SVAN 2016 Mini Course: Stochastic Convex
Optimization Methods in Machine Learning

Mark Schmidt
University of British Columbia, May 2016
www.cs.ubc.ca/~schmidtm/SVAN16

Last Time: Convex Functions

* Last time we discussed convex functions:
— All local minima are global minima (and no saddle points).
— Three definitions of convex functions (depending on differentiability):
| Flox t(1-0)y)S o6 +(1=6)F(y) for all x and yy and 0 6<]
A O/\C(’c\d@rmﬁv\\ole and f(;ﬂ 7 L)+ VE) (y*ﬂ Groall x and Va
2 Twice © (Ferontiable and VH(x) >(O $or sl « (Symmﬂlﬂ(pesthive SW/*CM'MQ

— We discussed ways to show functions are convex:
* Show one of the above holds.
e Use operations that preserve convexity.

— Non-negative sum, composition with affine function, maximum.

Last Time: Gradient Descent

* Gradient descent:
— lterative algorithm for finding stationary point of differentiable function.
— For convex functions it finds a global minimum.

Start with X07 “F(o,y Xt%[= th O(—(/V‘D(Xt)

* Cost of algorithm scales linearly with number of variables ‘d’:
— E.g., ‘t’ iterations costs O(ndt) for least squares, logistic regression, etc.
* Note that the input size is O(nd).

— For t < d, faster than O(nd? + d3) of least squares and Newton’s method.
Faster in high-dimensions for small ‘t’.

Last Time: Convergence Rate of Gradient Descent

 We asked “how many iterations ‘t” before we have an accuracy €?”

 We assumed strong-convexity and strong-smoothness:
I SVHISLT for all x ond 0<aSL<e
A N

\/ cbtnfidy g r;x/ (A > @ Means H\CJL >/7/]>/ - YT@y 2 0)

for all v
50 LI%V@%«) means Tha't }/7(Lj)y
° : : : nd ' ‘_\/‘TWVZO
By using multivariate 2"%-order Taylor expansion, or | ulf 25
. = =R Ty
£ = £6) + V6T g0 + L (=) BNy —) ey

for some 2 for any x aad y,
we showed linear convergence rate which implies t = O(log(1/¢)).

Last Time: Gradient Descent Theory and Practice

* We discussed further properties of gradient descent:
— “Strong-smoothness” weakened to “gradient is L-Lipschitz continuous”.

* And only along the line segments between x' and x'*2.

— No need to know ‘L’:

* Adaptive step-size, Armijo line-search, or exact step-size.
— “Strong-convexity” is implied if we have f(x) + A| | x| |2 and ‘f” is convex.
* If ‘f" is not convex, convergence rate only holds near solution.
* We overviewed methods with better performance:
— Nesterov’s accelerated-gradient method.
— Approximations to Newton’s method.

How Hard is Optimization?

Consider a generic optimization problem:

Assume that a solution ‘x™ exists.
Assume a “black-box” optimization algorithm:
— At step ‘t’, algorithms chooses parameters xt and receives f(xt!).

How many steps does it take before we find €-optimal solution?
F(xH - M) < 6

__O
General function: impossible!

How Hard is Optimization?

 We need to make some assumptions about the function

* Typically, we assume function or gradient can’t change too quickly.
— E.g., function ‘f’ is Lipschitz-continuous:

l]f(X7“ F(yﬂ S LHXUYU 7[\0r Sowme]LI ond @U L and \/(

’ E 77|

In VLWo';()mengmﬁj) (//‘}o@cééfz
f(/\({S bm”f Q@:

s
— Over [0,1]9, now it’s possible to solve the problem in O(1/&%):

* Exponential in dimensionality, but a small assumption made a bit difference.

Continuous Optimization Zoo

Assu\MpJMor\g Alqo(’\“\m Rate
‘)
{»\is L"L\Iosck'ﬂfz) X LS bokuiec/ Giend- Sﬁfl”L‘ / 0(’ //éal) 2 (oy\l/{)('lﬁ/
o convex buf hOn™ s oot S\AL*S\[M;@ML \ OCI/EQ) N\
sveoth aparorme flon £ is comvex Gradient 0 (/.. T
Yo ‘(\W\% /\/g f,a,/g\/ O l/g)) QIQ{HY(U‘/ﬁﬂlﬂ\
2 Sm%//mear ((9)
Si::;{,‘i,]\&/ JF i (;L;rsch'dz)n‘: i (oM X Giradlel OC‘/g} ng"\wwwg
ter |
Mesterov 0 ('4g) Sf%w/—fowmﬂ‘y
Fis stronyly =convex bt non~smogth §mé’9mdwﬂl 0 ('/g>
VE i L Lpsehfof s mstmgly G dieat | O(leg(L))
f) (npeX /meaf
/\/Qs'h”rov O(109 (?{>>

Qﬁrox}mﬁn()

£ s LLptf b sty G - v
¥2F ?S MH(ZP IC[,\:){—Z > CEVT‘\Cve? T Quasi- MowTon SMP#’W\%W OUO(}C%D QNI C[wu/ﬂw(jz

(pause)

Motivation: Automatic Brain Tumor Segmentation

e Task: identifying tumours in multi-modal MRI data.

* Applications:
— image-guided surgery.
— radiation target planning.
— quantifying treatment response
— discovering growth patterns.

Motivation: Automatic Brain Tumor Segmentation

 Formulate as supervised learning:
— Pixel-level classifier that predicts “tumour” or “non-tumour”.

— Features: convolutions, expected values (in aligned template) and
symmetry (all at multiple scales).) g,'-“a L@@ e q\ (D

II o L

":”;‘4 Ir...;‘:
_/ 8~ “\ @ “ @ ()

Motivation: Automatic Brain Tumor Segmentation

* Logistic regression was the most effective, with the right features.

* Butif you used all features, it overfit.
— We needed feature selection.

e Classical approach:
— Define some ‘score’: AIC, BIC, cross-validation error, etc.
— Search for features that optimize score:

e Usually NP-hard, so we use greedy:

— Forward selection, backward selection, stagewise,...

* In this application, these are too slow.

Feature Selection

:]
* General feature selection problem: fo «Ture J .

— Given our usual X" and ‘y’:

Fraiing exarmpl
— We think some features/columns of ‘X’ are irrelevant for predicting ‘y’.

 We want to fit a model that uses the ‘best’ set of features.
— Special case: choosing ‘best’ basis from a set of possible bases.

* One of most important problems in ML/statistics, but very very messy.
— Can be difficult to define what ‘relevant’ means.
— For now, a feature is ‘relevant’ if it helps predict y, from x.

o

L1-Regularization

Popular approach to feature selection is L1-regularization:

é/??d
Written above for squared loss, but can be used for any loss.

Advantages:
— Fast: can apply to large datasets, just minimizing convex function.
— Reduces overfitting because it simultaneously regularizes.

Disadvantage:

— Prone to false positives, particularly if you pick A by cross-validation.

— Not unique: there may be infinite solutions.

d
WW‘ i HX yli‘f Al Il = = /WJ/

L1-Regularization

Key property of L1-regularization: if A is large, solution w™ is sparse:

— w™ has many values that are exactly zero.
What this has to do with feature selection:
/

_ , 4 |
= owx, WXy g by Xy T X

Ifw=[0030-2], then:
}\4 = Oy T 0x;, © 3% t Oy + B
= gX@“‘ Axie (pﬁﬁ‘w) {/)?)L/)Z are)9m0r6J>

Why does L1-regularization give sparsity but not L2-regularization?

Why not just threshold ‘w’?

Why not just compute least squares ‘w’ and threshold?

— You can show some nice properties of this, but it does some silly things:
* Let feature 1 be an irrelevant feature, and assume feature 2 is a copy of feature 1.
* Without regularization, could have w, = -w, with both values arbitrarily large.

Why not just compute L2-regularized ‘w’ and threshold?

— Fixes the above problem, but still does weird things:
e Let feature 1 be irrelevant and feature 2 be relevant.
* Assume feature 3 is also relevant, and features 4:d are copies of feature 3.

* For ‘d’ large enough, L2-regularization prefers irrelevant feature ‘1’ or relevant 3:d.
(L1-regularization should pick at least one among 3:d for any ‘d’.)

(I'm not saying L1-regularization doesn’t do weird things, too.)

If features are orthogonal, thresholding and L1 are equivalent.
— But feature selection is not interesting in this case.

Sparsity and Least Squares

* Consider 1D least squares objective:

TF(‘/V) - i{‘ % (‘/A“ QWXDQ

A

* This is a convex 1D quadratic function of ‘w’ (i.e., a parabola):

£6.)

/LJVM'/VH-VVIV]V\/\
. 74
* This variable does not look relevant (minimum is close to 0).
— If it’s really irrelevant, minimum will move to 0 as ‘n’ goes to infinity.

— But for finite ‘n’, minimum of parabola is unlikely to be exactly zero.

Sparsity and L2-Regularization

* Consider 1D L2-regularized Ieast squares objective:

‘R«/ / “wr)t 2
* This is a convex 1D quadratic functlon oquq (T.e., a parabola): jD(W)
—W
Z
-+ —
— [p—
| -

e |2-regularization moves it a bit closer to zero.
— But there is nothing special about being ‘exactly’ zero.
— Unless cost is flat at zero, L2-regularization always sets ‘w;" non-zero.

Sparsity and L1-Regularization

* Consider 1D L1-regu|a:in(ed Ieast squares objec/’)cive' gi iﬂ [/f W;)ZHW 0
w l/ WX) —+ "
- i(/;”w’() 7w w<l

* This is a convex piecewise- quadratlc function of ‘w’ with ‘kink’ at O: jD(W)

N N\

e L1- regularlzatlon minimum is often exactly at the ‘kink’ at O:
— |t sets the feature to exactly O, removing it from the model.
— Big A means kink is ‘steep’. Small A makes 0 unlikely to be minimum.

Where does sparsity come from?

 Another view on sparsity of L2- vs. L1-regularization:
acgan L=y Yle <=5 Grgein LMo yIP 490 Sabed o ¢ 7)

Wt R’ we/ei re/{

@ Unconstrained Solution @ Unconstrained Solution
S (O L2-Regularized Solution S (O L1-Regularized Solution

L1-Regularization: Discussion

“Sample complexity” [Ng, 2004]:
— L2-regularization: you can learn with linear number of irrelevant features.
— L1-regularization: you can learn with exponential number of irrelevant.

“Elastic net”:
— Use both L2-regularization and L1-regularization.
— Makes problem strongly-convex, so it has a unique solution.

“Bolasso”:
— Run L1-regularization on boostrap samples.

. .. 7[\dr @B/olw\r/f
— Take features that are non-zero in all samples: fewer false positives. |)
Non-convex regularizers: 2 \md

— Less sensitive to false positives, but solving optimization is NP-hard. will gint 4
%'l?hjf\5lo\{s.\ y-

Solving L1-Regularization Problems

How can we minimize non-smooth L1-regularized objectives?
acgme L= I+ Ml

w e R?
— And let’s assume X'X is positive-definite, or we add L2-regularization.

* Either conditions makes it strongly-convex.
Use our trick to formulate as a quadratic program?
— O(d?) or worse.
Formulate as non-smooth convex optimization?

— Sub-linear O(1/€) convergence rate.

Make a smooth approximation to L1-norm?

— Destroys sparsity.

Solving L1-Regularization Problems

* Key insight: this is not a general non-smooth convex function.

— We can use structure to get large-scale O(log(1/€)) methods.
* We can write it as:
dramm 6()() + Nx) where lal IS Smodlh omj U //QM/o/e !
w ek
— This lets us apply proximal-gradient methods (next lecture).

e We can also write it as:
4
Argmn %(@ + 2 h(x) whene g s smoot h
Ef V= |
! %”Sﬂ’aMUe\

— This lets us apply coordinate optimization methods (this lecture)

Coordinate Optimization

* We want to optimize a differentiable function:

1
' I
g £Go JosT Chang s
 Coordinate optimization: f Ve, 1al/, J "

— At each iteration ‘t’, we update one variable ‘.

]
X =t ee, where e
1 O

dQ 2a—=a-Qq Q

* How do we pick the variable j,” to update?
— Classic choices: cyclic, random, and greedly.

* How do we update the variable we chose?
— Classic choices: constant step-size, line-search, exact optimization.

Coordinate Optimization

This is an obvious, old, and widely-used algorithm.
But until ~2010, we had no theory about when to use it.

— For some applications it works great, for some applications it’s terrible.
Key insight in ~2010:

— If you can do ‘d’ coordinate updates for the cost of one gradient update,
then randomized coordinate optimization is faster than gradient descent.

— Applies to random or greedy selection and 1/L or exact updates.

When is this true?

— Simplest case is separable function, 2 f,(x,), like L2- or L1-regularization.
— There are two more complicated classes...

Problems Suitable for Coordinate Descent

* Coordinate update is n times faster than gradient update for:

0‘136%9 Flx) = 3(A><>
— Where ‘g’ is smooth/cheap but bottleneck is multiplication by ‘A’
— For example, least squares and logistic regression.

— Key idea: can track the product Axt after single-coordinate updates,
ol — t . +
X A(Y +0(t63t>v“A)(+(X,e/‘\é\){ 0[/\> [QGCQM‘S& 6 th

SV Je
o W QNe Non ~zero.
— And since ‘g’ is cheap you get gradient for random coordinate by:

VEO=AT7, (1 VF6= Ve colum of A cot is 000) — (o
. « 4) uc Vo it"flf

* The other class where coordinate update is ‘n’ times faster: WT;;%;
0‘:\9&{\& éé\ 315(%,'))(‘]7 (6.3.7 SrmFL“%%eJ Serm"‘SmF@r\/\StJ Lewnmp OG/\J)

Analysis of Coordinate Optimization

For gradient descent we assume gradient is Lipschitz continuous:

“VRX)‘W}C@)” < chﬂx“\/“ \727ﬁ/}0$ L{I
For coordinate optimization we assume coordinate—wise2L-Lipschitz:
[V}F(XJVN(%)“%F&)/S L’o([vﬁ? 10[,%) S

Note that neither of these is stronger:

— If gradient is Li-Lipschitz, then its coordinate-wise Li-Lipschitz, so L < L.
— If coordinate-wise L-Lipschitz, then gradient is dL-Lipschitz, so L; < dL.
Gradient descent requires O((L;/u)log(1/€)) iterations.
Coordinate optimization requires O(d(L/u)log(1/¢€)) iterations.

— This is slower because L; < dL.
— But this faster is if iterations are ‘d” times cheaper, because L < L.

Coordinate Optimization Progress Bound

* First let’s assume a step-size of 1/L:
t+
X = X - vgtjt(it.) &
L T

Coordinale~uwnse Lifsf/Wz TMW‘N—U 5;(/7< nC(QJerC (y y) L Iy =xlI? for a%« (;Q{?J all >;0\1/V\J/
d or N ne_Vorlasl ariab)

st X:Xt ahd ytxeﬂ to je%
2 {
m@ P F-H, P60 L (7 56)
= f(—7 1Y, m){

This aly holds Tor g/ M I'his holds for any Choice mC

€ xact onlzonLor\ S/V\(e Min R/)g'< —F(“)
)

Random Selection Rule

 Our bound for any coordinate: {(,t*) < £(,¢) —
* Let’s consider random selection of each j

ELRGE)) € BLFG - AL AT Legpectation with ropeet o)

= Eﬂﬁyt)t\ ﬁﬁv Hx@) Lexpectation i iear)

= 1G5 - Q'L g 1T, PO Cdefinon of eqecilon
= TGt - ﬂj v fdt Lusig p()=4)

) W”’m%mmw

= Th) =L uvenr Clivlt= £ 1)

)=

v {3(6)12
ZL t
" with probability 1/d:

Analysis of Coordinate Optimization

e If f" is pu-strongly-convex, then we get a linear convergence rate:
CLEE) -6) < FE) = £)= IVFEOIA Csubtract £06%) Frum Lot sides)

< WC()(é 7 4’\((%> M C -P(Xt) *P()(*>] Q_— “ Vf(x() Z < :2//({(Xﬁ) I(xo)))

= (-)L F6) — Fe)] o strng-conesty

Analysis of Coordinate Optimization

e If f" is pu-strongly-convex, then we get a linear convergence rate:

ECEE) -6 < FLE) = FL)4 IVFOI Coubbract £0%) Frum Lo 51l
< AGE) = F6) - A fe)] = VALY I € 2u(f9-419)
= (1- #)[Pu)= 1Y) from srony=convesy

ELECKOE P =EL (1200 Pe-Fu))] expedafinwifireged b)
e CCRGE - £] = UVM>E£F<Xt> {(X’F{)]

€)<\fed(-\
(éL& chw ELX))

Analysis of Coordinate Optimization

e If f" is pu-strongly-convex, then we get a linear convergence rate:
CLEED) - £) < FLE) —F6H)= IVFEOI Cubfract £ Frum Lot sides)
< FGE) = HG) - MC? (x?) = ?&*)J (= TVFGE)]2 € 2u£6-11.9)
= (- @)L) Fro shongcancxty
ECECH) -+ :U CL (=% FGO _ﬁ(j)jj (e cpedatin with resped %4)
T CLRGED-F067)= (- O ELP(xE) - ﬁx%)] prly e
pedadion S =) [FGE9-£6))

(éLé chw ELx))

?Wa“y cji\/m? E[ﬁx'\/)‘ {\(x#)i] < () — /‘%fc[]f(x 0)“ 7[()(%)?

/

[% ‘”’\F o5 we notd O(J l(:g()) i1ery "fIOV\S u” CC"}F(XO 7C/¥D<£

Gauss-Southwell Selection Rule

| 2
* Our bound for any coordinate: A S *2'[1 ng(xt)/

* The “best” coordinate to update is:
j, ¢ Ggmex E [Vf@t)/g

— Called the ‘Gauss-Southwell’ or greed§/ rule.

I\ Gauss-Southwell

— You can derive a convergence rate by using that |7 £(,) * = Vf(ﬁ)//é

— Typically, this can’t be implemented ‘d’” times faster tthan gradient method.
* But some sparsity structures allow us to track the gradient.

Lipschitz Sampling and Gauss-Southwell-Lipschitz

* You can go faster than random with an L, for each coordinate:
| Bl aey) =V L€ Lol
* If you sample j; proportional to L, you can get a rate of: J
|

ELAGE) - PG S (1= £ LE-F)) whoe =45,
Ld =
— Depends on average L; instead of maximum L.

2
* The Gauss-Southwell-Lipschitz rule: § ¢ arqu% m)"%@);
1t 3 L;

— Even faster, and optimal for quadratic functions.

Comparison of Coordinate Selection Rules

S ¢5 -regularized sparse least squares
1 G

Il‘ t}":«i& | I I | | | I |
(#]
%

)

0.9 Q _

Cyclic

o
o
I

!

Objective
O = O
s Cn (o]
| | |
| | |

o
Cad
|

0.2 | | | | | |
0 10 20 30 40 50 60 70

Epochs

%_
8_

100

Coordinate Optimization for Non-Smooth Objectives

* Consider an optimization problem of the form:

Grgmi Fx) + Z%M()
¥ €R o
e Assume: o de 1\4/\/

51"{) /r/l
— ‘t”is coordinate-wise L-Lipschitz continuous and p-strongly convex.

— ‘h.” are general convex functions (could be non-smooth). N, @(5,): %S{
— You do exact coordinate optimization. /\M [~

d

* For example, L1-regularized least squares: awﬁ Tl - ylF ﬂf— !

* Linear convergence rate still holds (proof more compllcated).
ELAGE) - T < ([=) LELD)- 469

* We can solve these non-smooth problems much faster than O(1/¢).

Summary

Convex optimization zoo: rate of convergence for different methods.
Feature selection: choosing set of relevant variables.
L1-regularization: feature selection as convex optimization.
Coordinate optimization: when updating single variable is fast.
Coordinate optimization convergence rate analysis.

Group L1-regularization encourages sparsity in variable groups.
Structured sparsity encourages other patterns in variables.

Next time: how do we encourage more complicated sparsity patterns?

