- No adaptation to “easier” problems than worst case.

Tricks that can improve theoretical and practical properties:

1. Use smaller initial step-sizes, that go to zero more slowly:
 \[
 \alpha_t = \gamma/\sqrt{t} \quad \text{or} \quad \alpha_t = \gamma.
 \]

2. Take a (weighted) average of the iterations or gradients:
 \[
 \bar{x}^t = \sum_{i=1}^{t} \omega_t z^t,
 \]
 where \(\omega_t \) is weight at iteration \(t \).
Stochastic Subgradient Methods in Practice

- Last time we argued that α_t must go to zero for convergence.
- Theory says using $\alpha_t = 1/\mu t$ and averaging is close to optimal:
 - Except for some special cases, you should not do this.
 - Usually $\mu = O(1/n)$ or $O(1/\sqrt{n})$ so initial steps are huge.
 - Later steps are tiny: $1/t$ gets small very quickly.
 - Convergence rate slows dramatically if μ isn’t accurate.
 - No adaptation to “easier” problems than worst case.

- Tricks that can improve theoretical and practical properties:
 1. Use smaller initial step-sizes, that go to zero more slowly:
 $$\alpha_t = \gamma/\sqrt{t} \quad \text{or} \quad \alpha_t = \gamma.$$
 2. Take a (weighted) average of the iterations or gradients:
 $$\bar{x}^t = \sum_{i=1}^{t} \omega_t z^t,$$
 where ω_t is weight at iteration t.

- These tricks usually help, but tuning is often required:
 - stochastic subgradient is not a black box.
Speeding up Stochastic Subgradient Methods

Results that support using large steps and averaging:

- Averaging later iterations achieves $O(1/t)$ in non-smooth case.
- Gradient averaging improves constants in analysis.
- $\alpha_t = O(1/t^\beta)$ for $\beta \in (0.5, 1)$ more robust than $\alpha_t = O(1/t)$.
Speeding up Stochastic Subgradient Methods

Results that support using large steps and averaging:

- **Averaging later iterations** achieves $O(1/t)$ in non-smooth case.
- **Gradient averaging** improves constants in analysis.
- $\alpha_t = O(1/t^\beta)$ for $\beta \in (0.5, 1)$ more robust than $\alpha_t = O(1/t)$.
- **Constant step size** ($\alpha_t = \alpha$) achieves linear rate to accuracy $O(\alpha)$.
- In smooth case, **iterate averaging is asymptotically optimal**:
 - Achieves same rate as optimal stochastic Newton method.
Stochastic Newton Methods?

- Should we use Nesterov/Newton-like stochastic methods?
 - These do not improve the $O(1/\epsilon)$ convergence rate.
Stochastic Newton Methods?

- Should we use Nesterov/Newton-like stochastic methods?
 - These do not improve the $O(1/\epsilon)$ convergence rate.
- But some positive results exist.
 - Improves performance at start or if noise is small.
 - Newton-like AdaGrad method,

$$x^{t+1} = x^t + \alpha D \nabla f_i(x^t), \quad \text{with } D_{jj} = \sqrt{\sum_{k=1}^{t} \|\nabla_j f_{i_k}(x^t)\|}.$$

- improves regret but not optimization error.
- Two-phase Newton-like method achieves $O(1/\epsilon)$ without strong-convexity.
<table>
<thead>
<tr>
<th>Stochastic Subgradient</th>
<th>Convergence Rate of SSG</th>
<th>Practical Subgradient Methods</th>
<th>Stochastic Average Gradient</th>
<th>Infinite Data Sets</th>
</tr>
</thead>
</table>

(pause)
Recall our standard optimization framework,

\[
\min_{x \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} f_i(x) + r(x)
\]

- data fitting term + regularizer
Big-N Problems

- Recall our standard optimization framework,

\[
\min_{x \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} f_i(x) + r(x)
\]

- data fitting term + regularizer

- **Stochastic methods:**
 - \(O(1/t)\) convergence but requires 1 gradient per iterations.
 - Rates are unimprovable for general stochastic objectives.
Big-N Problems

- Recall our standard optimization framework,

\[
\min_{x \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} f_i(x) + r(x)
\]

data fitting term + regularizer

- Stochastic methods:
 - \(O(1/t)\) convergence but requires 1 gradient per iterations.
 - Rates are unimprovable for general stochastic objectives.

- Deterministic methods:
 - \(O(\rho^t)\) convergence but requires \(N\) gradients per iteration.
 - The faster rate is possible because \(N\) is finite.
Recall our standard optimization framework,

$$\min_{x \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} f_i(x) + r(x)$$

\[\text{data fitting term} \quad + \quad \text{regularizer} \]

- **Stochastic methods:**
 - \(O(1/t)\) convergence but requires 1 gradient per iterations.
 - Rates are unimprovable for general stochastic objectives.

- **Deterministic methods:**
 - \(O(\rho^t)\) convergence but requires \(N\) gradients per iteration.
 - The faster rate is possible because \(N\) is finite.

- For minimizing finite sums, can we design a better method?
Motivation for Hybrid Methods

Stochastic vs. deterministic methods
• Goal = best of both worlds: linear rate with $O(1)$ iteration cost
time $\log(\text{excess cost})$

- stochastic
- deterministic
Motivation for Hybrid Methods

Stochastic vs. deterministic methods

- Goal: best of both worlds: \(\text{linear rate with } O(1) \text{ iteration cost} \)
- Hybrid: \(\log(\text{excess cost}) \)
 - Stochastic
 - Deterministic
 - Hybrid

Graph showing the relationship between log(excess cost) and time for stochastic, deterministic, and hybrid methods.
Hybrid Deterministic-Stochastic

- Approach 1: control the sample size.
Hybrid Deterministic-Stochastic

- Approach 1: control the sample size.
- The FG method uses all N gradients,

$$\nabla f(x^t) = \frac{1}{N} \sum_{i=1}^{N} \nabla f_i(x^t).$$

- The SG method approximates it with 1 sample,

$$\nabla f_{i t}(x^t) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla f_i(x^t).$$
Hybrid Deterministic-Stochastic

- Approach 1: control the sample size.
- The FG method uses all N gradients,

$$\nabla f(x^t) = \frac{1}{N} \sum_{i=1}^{N} \nabla f_i(x^t).$$

- The SG method approximates it with 1 sample,

$$\nabla f_{i_t}(x^t) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla f_i(x^t).$$

- A common variant is to use larger sample \mathcal{B}^t,

$$\frac{1}{|\mathcal{B}^t|} \sum_{i \in \mathcal{B}^t} \nabla f_i(x^t) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla f_i(x^t).$$
Approach 1: Batching

- The SG method with a sample B^t uses iterations

$$x^{t+1} = x^t - \frac{\alpha^t}{|B^t|} \sum_{i \in B^t} f_i(x^t).$$

- For a fixed sample size $|B^t|$, the rate is sublinear.
Approach 1: Batching

- The SG method with a sample B^t uses iterations
 \[
 x^{t+1} = x^t - \alpha^t \frac{1}{|B^t|} \sum_{i \in B^t} f_i(x^t).
 \]

- For a fixed sample size $|B^t|$, the rate is sublinear.
- **Gradient error decreases as sample size $|B^t|$ increases.**
Approach 1: Batching

- The SG method with a sample B^t uses iterations

\[x^{t+1} = x^t - \frac{\alpha^t}{|B^t|} \sum_{i \in B^t} f_i(x^t). \]

- For a fixed sample size $|B^t|$, the rate is sublinear.
- **Gradient error decreases as sample size $|B^t|$ increases.**
- Common to gradually increase the sample size $|B^t|$.

[Bertsekas & Tsitsiklis, 1996]
Approach 1: Batching

- The SG method with a sample B^t uses iterations

$$x^{t+1} = x^t - \frac{\alpha^t}{|B^t|} \sum_{i \in B^t} f_i(x^t).$$

- For a fixed sample size $|B^t|$, the rate is sublinear.

- **Gradient error decreases as sample size** $|B^t|$ **increases**.

- Common to gradually increase the sample size $|B^t|$.

 [Bertsekas & Tsitsiklis, 1996]

- **We can choose** $|B^t|$ **to achieve a linear convergence rate**:
 - Early iterations are cheap like SG iterations.
 - Later iterations can use a Newton-like method.
Stochastic Average Gradient

- Growing $|B^t|$ eventually requires $O(N)$ iteration cost.
- Can we have a rate of $O(\rho^t)$ with only 1 gradient evaluation per iteration?
Stochastic Average Gradient

- Growing $|B^t|$ eventually requires $O(N)$ iteration cost.
- **Can we have a rate of $O(\rho^t)$ with only 1 gradient evaluation per iteration?**
 - **YES!**
Stochastic Average Gradient

- Growing $|B_t|$ eventually requires $O(N)$ iteration cost.
- **Can we have a rate of $O(\rho^t)$ with only 1 gradient evaluation per iteration?**
 - YES! The stochastic average gradient (SAG) algorithm:
 - Randomly select i_t from $\{1, 2, \ldots, N\}$ and compute $f'_i(x^t)$.

 $$x^{t+1} = x^t - \alpha^t \frac{N}{\sum_{i=1}^{N} \nabla f_i(x^t)}$$
Stochastic Average Gradient

- Growing $|\mathcal{B}^t|$ eventually requires $O(N)$ iteration cost.
- **Can we have a rate of $O(\rho^t)$ with only 1 gradient evaluation per iteration?**
 - **YES!** The stochastic average gradient (SAG) algorithm:
 - Randomly select i_t from $\{1, 2, \ldots, N\}$ and compute $f_{i_t}'(x^t)$.

\[
x^{t+1} = x^t - \frac{\alpha^t}{N} \sum_{i=1}^{N} \nabla f_i(x^t)
\]
Stochastic Average Gradient

- Growing $|B^t|$ eventually requires $O(N)$ iteration cost.
- **Can we have a rate of** $O(\rho^t)$ **with only 1 gradient evaluation per iteration?**
 - YES! The stochastic average gradient (SAG) algorithm:
 - Randomly select i_t from $\{1, 2, \ldots, N\}$ and compute $f'_i(x^t)$.
 - $x^{t+1} = x^t - \frac{\alpha^t}{N} \sum_{i=1}^{N} y_i^t$
 - **Memory:** $y_i^t = \nabla f_i(x^t)$ from the last t where i was selected. [Le Roux et al., 2012]
Stochastic Average Gradient

- Growing $|B^t|$ eventually requires $O(N)$ iteration cost.
- **Can we have a rate of $O(\rho^t)$ with only 1 gradient evaluation per iteration?**
 - YES! The stochastic average gradient (SAG) algorithm:
 - Randomly select i_t from $\{1, 2, \ldots, N\}$ and compute $f'_{i_t}(x^t)$.

 $x^{t+1} = x^t - \frac{\alpha^t}{N} \sum_{i=1}^{N} y^t_i$

- **Memory:** $y^t_i = \nabla f_i(x^t)$ from the last t where i was selected.
 - [Le Roux et al., 2012]
- **Stochastic** variant of increment average gradient (IAG).
 - [Blatt et al., 2007]
Stochastic Average Gradient

Growing $|B^t|$ eventually requires $O(N)$ iteration cost.

Can we have a rate of $O(\rho^t)$ with only 1 gradient evaluation per iteration?

YES! The stochastic average gradient (SAG) algorithm:

- Randomly select i_t from $\{1, 2, \ldots, N\}$ and compute $f'_{i_t}(x^t)$.

$$x^{t+1} = x^t - \frac{\alpha^t}{N} \sum_{i=1}^{N} y^t_i$$

- **Memory:** $y^t_i = \nabla f_i(x^t)$ from the last t where i was selected.

 [Le Roux et al., 2012]

- **Stochastic** variant of increment average gradient (IAG).

 [Blatt et al., 2007]

- Assumes gradients of non-selected examples don’t change.
- Assumption becomes accurate as $||x^{t+1} - x^t|| \to 0$.

Convergence Rate of SAG

- If each f'_i is L–continuous and f is strongly-convex, with $\alpha_t = 1/16L$ SAG has

$$\mathbb{E}[f(x^t) - f(x^*)] \leq \left(1 - \min \left\{ \frac{\mu}{16L}, \frac{1}{8N} \right\} \right)^t C,$$

where

$$C = [f(x^0) - f(x^*)] + \frac{4L}{N} \|x^0 - x^*\|^2 + \frac{\sigma^2}{16L}.$$
Stochastic Subgradient Convergence Rate of SSG Practical Subgradient Methods Stochastic Average Gradient Infinite Data Sets

Convergence Rate of SAG

- If each f_i' is $L-$continuous and f is strongly-convex, with $\alpha_t = 1/16L$ SAG has

$$\mathbb{E}[f(x^t) - f(x^*)] \leq \left(1 - \min \left\{ \frac{\mu}{16L}, \frac{1}{8N} \right\} \right)^t C,$$

where

$$C = [f(x^0) - f(x^*)] + \frac{4L}{N} \|x^0 - x^*\|^2 + \frac{\sigma^2}{16L}.$$

- Linear convergence rate but only 1 gradient per iteration.
 - For well-conditioned problems, constant reduction per pass:
 $$\left(1 - \frac{1}{8N}\right)^N \leq \exp \left(-\frac{1}{8}\right) = 0.8825.$$
 - For ill-conditioned problems, almost same as deterministic method (but N times faster).
Assume that $N = 700000$, $L = 0.25$, $\mu = 1/N$:

- Gradient method has rate $(L - \mu L + \mu)^2 = 0.99998$.
- Accelerated gradient method has rate $(1 - \sqrt{\mu L}) = 0.99761$.
- SAG (N iterations) has rate $(1 - \min\{\mu 16L, 18N\})N = 0.88250$.

Fastest possible first-order method: $(\sqrt{L} - \sqrt{\mu} \sqrt{L} + \sqrt{\mu})^2 = 0.99048$.

SAG beats two lower bounds:
- Stochastic gradient bound (of $O(1/t)$).
- Deterministic gradient bound (for typical L, μ, and N).

Number of f_i' evaluations to reach ϵ:
- Stochastic: $O(L \mu (1/\epsilon))$.
- Gradient: $O(N L \mu \log(1/\epsilon))$.
- Accelerated: $O(N \sqrt{L} \mu \log(1/\epsilon))$.
- SAG: $O(\max\{N, L \mu \} \log(1/\epsilon))$.
Rate of Convergence Comparison

- Assume that $N = 700000$, $L = 0.25$, $\mu = 1/N$:
 - Gradient method has rate $\left(\frac{L-\mu}{L+\mu} \right)^2 = 0.99998$.
 - Accelerated gradient method has rate $\left(1 - \sqrt{\mu L} \right) = 0.99761$.
 - SAG (N iterations) has rate $\left(1 - \min \{ \frac{\mu}{16L}, \frac{1}{8N} \} \right) = 0.88250$.
 - Fastest possible first-order method: $\left(\sqrt{L} - \sqrt{\mu} \right)^2 = 0.99048$.

SAG beats two lower bounds: Stochastic gradient bound (of $O(1/t)$). Deterministic gradient bound (for typical L, μ, and N).
Rate of Convergence Comparison

- Assume that $N = 700000$, $L = 0.25$, $\mu = 1/N$:
 - Gradient method has rate $\left(\frac{L-\mu}{L+\mu} \right)^2 = 0.99998$.
 - Accelerated gradient method has rate $\left(1 - \sqrt{\frac{\mu}{L}} \right) = 0.99761$.
Rate of Convergence Comparison

- Assume that $N = 700000$, $L = 0.25$, $\mu = 1/N$:
 - Gradient method has rate $(\frac{L-\mu}{L+\mu})^2 = 0.99998$.
 - Accelerated gradient method has rate $(1 - \sqrt{\frac{\mu}{L}}) = 0.99761$.
 - SAG (N iterations) has rate $(1 - \min\{\frac{\mu}{16L}, \frac{1}{8N}\})^N = 0.88250$.
Rate of Convergence Comparison

Assume that $N = 700000$, $L = 0.25$, $\mu = 1/N$:

- Gradient method has rate $\left(\frac{L-\mu}{L+\mu}\right)^2 = 0.99998$.
- Accelerated gradient method has rate $(1 - \sqrt{\frac{\mu}{L}}) = 0.99761$.
- SAG (N iterations) has rate $(1 - \min\left\{\frac{\mu}{16L}, \frac{1}{8N}\right\})^N = 0.88250$.
- Fastest possible first-order method: $\left(\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}\right)^2 = 0.99048$.

SAG beats two lower bounds: Stochastic gradient bound (of $O(1/t)$). Deterministic gradient bound (for typical L, μ, and N).

Number of f_i evaluations to reach ϵ:
- Stochastic: $O(\frac{L\mu}{\epsilon})$.
- Gradient: $O\left(\frac{N}{L}\frac{\mu}{\log(\frac{1}{\epsilon})}\right)$.
- Accelerated: $O\left(\frac{N}{L}\sqrt{\frac{\mu}{\log(\frac{1}{\epsilon})}}\right)$.
- SAG: $O\left(\max\left\{N, \frac{L\mu}{16L}, \frac{L\mu}{8N}\right\}\log(\frac{1}{\epsilon})\right)$.
Assume that $N = 700000$, $L = 0.25$, $\mu = 1/N$:

- Gradient method has rate $\left(\frac{L-\mu}{L+\mu}\right)^2 = 0.99998$.
- Accelerated gradient method has rate $\left(1 - \frac{\mu}{L}\right) = 0.99761$.
- SAG (N iterations) has rate $\left(1 - \min\left\{\frac{\mu}{16L}, \frac{1}{8N}\right\}\right)^N = 0.88250$.
- *Fastest possible* first-order method: $\left(\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}\right)^2 = 0.99048$.

SAG beats two lower bounds:

- Stochastic gradient bound (of $O(1/t)$).
- Deterministic gradient bound (for typical L, μ, and N).
Rate of Convergence Comparison

Assume that $N = 700000$, $L = 0.25$, $\mu = 1/N$:

- Gradient method has rate $\left(\frac{L-\mu}{L+\mu}\right)^2 = 0.99998$.
- Accelerated gradient method has rate $\left(1 - \sqrt{\frac{\mu}{L}}\right) = 0.99761$.
- SAG (N iterations) has rate $\left(1 - \min\{\frac{\mu}{16L}, \frac{1}{8N}\}\right)^N = 0.88250$.
- *Fastest possible* first-order method: $\left(\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}\right)^2 = 0.99048$.

SAG beats two lower bounds:

- Stochastic gradient bound (of $O(1/t)$).
- Deterministic gradient bound (for typical L, μ, and N).

Number of f_i' evaluations to reach ϵ:
Rate of Convergence Comparison

Assume that \(N = 700000, \ L = 0.25, \ \mu = 1/N \):

- Gradient method has rate \(\left(\frac{L-\mu}{L+\mu} \right)^2 = 0.99998 \).
- Accelerated gradient method has rate \(\left(1 - \sqrt{\frac{\mu}{L}} \right) = 0.99761 \).
- SAG \((N \text{ iterations})\) has rate \(\left(1 - \min \left\{ \frac{\mu}{16L}, \frac{1}{8N} \right\} \right)^N = 0.88250 \).

- \textit{Fastest possible} first-order method: \(\left(\frac{\sqrt{L-\sqrt{\mu}}}{\sqrt{L+\sqrt{\mu}}} \right)^2 = 0.99048 \).

- SAG beats two lower bounds:
 - Stochastic gradient bound (of \(O(1/t) \)).
 - Deterministic gradient bound (for typical \(L, \mu, \) and \(N \)).

- Number of \(f_i' \) evaluations to reach \(\epsilon \):
 - Stochastic: \(O\left(\frac{L}{\mu} (1/\epsilon) \right) \).
Rate of Convergence Comparison

- Assume that $N = 700000$, $L = 0.25$, $\mu = 1/N$:
 - Gradient method has rate $\left(\frac{L-\mu}{L+\mu}\right)^2 = 0.99998$.
 - Accelerated gradient method has rate $\left(1 - \sqrt{\frac{\mu}{L}}\right) = 0.99761$.
 - SAG (N iterations) has rate $\left(1 - \min\left\{\frac{\mu}{16L}, \frac{1}{8N}\right\}\right)^N = 0.88250$.
 - Fastest possible first-order method: $\left(\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}\right)^2 = 0.99048$.

- SAG beats two lower bounds:
 - Stochastic gradient bound (of $O(1/t)$).
 - Deterministic gradient bound (for typical L, μ, and N).

- Number of f_i' evaluations to reach ϵ:
 - Stochastic: $O\left(\frac{L}{\mu}(1/\epsilon)\right)$.
 - Gradient: $O\left(N \frac{L}{\mu} \log(1/\epsilon)\right)$.

Rate of Convergence Comparison

Assume that $N = 700000$, $L = 0.25$, $\mu = 1/N$:

- Gradient method has rate \(\left(\frac{L-\mu}{L+\mu}\right)^2 = 0.99998\).
- Accelerated gradient method has rate \((1 - \sqrt{\frac{\mu}{L}}) = 0.99761\).
- SAG (\(N\) iterations) has rate \((1 - \min \{\frac{\mu}{16L}, \frac{1}{8N}\})^N = 0.88250\).

Fastest possible first-order method: \(\left(\frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}\right)^2 = 0.99048\).

SAG beats two lower bounds:

- Stochastic gradient bound (of $O(1/t)$).
- Deterministic gradient bound (for typical L, μ, and N).

Number of f_i' evaluations to reach ϵ:

- Stochastic: $O\left(\frac{L}{\mu}(1/\epsilon)\right)$.
- Gradient: $O\left(\frac{N L}{\mu} \log(1/\epsilon)\right)$.
- Accelerated: $O\left(\frac{N \sqrt{L}}{\mu} \log(1/\epsilon)\right)$.
Rate of Convergence Comparison

- Assume that $N = 700000$, $L = 0.25$, $\mu = 1/N$:
 - Gradient method has rate $\left(\frac{L - \mu}{L + \mu}\right)^2 = 0.99998$.
 - Accelerated gradient method has rate $\left(1 - \sqrt{\frac{\mu}{L}}\right) = 0.99761$.
 - SAG (N iterations) has rate $\left(1 - \min\left\{\frac{\mu}{16L}, \frac{1}{8N}\right\}\right)^N = 0.88250$.

- Fastest possible first-order method: $\left(\frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}\right)^2 = 0.99048$.

- SAG beats two lower bounds:
 - Stochastic gradient bound (of $O(1/t)$).
 - Deterministic gradient bound (for typical L, μ, and N).

- Number of $f'_{i,t}$ evaluations to reach ϵ:
 - Stochastic: $O\left(\frac{L}{\mu} (1/\epsilon)\right)$.
 - Gradient: $O(N \frac{L}{\mu} \log(1/\epsilon))$.
 - Accelerated: $O\left(N \sqrt{\frac{L}{\mu}} \log(1/\epsilon)\right)$.
 - SAG: $O\left(\max\{N, \frac{L}{\mu}\} \log(1/\epsilon)\right)$.
Comparing Deterministic and Stochastic Methods

- quantum \((n = 50000, p = 78)\) and rcv1 \((n = 697641, p = 47236)\)
SAG Compared to FG and SG Methods

- quantum \((n = 50000, p = 78)\) and rcv1 \((n = 697641, p = 47236)\)
Other Linearly-Convergent Stochastic Methods

- Subsequent stochastic algorithms with linear rates:
 - Stochastic dual coordinate ascent [Shalev-Schwartz & Zhang, 2013]
 - Incremental surrogate optimization [Mairal, 2013].
 - **Stochastic variance-reduced gradient (SVRG)**
 - [Johnson & Zhang, 2013, Konecny & Richtarik, 2013, Mahdavi et al., 2013, Zhang et al., 2013]
 - SAGA [Defazio et al., 2014]
Other Linearly-Convergent Stochastic Methods

- Subsequent stochastic algorithms with linear rates:
 - Stochastic dual coordinate ascent [Shalev-Schwartz & Zhang, 2013]
 - Incremental surrogate optimization [Mairal, 2013].
 - **Stochastic variance-reduced gradient (SVRG)**
 [Johnson & Zhang, 2013, Konecny & Richtarik, 2013, Mahdavi et al., 2013, Zhang et al., 2013]
 - SAGA [Defazio et al., 2014]

- **SVRG has a much lower memory requirement** (later in talk).
- There are also projected/proximal/ADMM extensions.
SAG Implementation Issues

- Basic SAG algorithm:
 - while(1)
 - Sample i from $\{1, 2, \ldots, N\}$.
 - Compute $f'_i(x)$.
 - $d = d - y_i + f'_i(x)$.
 - $y_i = f'_i(x)$.
 - $x = x - \frac{\alpha}{N} d$.

- Practical variants of the basic algorithm allow:
 - Regularization.
 - Sparse gradients.
 - Automatic step-size selection.
 - Commonly use an adaptive step-size procedure to estimate L.
 - Termination criterion.
 - Can use $\|x_{t+1} - x_{t}\|/\alpha = 1/n_d \approx \|\nabla f(x_t)\|$ to decide when to stop.
 - Acceleration [Lin et al., 2015].
 - Adaptive non-uniform sampling [Schmidt et al., 2013].
Basic SAG algorithm:

- while(1)
- Sample i from $\{1, 2, \ldots, N\}$.
- Compute $f'_i(x)$.
- $d = d - y_i + f'_i(x)$.
- $y_i = f'_i(x)$.
- $x = x - \frac{\alpha}{N} d$.

Practical variants of the basic algorithm allow:

- Regularization.
- Sparse gradients.
- Automatic step-size selection.
 - Common to use adaptive step-size procedure to estimate L.
- Termination criterion.
 - Can use $\|x^{t+1} - x^t\|/\alpha \approx \|\nabla f(x^t)\|$ to decide when to stop.
- Acceleration [Lin et al., 2015].
Basic SAG algorithm:

- while(1)
- Sample i from $\{1, 2, \ldots, N\}$.
- Compute $f'_i(x)$.
- $d = d - y_i + f'_i(x)$.
- $y_i = f'_i(x)$.
- $x = x - \frac{\alpha}{N}d$.

Practical variants of the basic algorithm allow:

- Regularization.
- Sparse gradients.
- Automatic step-size selection.
 - Common to use adaptive step-size procedure to estimate L.
- Termination criterion.
 - Can use $\|x^{t+1} - x^t\|/\alpha = \frac{1}{n}d \approx \|\nabla f(x^t)\|$ to decide when to stop.
- Acceleration [Lin et al., 2015].
- Adaptive non-uniform sampling [Schmidt et al., 2013].
Reshuffling and Non-Uniform Sampling

- Does re-shuffling and doing full passes work better?
Reshuffling and Non-Uniform Sampling

- Does **re-shuffling** and doing full passes work better?
 - For classic SG: **Maybe**?
 - Noncommutative arithmetic-geometric mean inequality conjecture.

[Recht & Ré, 2012]
Reshuffling and Non-Uniform Sampling

Does re-shuffling and doing full passes work better?

- For classic SG: Maybe?
 - Noncommutative arithmetic-geometric mean inequality conjecture.
 - [Recht & Ré, 2012]

- For SAG: NO.
 - Performance is intermediate between IAG and SAG.
Reshuffling and Non-Uniform Sampling

- Does **re-shuffling** and doing full passes work better?
 - For classic SG: **Maybe**?
 - Noncommutative arithmetic-geometric mean inequality conjecture.
 - For SAG: **NO**.
 - Performance is intermediate between IAG and SAG.
- Can **non-uniform** sampling help?

[Recht & Ré, 2012]
Reshuffling and Non-Uniform Sampling

- Does re-shuffling and doing full passes work better?
 - For classic SG: *Maybe?*
 - Noncommutative arithmetic-geometric mean inequality conjecture. [Recht & Ré, 2012]
 - For SAG: *NO.*
 - Performance is intermediate between IAG and SAG.

- Can non-uniform sampling help?
 - For classic SG methods, can only improve constants.
Reshuffling and Non-Uniform Sampling

- Does **reshuffling** and doing full passes work better?
 - For classic SG: **Maybe?**
 - Noncommutative arithmetic-geometric mean inequality conjecture. [Recht & Ré, 2012]
 - For SAG: **NO.**
 - Performance is intermediate between IAG and SAG.

- Can **non-uniform** sampling help?
 - For classic SG methods, can only improve constants.
 - For SAG, **bias sampling towards Lipschitz constants** L_i,
 \[
 \|\nabla f_i(x) - \nabla f_i(y)\| \leq L_i \|x - y\|.
 \]

improves rate to depend on L_{mean} instead of L_{max}.

(with bigger step size)
Reshuffling and Non-Uniform Sampling

- Does re-shuffling and doing full passes work better?
 - For classic SG: Maybe?
 - Noncommutative arithmetic-geometric mean inequality conjecture. [Recht & Ré, 2012]
 - For SAG: NO.
 - Performance is intermediate between IAG and SAG.

- Can non-uniform sampling help?
 - For classic SG methods, can only improve constants.
 - For SAG, bias sampling towards Lipschitz constants L_i,
 \[
 \|\nabla f_i(x) - \nabla f_i(y)\| \leq L_i \|x - y\|.
 \]
 improves rate to depend on L_{mean} instead of L_{max}. (with bigger step size)
 - Adaptively estimate L_i as you go. (see paper/code).
 - Slowly learns to ignore well-classified examples.
SAG with Adaptive Non-Uniform Sampling

- protein \((n = 145751, p = 74)\) and sido \((n = 12678, p = 4932)\)

- Datasets where SAG had the worst relative performance.
SAG with Non-Uniform Sampling

- protein \((n = 145751, p = 74)\) and sido \((n = 12678, p = 4932)\)

- Adaptive non-uniform sampling helps a lot.
SAG with Mini-Batches

- Reasons to use mini-batches with SAG:
 1. Parallelize gradient calculation.
 2. Decrease memory (only store gradient of the mini-batch).

Convergence rate depends on L for mini-batches:

$$L(B) \leq L(i),$$

possibly by up to $|B|$. Allows bigger step-size, $\alpha = \frac{1}{L(B)}$. Place examples in batches to make $L(B)$ small.
SAG with Mini-Batches

Reasons to use mini-batches with SAG:

1. Parallelize gradient calculation.
2. Decrease memory (only store gradient of the mini-batch).
3. Increase convergence rate.
 (classic SG methods: only changes constant)
SAG with Mini-Batches

- Reasons to use mini-batches with SAG:
 1. Parallelize gradient calculation.
 2. Decrease memory (only store gradient of the mini-batch).
 3. Increase convergence rate.
 (classic SG methods: only changes constant)

- Convergence rate depends on L for mini-batches:
 - $L(B) \leq L(i)$, possibly by up to $|B|$.
 - Allows bigger step-size, $\alpha = 1/L(B)$.
 - Place examples in batches to make $L(B)$ small.
Minimizing Finite Sums: Dealing with the Memory

- A major disadvantage of SAG is the memory requirement.
Minimizing Finite Sums: Dealing with the Memory

- A major disadvantage of SAG is the memory requirement.
- Besides mini-batches, structure in objective may avoid this:
 - For linear models where \(f_i(w) = g(w^T x_i) \), then only require \(O(n) \) memory:
 \[
 \nabla f_i(w) = g'(w^T x_i) x_i.
 \]
Minimizing Finite Sums: Dealing with the Memory

- A major disadvantage of SAG is the **memory requirement**.
- Besides mini-batches, structure in objective may avoid this:
 - For linear models where $f_i(w) = g(w^T x_i)$, then only require $O(n)$ memory:
 $$\nabla f_i(w) = g'(w^T x_i) x_i.\$$
 - For CRFs, only need to store marginals of parts.

(optical character and named-entity recognition tasks)
A major disadvantage of SAG is the memory requirement. Besides mini-batches, structure in objective may avoid this:

- For linear models where $f_i(w) = g(w^T x_i)$, then only require $O(n)$ memory:
 \[
 \nabla f_i(w) = g'(w^T x_i) x_i.
 \]

- For CRFs, only need to store marginals of parts.

(optical character and named-entity recognition tasks)

If the above don’t work, use SVRG...
Stochastic Variance-Reduced Gradient

SVRG algorithm:

- Start with x_0
- for $s = 0, 1, 2 \ldots$
 - $d_s = \frac{1}{N} \sum_{i=1}^{N} f'_i(x_s)$
 - $x^0 = x_s$
 - $x_{s+1} = x_t$ for random $t \in \{1, 2, \ldots, m\}$

Requires 2 gradients per iteration and occasional full passes, but only requires storing d_s and x_s.
Practical issues similar to SAG (acceleration versions, automatic step-size/termination, handles sparsity/regularization, non-uniform sampling, mini-batches).
Stochastic Variance-Reduced Gradient

SVRG algorithm:

- Start with x_0
- for $s = 0, 1, 2 \ldots$
 - $d_s = \frac{1}{N} \sum_{i=1}^{N} f'_i(x_s)$
 - $x^0 = x_s$
 - for $t = 1, 2, \ldots m$
 - Randomly pick $i_t \in \{1, 2, \ldots, N\}$
 - $x^t = x^{t-1} - \alpha_t (f'_{i_t}(x^{t-1}) - f'_{i_t}(x_s) + d_s)$.
 - $x_{s+1} = x^t$ for random $t \in \{1, 2, \ldots, m\}$.

Requires 2 gradients per iteration and occasional full passes, but only requires storing d_s and x_s. Practical issues similar to SAG (acceleration versions, automatic step-size/termination, handles sparsity/regularization, non-uniform sampling, mini-batches).
Stochastic Variance-Reduced Gradient

SVRG algorithm:

- Start with x_0
- for $s = 0, 1, 2 \ldots$
 - $d_s = \frac{1}{N} \sum_{i=1}^{N} f'_i(x_s)$
 - $x_0 = x_s$
 - for $t = 1, 2, \ldots m$
 - Randomly pick $i_t \in \{1, 2, \ldots, N\}$
 - $x^t = x^{t-1} - \alpha_t (f'_{it}(x^{t-1}) - f'_{it}(x_s) + d_s)$.
 - $x_{s+1} = x^t$ for random $t \in \{1, 2, \ldots, m\}$.

Requires 2 gradients per iteration and occasional full passes, but only requires storing d_s and x_s.
Stochastic Subgradient Convergence Rate of SSG
Practical Subgradient Methods
Stochastic Average Gradient
Infinite Data Sets

Stochastic Variance-Reduced Gradient

SVRG algorithm:

- Start with x_0
- for $s = 0, 1, 2 \ldots$
 - $d_s = \frac{1}{N} \sum_{i=1}^{N} f'_i(x_s)$
 - $x^0 = x_s$
 - for $t = 1, 2, \ldots m$
 - Randomly pick $i_t \in \{1, 2, \ldots, N\}$
 - $x^t = x^{t-1} - \alpha_t (f'_{i_t}(x^{t-1}) - f'_{i_t}(x_s) + d_s)$
 - $x_{s+1} = x^t$ for random $t \in \{1, 2, \ldots, m\}$

Requires **2 gradients per iteration and occasional full passes**, but **only requires storing** d_s and x_s.

Practical issues similar to SAG (acceleration versions, automatic step-size/termination, handles sparsity/regularization, non-uniform sampling, mini-batches).
Stochastic Subgradient for Infinite Datasets?

- In analysis of stochastic subgradient, two assumptions on g_{i_t}:
 - Unbiased approximation of subgradient: $\mathbb{E}[g_{i_t}] = g_t$.
 - Variance is bounded: $\mathbb{E}[\|g_{i_t}\|^2] \leq B^2$.

- Unlike SAG, stochastic subgradient applies to general stochastic optimization:
 $$\arg\min_{x \in \mathbb{R}^d} \mathbb{E}[f_i(x)].$$
Stochastic Subgradient for Infinite Datasets?

- In analysis of stochastic subgradient, two assumptions on g_{it}:
 - Unbiased approximation of subgradient: $\mathbb{E}[g_{it}] = g_t$.
 - Variance is bounded: $\mathbb{E}[\|g_{it}\|^2] \leq B^2$.

- Unlike SAG, stochastic subgradient applies to general stochastic optimization:
 $$\arg\min_{x \in \mathbb{R}^d} \mathbb{E}[f_i(x)].$$

- We can use stochastic subgradient on IID samples from infinite dataset:
 - $O(1/\epsilon)$ rate still applies.
Stochastic vs. Deterministic for Stochastic Objectives

Consider smooth/strongly-convex stochastic objectives,

\[
\min_{x \in \mathbb{R}^D} \mathbb{E}[f_i(x)],
\]

including the generalization error in machine learning.
Stochastic vs. Deterministic for Stochastic Objectives

- Consider smooth/strongly-convex stochastic objectives,
 \[
 \min_{x \in \mathbb{R}^D} \mathbb{E}[f_i(x)],
 \]
 including the generalization error in machine learning.

- Error \(\epsilon \) has two parts [Bottou & Bousquet, 2007]:
 \[
 \epsilon = (\text{optimization error}) + (\text{estimation error}).
 \]
 (for generalization error, also have model error)
Stochastic vs. Deterministic for Stochastic Objectives

- Consider smooth/strongly-convex stochastic objectives,

\[\min_{x \in \mathbb{R}^D} \mathbb{E}[f_i(x)], \]

including the generalization error in machine learning.

- Error \(\epsilon \) has two parts [Bottou & Bousquet, 2007]:

\[\epsilon = (\text{optimization error}) + (\text{estimation error}). \]

(for generalization error, also have model error)

- Consider two strategies:
 - Generate \(t \) samples, then minimize exactly (ERM):
 - Optimization error = 0.
 - Estimation error = \(\tilde{O}(1/t) \).
Stochastic vs. Deterministic for Stochastic Objectives

- Consider smooth/strongly-convex stochastic objectives,
 \[
 \min_{x \in \mathbb{R}^D} \mathbb{E}[f_i(x)],
 \]
 including the generalization error in machine learning.

- Error ϵ has two parts [Bottou & Bousquet, 2007]:
 \[
 \epsilon = \text{(optimization error)} + \text{(estimation error)}.
 \]
 (for generalization error, also have model error)

- Consider two strategies:
 - Generate t samples, then minimize exactly (ERM):
 - Optimization error $= 0$.
 - Estimation error $= \tilde{O}(1/t)$.
 - Or just applying stochastic gradient as we go:
 - Optimization error $= O(1/t)$.
 - Estimation error $= \tilde{O}(1/t)$.
Stochastic vs. Deterministic for Stochastic Objectives

- So just go through your data once with stochastic gradient?
Stochastic vs. Deterministic for Stochastic Objectives

- So just go through your data once with stochastic gradient?
- “overwhelming empirical evidence shows that for almost all actual data, the ERM is better. However, we have no understanding of why this happens”

[Srebro & Sridharan, 2011]
Stochastic vs. Deterministic for Stochastic Objectives

- So just go through your data once with stochastic gradient?
- “overwhelming empirical evidence shows that for almost all actual data, the ERM is better. However, we have no understanding of why this happens” [Srebro & Sridharan, 2011]

- **Constants matter** in learning:
 - SG optimal in terms of sample size.
 - But not other quantities: L, μ, x^0.
 - We care about multiplying test error by 2!
Stochastic vs. Deterministic for Stochastic Objectives

- So just go through your data once with stochastic gradient?
- “overwhelming empirical evidence shows that for almost all actual data, the ERM is better. However, we have no understanding of why this happens”

 [Srebro & Sridharan, 2011]

- **Constants matter** in learning:
 - SG optimal in terms of sample size.
 - But not other quantities: \(L, \mu, x^0 \).
 - We care about multiplying test error by 2!

- Growing-batch deterministic methods [Byrd et al., 2011].

- Or take \(t \) iterations of SAG on fixed \(N < t \) samples.
 - Optimization accuracy decreases to \(O(\rho^t) \).
 - Estimation accuracy increases to \(\tilde{O}(1/N) \).
Stochastic vs. Deterministic for Stochastic Objectives

- So just go through your data once with stochastic gradient?

- “overwhelming empirical evidence shows that for almost all actual data, the ERM is better. However, we have no understanding of why this happens”

 [Srebro & Sridharan, 2011]

- **Constants matter** in learning:
 - SG optimal in terms of sample size.
 - But not other quantities: L, μ, x^0.
 - We care about multiplying test error by 2!

- Growing-batch deterministic methods [Byrd et al., 2011].

- Or take t iterations of SAG on fixed $N < t$ samples.
 - Optimization accuracy decreases to $O(\rho^t)$.
 - Estimation accuracy increases to $\tilde{O}(1/N)$.

- SAG obtains better bounds for difficult optimization problems.
Streaming SVRG

Streaming SVRG algorithm [Frostig et al., 2015]:

- Start with x_0 and initial sample size N
Streaming SVRG

Streaming SVRG algorithm [Frostig et al., 2015]:

- Start with \(x_0 \) and initial sample size \(N \)
- for \(s = 0, 1, 2 \ldots \)
 - \(d_s = \frac{1}{N} \sum_{i=1}^{N} f_i'(x_s) \) for \(N \) fresh samples.
 - \(x^0 = x_s \)
Streaming SVRG

Streaming SVRG algorithm [Frostig et al., 2015]:

- Start with x_0 and initial sample size N
- for $s = 0, 1, 2 \ldots$
 - $d_s = \frac{1}{N} \sum_{i=1}^{N} f_i'(x_s)$ for N fresh samples.
 - $x^0 = x_s$
 - for $t = 1, 2, \ldots m$
 - Randomly pick 1 fresh sample.
 - $x^t = x^{t-1} - \alpha_t (f_i'(x^{t-1}) - f_i'(x_s)) + d_s$.
 - $x_{s+1} = x^t$ for random $t \in \{1, 2, \ldots, m\}$.
- Increase samples size N.

Streaming SVRG is optimal in non-asymptotic regime.
Same variance as ERM (only true for avg(SG) asymptotically).
Second-order methods are not necessary.
Streaming SVRG

Streaming SVRG algorithm [Frostig et al., 2015]:

- Start with x_0 and initial sample size N
- for $s = 0, 1, 2 \ldots$
 - $d_s = \frac{1}{N} \sum_{i=1}^{N} f'_i(x_s)$ for N fresh samples.
 - $x^0 = x_s$
 - for $t = 1, 2, \ldots m$
 - Randomly pick 1 fresh sample.
 - $x^t = x^{t-1} - \alpha_t(f'_{it}(x^{t-1}) - f'_{it}(x_s) + d_s)$.
 - $x_{s+1} = x^t$ for random $t \in \{1, 2, \ldots, m\}$.
 - Increase samples size N.

- Streaming SVRG is optimal in non-asymptotic regime.
- Same variance as ERM (only true for avg(SG) asymptotically).
- Second-order methods are not necessary.
Constant-Step SG under Strong Assumptions

- We can beat $O(1/t)$ under stronger assumptions.
Constant-Step SG under Strong Assumptions

- We can beat $O(1/t)$ under stronger assumptions.
- E.g., Schmidt & Le Roux [2013],
 \[\|f'_i(x)\| \leq B\|f'(x)\|. \]
- Crazy assumption: assumes x^* minimizes f_i.
Constant-Step SG under Strong Assumptions

- We can beat $O(1/t)$ under stronger assumptions.
- E.g., Schmidt & Le Roux [2013],
 \[\| f'_i(x) \| \leq B \| f'(x) \|. \]
- Crazy assumption: assumes x^* minimizes f_i.
- With $\alpha_t = \frac{1}{LB^2}$, stochastic gradient has
 \[\mathbb{E}[f(x^t)] - f(x^*) \leq \left(1 - \frac{\mu}{LB^2} \right)^t [f(x^0) - f(x^*)]. \]
- If you expect to over-fit, maybe constant α_t is enough?
Online Convex Optimization

- What if data is not IID?
Online Convex Optimization

- What if data is not IID?
- Addressed by online convex optimization (OCO) framework:
 - At time t, make a prediction x^t. [Zinkevich, 2003]
Online Convex Optimization

- What if data is not IID?
- Addressed by online convex optimization (OCO) framework:
 - At time t, make a prediction x^t.
 - Receive arbitrary convex loss f_t.

OCO analyzes regret,

$$\sum_{k=1}^{t} f_t(x^t) - f_t(x^*),$$

comparing vs. best fixed x^* for any sequence $\{f_t\}$.

[Zinkevich, 2003]
Online Convex Optimization

- What if data is not IID?
- Addressed by **online convex optimization** (OCO) framework: [Zinkevich, 2003]
 - At time t, make a prediction x^t.
 - Receive arbitrary convex loss f_t.
- OCO analyzes **regret**,
 $$\sum_{k=1}^{t} f_t(x^t) - f_t(x^*),$$
 comparing vs. best fixed x^* for any sequence $\{f_t\}$.
- SG-style methods achieve **optimal** $O(\sqrt{t})$ regret.
- Strongly-convex losses: $O(\log(t))$ regret [Hazan et al., 2006].
Online Convex Optimization

- What if data is not IID?
- Addressed by online convex optimization (OCO) framework:
 - At time t, make a prediction x^t.
 - Receive arbitrary convex loss f_t.
- OCO analyzes regret,

$$\sum_{k=1}^{t} f_t(x^t) - f_t(x^*),$$

comparing vs. best fixed x^* for any sequence $\{f_t\}$.
- SG-style methods achieve optimal $O(\sqrt{t})$ regret.
- Strongly-convex losses: $O(\log(t))$ regret [Hazan et al., 2006].
- Variants exist see features first [Cesa-Bianchi et al., 1993].
- Bandit setting: no gradients.
Summary

Subgradients: generalize gradients for non-smooth convex functions.

Subgradient method: optimal but very slow general non-smooth method.

Stochastic subgradient method: same rate but n times cheaper.

Constant step-size: subgradient quickly converges to approximate solution.

Decreasing step-size: subgradient slowly converges to exact solution.

Practical stochastic subgradient methods: Tricks like $\beta_t v_t$ allow training on huge sparse datasets.

Different step-size strategies and averaging significantly improve performance.

Stochastic average gradient: $O(\log(1/\epsilon))$ iterations with 1 gradient per iteration.

Infinite Training Sets can be used with stochastic subgradient.

But recent results indicate it's sometimes better to apply SAG to finite sample.

Next time: how to use (some) infinite sets of features.
Summary

- **Subgradients**: generalize gradients for non-smooth convex functions.
- **Subgradient method**: optimal but very-slow general non-smooth method.
- **Stochastic subgradient method**: same rate but \(n \) times cheaper.
Summary

- **Subgradients**: generalize gradients for non-smooth convex functions.
- **Subgradient method**: optimal but very-slow general non-smooth method.
- **Stochastic subgradient method**: same rate but n times cheaper.
- **Constant step-size**: subgradient quickly converges to approximate solution.
- **Decreasing step-size**: subgradient slowly converges to exact solution.
- **Practical stochastic subgradient** methods:
 - Tricks like $\beta^t v^t$ allow training on huge sparse datasets.
 - Different step-size strategies and averaging significantly improve performance.
Summary

- **Subgradients**: generalize gradients for non-smooth convex functions.
- **Subgradient method**: optimal but very-slow general non-smooth method.
- **Stochastic subgradient method**: same rate but \(n \) times cheaper.
- **Constant step-size**: subgradient quickly converges to approximate solution.
- **Decreasing step-size**: subgradient slowly converges to exact solution.
- **Practical stochastic subgradient methods**:
 - Tricks like \(\beta^t v^t \) allow training on huge sparse datasets.
 - Different step-size strategies and averaging significantly improve performance.
- **Stochastic average gradient**: \(O(\log(1/\epsilon)) \) iterations with 1 gradient per iteration.
Summary

- **Subgradients**: generalize gradients for non-smooth convex functions.
- **Subgradient method**: optimal but very-slow general non-smooth method.
- **Stochastic subgradient method**: same rate but n times cheaper.
- **Constant step-size**: subgradient quickly converges to approximate solution.
- **Decreasing step-size**: subgradient slowly converges to exact solution.
- **Practical stochastic subgradient methods**:
 - Tricks like $\beta^t v^t$ allow training on huge sparse datasets.
 - Different step-size strategies and averaging significantly improve performance.
- **Stochastic average gradient**: $O(\log(1/\epsilon))$ iterations with 1 gradient per iteration.
- **Infinite Training Sets** can be used with stochastic subgradient.
 - But recent results indicate it’s sometimes better to apply SAG to finite sample.
- Next time: how to use (some) infinite sets of features.