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Last Time: Convex Functions

* Last time we discussed convex functions:
— All local minima are global minima (and no saddle points).
— Three definitions of convex functions (depending on differentiability):
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— We discussed ways to show functions are convex:
* Show one of the above holds.
e Use operations that preserve convexity.

— Non-negative sum, composition with affine function, maximum.



Last Time: Gradient Descent

* Gradient descent:
— lterative algorithm for finding stationary point of differentiable function.
— For convex functions it finds a global minimum.
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* Cost of algorithm scales linearly with number of variables ‘d’:
— E.g., ‘t’ iterations costs O(ndt) for least squares, logistic regression, etc.
* Note that the input size is O(nd).

— For t < d, faster than O(nd? + d3) of least squares and Newton’s method.
Faster in high-dimensions for small ‘t’.



Last Time: Convergence Rate of Gradient Descent

 We asked “how many iterations ‘t” before we have an accuracy €?”

 We assumed strong-convexity and strong-smoothness:
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we showed linear convergence rate which implies t = O(log(1/¢)).



Last Time: Gradient Descent Theory and Practice

* We discussed further properties of gradient descent:
— “Strong-smoothness” weakened to “gradient is L-Lipschitz continuous”.

* And only along the line segments between x' and x'*2.

— No need to know ‘L’:

* Adaptive step-size, Armijo line-search, or exact step-size.
— “Strong-convexity” is implied if we have f(x) + A| | x| |2 and ‘f” is convex.
* If ‘f" is not convex, convergence rate only holds near solution.
* We overviewed methods with better performance:
— Nesterov’s accelerated-gradient method.
— Approximations to Newton’s method.



How Hard is Optimization?

Consider a generic optimization problem:

Assume that a solution ‘x™ exists.
Assume a “black-box” optimization algorithm:
— At step ‘t’, algorithms chooses parameters xt and receives f(xt!).

How many steps does it take before we find €-optimal solution?
F(xH - M) < 6
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General function: impossible!



How Hard is Optimization?

 We need to make some assumptions about the function

* Typically, we assume function or gradient can’t change too quickly.
— E.g., function ‘f’ is Lipschitz-continuous:

l]f(X7“ F(yﬂ S LHXUYU 7[\0r Sowme ]LI ond @U L and \/(

’ E 77|

In VLWo';()mengmﬁj) (//‘}o@cééfz
f(/\({S bm”f Q@:

s
— Over [0,1]9, now it’s possible to solve the problem in O(1/&%):

* Exponential in dimensionality, but a small assumption made a bit difference.




Continuous Optimization Zoo
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(pause)



Motivation: Automatic Brain Tumor Segmentation

e Task: identifying tumours in multi-modal MRI data.

* Applications:
— image-guided surgery.
— radiation target planning.
— quantifying treatment response
— discovering growth patterns.



Motivation: Automatic Brain Tumor Segmentation

 Formulate as supervised learning:
— Pixel-level classifier that predicts “tumour” or “non-tumour”.

— Features: convolutions, expected values (in aligned template) and
symmetry (all at multiple scales). ) g,'-“a L@@ e q\ (D
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Motivation: Automatic Brain Tumor Segmentation

* Logistic regression was the most effective, with the right features.

* Butif you used all features, it overfit.
— We needed feature selection.

e Classical approach:
— Define some ‘score’: AIC, BIC, cross-validation error, etc.
— Search for features that optimize score:

e Usually NP-hard, so we use greedy:

— Forward selection, backward selection, stagewise,...

* In this application, these are too slow.



Feature Selection

: ]
* General feature selection problem: fo «Ture J .

— Given our usual X" and ‘y’:

Fraiing exarmpl
— We think some features/columns of ‘X’ are irrelevant for predicting ‘y’.

 We want to fit a model that uses the ‘best’ set of features.
— Special case: choosing ‘best’ basis from a set of possible bases.

* One of most important problems in ML/statistics, but very very messy.
— Can be difficult to define what ‘relevant’ means.
— For now, a feature is ‘relevant’ if it helps predict y, from x.
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L1-Regularization

Popular approach to feature selection is L1-regularization:

é/??d
Written above for squared loss, but can be used for any loss.

Advantages:
— Fast: can apply to large datasets, just minimizing convex function.
— Reduces overfitting because it simultaneously regularizes.

Disadvantage:

— Prone to false positives, particularly if you pick A by cross-validation.

— Not unique: there may be infinite solutions.
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L1-Regularization

Key property of L1-regularization: if A is large, solution w™ is sparse:

— w™ has many values that are exactly zero.
What this has to do with feature selection:
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Why does L1-regularization give sparsity but not L2-regularization?



Why not just threshold ‘w’?

Why not just compute least squares ‘w’ and threshold?

— You can show some nice properties of this, but it does some silly things:
* Let feature 1 be an irrelevant feature, and assume feature 2 is a copy of feature 1.
* Without regularization, could have w, = -w, with both values arbitrarily large.

Why not just compute L2-regularized ‘w’ and threshold?

— Fixes the above problem, but still does weird things:
e Let feature 1 be irrelevant and feature 2 be relevant.
* Assume feature 3 is also relevant, and features 4:d are copies of feature 3.

* For ‘d’ large enough, L2-regularization prefers irrelevant feature ‘1’ or relevant 3:d.
(L1-regularization should pick at least one among 3:d for any ‘d’.)

(I'm not saying L1-regularization doesn’t do weird things, too.)

If features are orthogonal, thresholding and L1 are equivalent.
— But feature selection is not interesting in this case.



Sparsity and Least Squares

* Consider 1D least squares objective:

TF(‘/V) - i{‘ % (‘/A“ QWXDQ

A

* This is a convex 1D quadratic function of ‘w’ (i.e., a parabola):
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* This variable does not look relevant (minimum is close to 0).
— If it’s really irrelevant, minimum will move to 0 as ‘n’ goes to infinity.

— But for finite ‘n’, minimum of parabola is unlikely to be exactly zero.




Sparsity and L2-Regularization

* Consider 1D L2-regularized Ieast squares objective:
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e |2-regularization moves it a bit closer to zero.
— But there is nothing special about being ‘exactly’ zero.
— Unless cost is flat at zero, L2-regularization always sets ‘w;" non-zero.



Sparsity and L1-Regularization

* Consider 1D L1-regu|a:in(ed Ieast squares objec/’)cive' gi iﬂ [/f W;)ZHW 0
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* This is a convex piecewise- quadratlc function of ‘w’ with ‘kink’ at O: jD(W)
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e L1- regularlzatlon minimum is often exactly at the ‘kink’ at O:
— |t sets the feature to exactly O, removing it from the model.
— Big A means kink is ‘steep’. Small A makes 0 unlikely to be minimum.




Where does sparsity come from?

 Another view on sparsity of L2- vs. L1-regularization:
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L1-Regularization: Discussion

“Sample complexity” [Ng, 2004]:
— L2-regularization: you can learn with linear number of irrelevant features.
— L1-regularization: you can learn with exponential number of irrelevant.

“Elastic net”:
— Use both L2-regularization and L1-regularization.
— Makes problem strongly-convex, so it has a unique solution.

“Bolasso”:
— Run L1-regularization on boostrap samples.
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— Take features that are non-zero in all samples: fewer false positives. | )
Non-convex regularizers: 2 \md

— Less sensitive to false positives, but solving optimization is NP-hard. will gint 4
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Solving L1-Regularization Problems

How can we minimize non-smooth L1-regularized objectives?
acgme L= I+ Ml

w e R?
— And let’s assume X'X is positive-definite, or we add L2-regularization.

* Either conditions makes it strongly-convex.
Use our trick to formulate as a quadratic program?
— O(d?) or worse.
Formulate as non-smooth convex optimization?

— Sub-linear O(1/€) convergence rate.

Make a smooth approximation to L1-norm?

— Destroys sparsity.



Solving L1-Regularization Problems

* Key insight: this is not a general non-smooth convex function.

— We can use structure to get large-scale O(log(1/€)) methods.
* We can write it as:
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— This lets us apply proximal-gradient methods (next lecture).

e We can also write it as:
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— This lets us apply coordinate optimization methods (this lecture)



Coordinate Optimization

* We want to optimize a differentiable function:

1
' I
g £Go JosT Chang s
 Coordinate optimization: f Ve, 1al/, J "

— At each iteration ‘t’, we update one variable ‘.
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* How do we pick the variable j,” to update?
— Classic choices: cyclic, random, and greedly.

* How do we update the variable we chose?
— Classic choices: constant step-size, line-search, exact optimization.



Coordinate Optimization

This is an obvious, old, and widely-used algorithm.
But until ~2010, we had no theory about when to use it.

— For some applications it works great, for some applications it’s terrible.
Key insight in ~2010:

— If you can do ‘d’ coordinate updates for the cost of one gradient update,
then randomized coordinate optimization is faster than gradient descent.

— Applies to random or greedy selection and 1/L or exact updates.

When is this true?

— Simplest case is separable function, 2 f,(x,), like L2- or L1-regularization.
— There are two more complicated classes...



Problems Suitable for Coordinate Descent

* Coordinate update is n times faster than gradient update for:
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— Where ‘g’ is smooth/cheap but bottleneck is multiplication by ‘A’
— For example, least squares and logistic regression.

— Key idea: can track the product Axt after single-coordinate updates,
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— And since ‘g’ is cheap you get gradient for random coordinate by:
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Analysis of Coordinate Optimization

For gradient descent we assume gradient is Lipschitz continuous:
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For coordinate optimization we assume coordinate—wise2L-Lipschitz:
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Note that neither of these is stronger:

— If gradient is Li-Lipschitz, then its coordinate-wise Li-Lipschitz, so L < L.
— If coordinate-wise L-Lipschitz, then gradient is dL-Lipschitz, so L; < dL.
Gradient descent requires O((L;/u)log(1/€)) iterations.
Coordinate optimization requires O(d(L/u)log(1/¢€)) iterations.

— This is slower because L; < dL.
— But this faster is if iterations are ‘d” times cheaper, because L < L.



Coordinate Optimization Progress Bound

* First let’s assume a step-size of 1/L:
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Random Selection Rule

 Our bound for any coordinate: {(,t*) < £(,¢) —
* Let’s consider random selection of each j
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Analysis of Coordinate Optimization

e If f" is pu-strongly-convex, then we get a linear convergence rate:
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Analysis of Coordinate Optimization

e If f" is pu-strongly-convex, then we get a linear convergence rate:
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Analysis of Coordinate Optimization

e If f" is pu-strongly-convex, then we get a linear convergence rate:
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Gauss-Southwell Selection Rule

| 2
* Our bound for any coordinate: A S *2'[1 ng(xt)/

* The “best” coordinate to update is:
j, ¢ Ggmex E [ Vf@t)/g

— Called the ‘Gauss-Southwell’ or greed§/ rule.

I\ Gauss-Southwell

— You can derive a convergence rate by using that |7 £(,) * = Vf(ﬁ)//é

— Typically, this can’t be implemented ‘d’” times faster tthan gradient method.
* But some sparsity structures allow us to track the gradient.



Lipschitz Sampling and Gauss-Southwell-Lipschitz

* You can go faster than random with an L, for each coordinate:
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* If you sample j; proportional to L, you can get a rate of: J
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* The Gauss-Southwell-Lipschitz rule: § ¢ arqu% m)"%@);
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— Even faster, and optimal for quadratic functions.




Comparison of Coordinate Selection Rules

S ¢5 -regularized sparse least squares
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Coordinate Optimization for Non-Smooth Objectives

* Consider an optimization problem of the form:
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— ‘t”is coordinate-wise L-Lipschitz continuous and p-strongly convex.

— ‘h.” are general convex functions (could be non-smooth). N, @(5,): %S{
— You do exact coordinate optimization. /\M [~
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* For example, L1-regularized least squares: awﬁ Tl - ylF ﬂf— !

* Linear convergence rate still holds (proof more compllcated).
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* We can solve these non-smooth problems much faster than O(1/¢).



Summary

Convex optimization zoo: rate of convergence for different methods.
Feature selection: choosing set of relevant variables.
L1-regularization: feature selection as convex optimization.
Coordinate optimization: when updating single variable is fast.
Coordinate optimization convergence rate analysis.

Group L1-regularization encourages sparsity in variable groups.
Structured sparsity encourages other patterns in variables.

Next time: how do we encourage more complicated sparsity patterns?



