
SVAN 2016 Mini Course: Stochastic Convex
Optimization Methods in Machine Learning

Mark Schmidt

University of British Columbia, May 2016

www.cs.ubc.ca/~schmidtm/SVAN16

Some images from this lecture are taken from Google Image Search.

Last Time: Convex Functions

• Last time we discussed convex functions:

– All local minima are global minima (and no saddle points).

– Three definitions of convex functions (depending on differentiability):

– We discussed ways to show functions are convex:

• Show one of the above holds.

• Use operations that preserve convexity.
– Non-negative sum, composition with affine function, maximum.

Last Time: Gradient Descent

• Gradient descent:
– Iterative algorithm for finding stationary point of differentiable function.

– For convex functions it finds a global minimum.

• Cost of algorithm scales linearly with number of variables ‘d’:
– E.g., ‘t’ iterations costs O(ndt) for least squares, logistic regression, etc.

• Note that the input size is O(nd).

– For t < d, faster than O(nd2 + d3) of least squares and Newton’s method.
Faster in high-dimensions for small ‘t’.

Last Time: Convergence Rate of Gradient Descent

• We asked “how many iterations ‘t’ before we have an accuracy ε?”

• We assumed strong-convexity and strong-smoothness:

• By using multivariate 2nd-order Taylor expansion,

we showed linear convergence rate which implies t = O(log(1/ε)).

Last Time: Gradient Descent Theory and Practice

• We discussed further properties of gradient descent:

– “Strong-smoothness” weakened to “gradient is L-Lipschitz continuous”.

• And only along the line segments between xt and xt+1.

– No need to know ‘L’:

• Adaptive step-size, Armijo line-search, or exact step-size.

– “Strong-convexity” is implied if we have f(x) + λ||x||2 and ‘f’ is convex.

• If ‘f’ is not convex, convergence rate only holds near solution.

• We overviewed methods with better performance:

– Nesterov’s accelerated-gradient method.

– Approximations to Newton’s method.

How Hard is Optimization?

• Consider a generic optimization problem:

• Assume that a solution ‘x*’ exists.

• Assume a “black-box” optimization algorithm:

– At step ‘t’, algorithms chooses parameters xt and receives f(xt).

• How many steps does it take before we find ε-optimal solution?

• General function: impossible!

How Hard is Optimization?

• We need to make some assumptions about the function

• Typically, we assume function or gradient can’t change too quickly.
– E.g., function ‘f’ is Lipschitz-continuous:

– Over [0,1]d, now it’s possible to solve the problem in O(1/εd):
• Exponential in dimensionality, but a small assumption made a bit difference.

Continuous Optimization Zoo

(pause)

Motivation: Automatic Brain Tumor Segmentation

• Task: identifying tumours in multi-modal MRI data.

• Applications:

– image-guided surgery.

– radiation target planning.

– quantifying treatment response

– discovering growth patterns.

Motivation: Automatic Brain Tumor Segmentation

• Formulate as supervised learning:

– Pixel-level classifier that predicts “tumour” or “non-tumour”.

– Features: convolutions, expected values (in aligned template), and
symmetry (all at multiple scales).

Motivation: Automatic Brain Tumor Segmentation

• Logistic regression was the most effective, with the right features.

• But if you used all features, it overfit.

– We needed feature selection.

• Classical approach:

– Define some ‘score’: AIC, BIC, cross-validation error, etc.

– Search for features that optimize score:

• Usually NP-hard, so we use greedy:
– Forward selection, backward selection, stagewise,…

• In this application, these are too slow.

Feature Selection

• General feature selection problem:
– Given our usual ‘X’ and ‘y’:

– We think some features/columns of ‘X’ are irrelevant for predicting ‘y’.

• We want to fit a model that uses the ‘best’ set of features.
– Special case: choosing ‘best’ basis from a set of possible bases.

• One of most important problems in ML/statistics, but very very messy.
– Can be difficult to define what ‘relevant’ means.
– For now, a feature is ‘relevant’ if it helps predict yi from xi.

L1-Regularization

• Popular approach to feature selection is L1-regularization:

• Written above for squared loss, but can be used for any loss.

• Advantages:

– Fast: can apply to large datasets, just minimizing convex function.

– Reduces overfitting because it simultaneously regularizes.

• Disadvantage:

– Prone to false positives, particularly if you pick λ by cross-validation.

– Not unique: there may be infinite solutions.

L1-Regularization

• Key property of L1-regularization: if λ is large, solution w* is sparse:

– w* has many values that are exactly zero.

• What this has to do with feature selection:

• If w = [0 0 3 0 -2], then:

• Why does L1-regularization give sparsity but not L2-regularization?

Why not just threshold ‘w’?

• Why not just compute least squares ‘w’ and threshold?
– You can show some nice properties of this, but it does some silly things:

• Let feature 1 be an irrelevant feature, and assume feature 2 is a copy of feature 1.

• Without regularization, could have w1 = -w2 with both values arbitrarily large.

• Why not just compute L2-regularized ‘w’ and threshold?
– Fixes the above problem, but still does weird things:

• Let feature 1 be irrelevant and feature 2 be relevant.

• Assume feature 3 is also relevant, and features 4:d are copies of feature 3.

• For ‘d’ large enough, L2-regularization prefers irrelevant feature ‘1’ or relevant 3:d.
(L1-regularization should pick at least one among 3:d for any ‘d’.)

• (I’m not saying L1-regularization doesn’t do weird things, too.)

• If features are orthogonal, thresholding and L1 are equivalent.
– But feature selection is not interesting in this case.

Sparsity and Least Squares

• Consider 1D least squares objective:

• This is a convex 1D quadratic function of ‘w’ (i.e., a parabola):

• This variable does not look relevant (minimum is close to 0).
– If it’s really irrelevant, minimum will move to 0 as ‘n’ goes to infinity.
– But for finite ‘n’, minimum of parabola is unlikely to be exactly zero.

Sparsity and L2-Regularization

• Consider 1D L2-regularized least squares objective:

• This is a convex 1D quadratic function of ‘w’ (i.e., a parabola):

• L2-regularization moves it a bit closer to zero.
– But there is nothing special about being ‘exactly’ zero.
– Unless cost is flat at zero, L2-regularization always sets ‘wj’ non-zero.

Sparsity and L1-Regularization

• Consider 1D L1-regularized least squares objective:

• This is a convex piecewise-quadratic function of ‘w’ with ‘kink’ at 0:

• L1-regularization minimum is often exactly at the ‘kink’ at 0:
– It sets the feature to exactly 0, removing it from the model.
– Big 𝜆 means kink is ‘steep’. Small 𝜆 makes 0 unlikely to be minimum.

Where does sparsity come from?

• Another view on sparsity of L2- vs. L1-regularization:

L1-Regularization: Discussion

• “Sample complexity” [Ng, 2004]:
– L2-regularization: you can learn with linear number of irrelevant features.

– L1-regularization: you can learn with exponential number of irrelevant.

• “Elastic net”:
– Use both L2-regularization and L1-regularization.

– Makes problem strongly-convex, so it has a unique solution.

• “Bolasso”:
– Run L1-regularization on boostrap samples.

– Take features that are non-zero in all samples: fewer false positives.

• Non-convex regularizers:
– Less sensitive to false positives, but solving optimization is NP-hard.

Solving L1-Regularization Problems

• How can we minimize non-smooth L1-regularized objectives?

– And let’s assume XTX is positive-definite, or we add L2-regularization.

• Either conditions makes it strongly-convex.

• Use our trick to formulate as a quadratic program?

– O(d2) or worse.

• Formulate as non-smooth convex optimization?

– Sub-linear O(1/ε) convergence rate.

• Make a smooth approximation to L1-norm?

– Destroys sparsity.

Solving L1-Regularization Problems

• Key insight: this is not a general non-smooth convex function.

– We can use structure to get large-scale O(log(1/ε)) methods.

• We can write it as:

– This lets us apply proximal-gradient methods (next lecture).

• We can also write it as:

– This lets us apply coordinate optimization methods (this lecture)

Coordinate Optimization

• We want to optimize a differentiable function:

• Coordinate optimization:
– At each iteration ‘t’, we update one variable ‘jt’:

• How do we pick the variable ‘jt’ to update?
– Classic choices: cyclic, random, and greedy.

• How do we update the variable we chose?
– Classic choices: constant step-size, line-search, exact optimization.

Coordinate Optimization

• This is an obvious, old, and widely-used algorithm.

• But until ~2010, we had no theory about when to use it.

– For some applications it works great, for some applications it’s terrible.

• Key insight in ~2010:

– If you can do ‘d’ coordinate updates for the cost of one gradient update,
then randomized coordinate optimization is faster than gradient descent.

– Applies to random or greedy selection and 1/L or exact updates.

• When is this true?

– Simplest case is separable function, Σifi(xi), like L2- or L1-regularization.

– There are two more complicated classes…

Problems Suitable for Coordinate Descent

• Coordinate update is n times faster than gradient update for:

– Where ‘g’ is smooth/cheap but bottleneck is multiplication by ‘A’.

– For example, least squares and logistic regression.

– Key idea: can track the product Axt after single-coordinate updates,

– And since ‘g’ is cheap you get gradient for random coordinate by:

• The other class where coordinate update is ‘n’ times faster:

Analysis of Coordinate Optimization

• For gradient descent we assume gradient is Lipschitz continuous:

• For coordinate optimization we assume coordinate-wise L-Lipschitz:

• Note that neither of these is stronger:
– If gradient is Lf-Lipschitz, then its coordinate-wise Lf-Lipschitz, so L ≤ Lf.

– If coordinate-wise L-Lipschitz, then gradient is dL-Lipschitz, so Lf ≤ dL.

• Gradient descent requires O((Lf/µ)log(1/ε)) iterations.

• Coordinate optimization requires O(d(L/µ)log(1/ε)) iterations.
– This is slower because Lf ≤ dL.

– But this faster is if iterations are ‘d’ times cheaper, because L ≤ Lf.

Coordinate Optimization Progress Bound

• First let’s assume a step-size of 1/L:

Random Selection Rule

• Our bound for any coordinate:

• Let’s consider random selection of each ‘j’ with probability 1/d:

Analysis of Coordinate Optimization

• If ‘f’ is µ-strongly-convex, then we get a linear convergence rate:

Analysis of Coordinate Optimization

• If ‘f’ is µ-strongly-convex, then we get a linear convergence rate:

Analysis of Coordinate Optimization

• If ‘f’ is µ-strongly-convex, then we get a linear convergence rate:

Gauss-Southwell Selection Rule

• Our bound for any coordinate:

• The “best” coordinate to update is:

– Called the ‘Gauss-Southwell’ or greedy rule.

– You can derive a convergence rate by using that

– Typically, this can’t be implemented ‘d’ times faster than gradient method.
• But some sparsity structures allow us to track the gradient.

Lipschitz Sampling and Gauss-Southwell-Lipschitz

• You can go faster than random with an Lj for each coordinate:

• If you sample jt proportional to Lj, you can get a rate of:

– Depends on average Lj instead of maximum Lj.

• The Gauss-Southwell-Lipschitz rule:

– Even faster, and optimal for quadratic functions.

Comparison of Coordinate Selection Rules

Coordinate Optimization for Non-Smooth Objectives

• Consider an optimization problem of the form:

• Assume:

– ‘f’ is coordinate-wise L-Lipschitz continuous and μ-strongly convex.

– ‘hi’ are general convex functions (could be non-smooth).

– You do exact coordinate optimization.

• For example, L1-regularized least squares:

• Linear convergence rate still holds (proof more complicated):

• We can solve these non-smooth problems much faster than O(1/ε).

Summary

• Convex optimization zoo: rate of convergence for different methods.

• Feature selection: choosing set of relevant variables.

• L1-regularization: feature selection as convex optimization.

• Coordinate optimization: when updating single variable is fast.

• Coordinate optimization convergence rate analysis.

• Group L1-regularization encourages sparsity in variable groups.

• Structured sparsity encourages other patterns in variables.

• Next time: how do we encourage more complicated sparsity patterns?

