SVAN 2016 Mini Course: Stochastic Convex Optimization Methods in Machine Learning

Mark Schmidt

University of British Columbia, May 2016 www.cs.ubc.ca/~schmidtm/SVAN16

Some images from this lecture are taken from Google Image Search.

Last Time: Training vs. Testing

- In supervised learning we are given a training set X and y.
 - But what we care about is test error: are prediction accurate on new data?
- In order to say anything about new data, need assumptions:
 IID assumption: training and test data drawn from same distribution.
- Often, we have an explicit test set to approximate test error.

Data: I. Train: 2. Predict test set labels 3. Evaluate X, Y, Xtest, Ytost Model = fit(X, y) $\hat{y} = \text{predict}(\text{model}, X_{test})$ error = diff(\hat{y}, y_{test})

Golden rule: this test set cannot influence training in any way.
 Otherwise, not valid approximation of test error.

Fundamental Trade-Off and Regularization

- Bias-variance and other learning theory results to trade-off:
 - 1. How small you can make the training error.

VS.

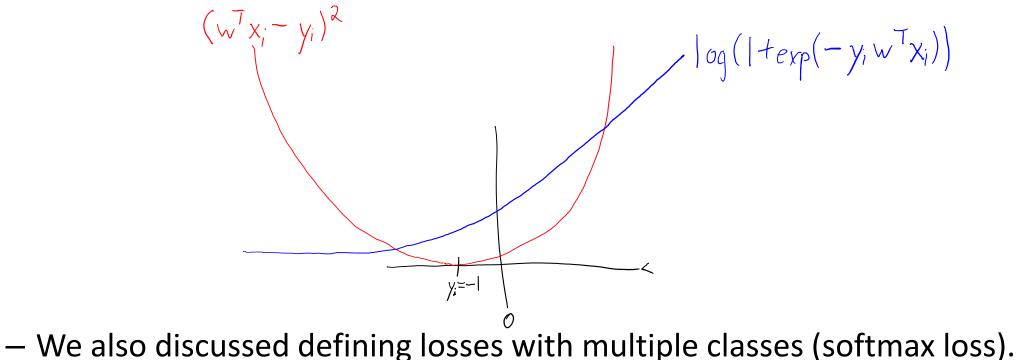
- 2. How well training error approximates the test error.
- Simple models: high training error but don't overfit:
- Complex models: low training error but overfit.
- Regularization: reduces overfitting in complex models.
 - Common approach is L2-regularization:

$$\frac{1}{w \in \mathbb{R}^{d}} = \frac{1}{2} ||X_{w} - y||^{2} + \frac{1}{2} ||w||^{2}$$

- Increases training error, but typically decreases test error.
- Increasing number of training examples 'n' has a similar effect on trade-off.

Last Time: Logistic Regression

- We considered binary labels y_i, and classifying with sign(w^Tx_i).
 - Squared error $(w^T x_i y_i)^2$ is not ideal: penalizes model for "too right".
 - Minimizing number of errors is also not ideal: NP-hard.
 - Tractable upper bounds are hinge loss and logistic loss.



Course Roadmap

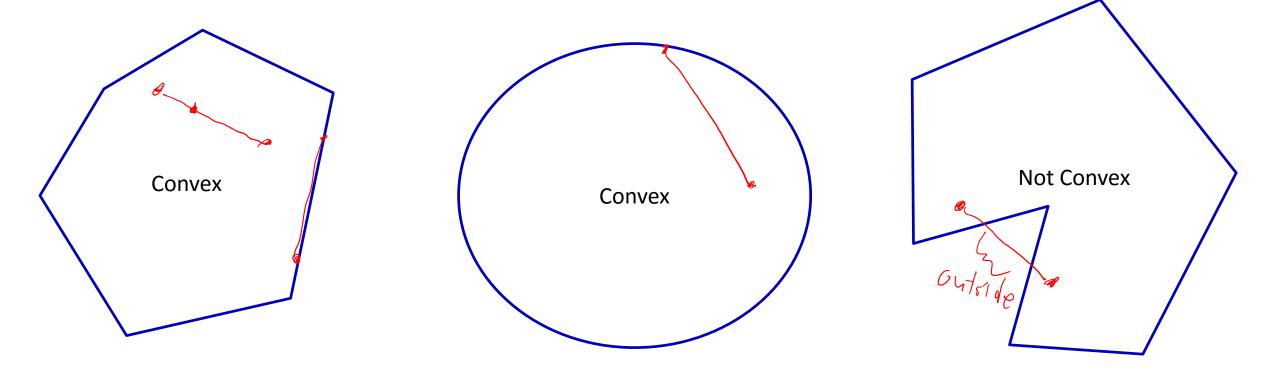
- Part 1: Overview of Machine Learning
- Part 2: Large-scale machine learning.
 - How do we fit these models to huge datasets?
 - Why are SVMs/logistic easy while minimizing number of errors is hard?

Convex Functions

- We are first going to discuss convex functions:
 - Minimizing convex functions is usually easy.
 - Minimizing non-convex functions is usually hard.
- The 'easy' problems we have discussed are convex:
 - Least squares, robust regression, logistic regression, support vector machines, multi-class logistic, brittle regression, Poisson regression.
 - All of the above with L2-regularization.
- The 'hard' problems we have discussed are non-convex:
 - 0-1 loss, "very robust" regression.

Convex Sets

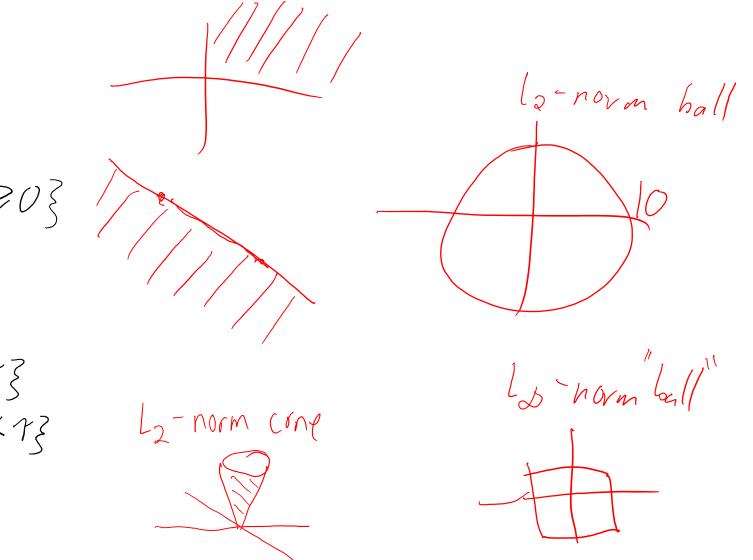
- First we need to define a convex set:
 - A set is convex if the line between any two points stays in the set. For all $x \in C$ and $y \in C$ we have $\Theta x + (1 - \Theta)_y \in C$ for $0 \leq \Theta \leq 1$



Convex Sets

• Examples:

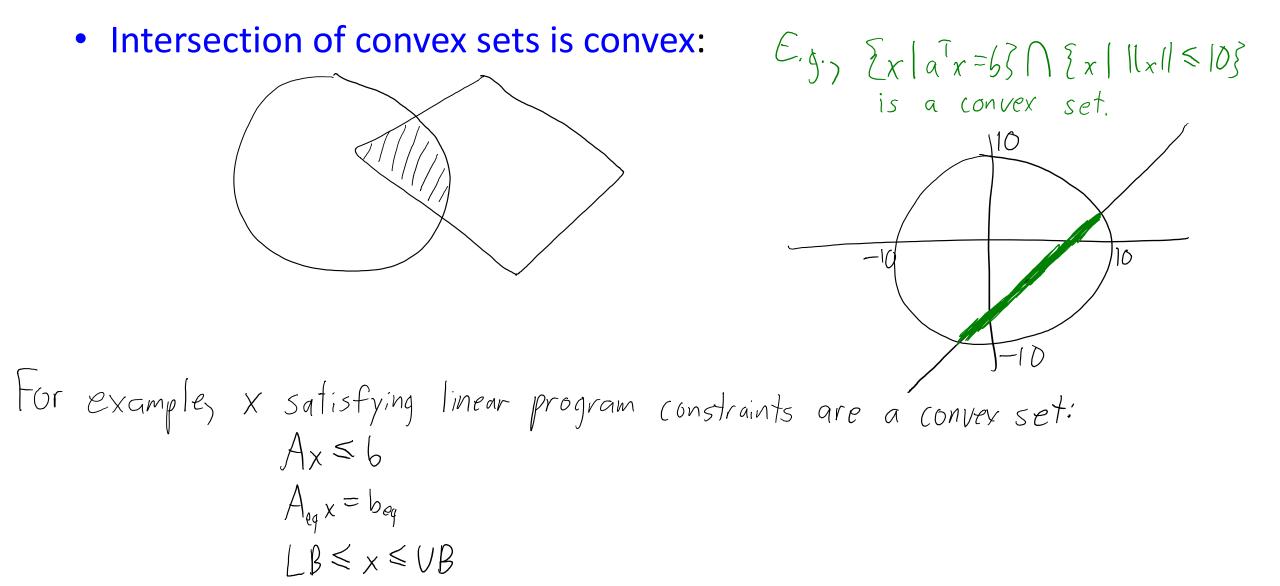
Real-space: \mathbb{R}^d Positive orthant \mathbb{R}^d_+ ; $\{x \mid x \ge 0\}$ Hyper-plane: $\{x \mid a^Tx = 6\}$ Half-space: $\{x \mid a^Tx \le 6\}$ Norm-ball: $\{x \mid \|x\| \le 7\}$ Norm-cone: $\{(x, \gamma) \mid \|x\| \le 7\}$



Showing a Set is Convex

E.g. if $C = \{x \mid a^T x = b\}$ How to prove a set is convex. then for x EC and y EC and 05051 - One way: choose two we have $q^{T}(\theta_{X} + (1 - \theta_{Y}))$ generic x and y in the set, $= \Theta(a^{7}x) + (1 - \theta)(a^{7}y)$ Show that generic 2 between $= \Theta b + (1 - \theta) b = b$ them is also in the set. E.g., if $C = \{x \mid ||x|| \leq 10\}$ - Another way: Show then for x EC and yEC and 05651 that set is intersection we have 11 Gx + (1-G)y11 GF sets that you know (triangle inguality) $\leq ||\Theta_X|| + ||(|-\Theta_Y||$ 912 Convex. $a \le \max\{a,b\} = |\Theta| \cdot ||x|| + ||-\Theta| \cdot ||y|| + (homogeno) + ||x|| + (1-\Theta) ||y|| = |\Theta| ||x|| + (1-\Theta) ||y|| = ||x||, ||y|| = \max\{1|x||, ||y||| \le 10$ (homogen of ty)

Intersection of Convex Sets



Convex Functions

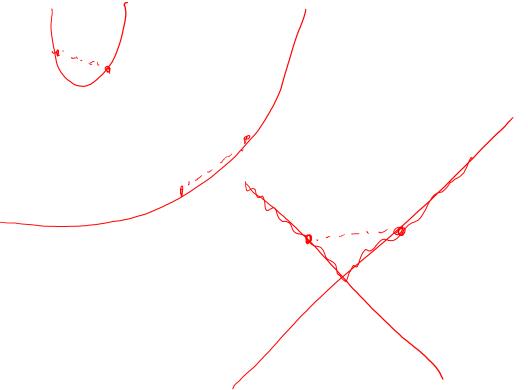
- A function 'f' is convex if:
 - 1. The domain of 'f' is a convex set.
 - 2. The function is always below 'chord' between two points.

 $f(\Theta_X + (1 - \Theta)_Y) \leq \Theta f(x) + (1 - \Theta)f(y)$ for all $x \in C, y \in G$ and $0 \leq \Theta \leq 1$ Implication: all local minima are global minima. We can minimize a convex function by finding any stationary point.

Convex Functions

• Examples:

Quadratic functions: $F(x) = ax^2 + bx + c$, a > 0. Linear functions $f(x) = a^T x + b$ Exponential: f(x) = exp(ax)Negative loyarithm: $f(x) = -\log(x)$ Absolute value: f(x) = |x|Max function: $f(x) = \max \{x_i\}$ Negative entropy: f(x) = x log(x), x>0 Logistic loss: f(x) = log(l + exp(-z))Log-sum-exp: f(x) = log(z + exp(-z))



Differentiable Convex Functions

• A *differentiable* 'f' is convex iff 'f' is always above tangent:

$$f(y) \ge f(x) + \nabla f(x)^{T}(y - x) \text{ for all } x \in C \text{ and } y \in C$$

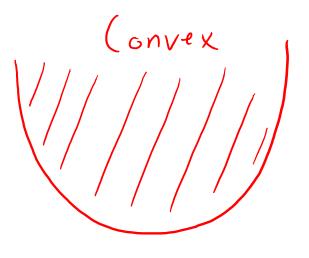
If
$$\nabla f(x) = 0_7$$
 this implies $f(y) \neq f(x)$ for all y so x is
a global minimizer

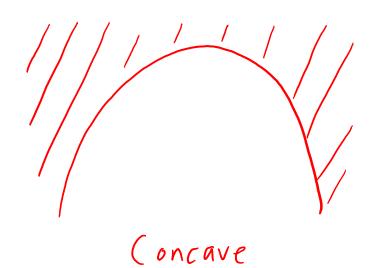
Twice-Differentiable Convex Functions

• A twice-differentiable 'f' is convex iff it's curved upwards everywhere. For one-dimensional functions, reduces to $f''(x) \ge 0$. - Usually, this is the easiest way to show a function is convex. For multivariate functions, generalization is $\nabla^2 F(x) \geq 0$ for all x $\in C$. A = 0 means A is symmetric and positive semi-definite: yTAy=>0 for all y

Concave Functions

• The negative of a convex function is a concave function:





Showing Functions are Convex

• Examples:

If
$$f(x) = x^2$$

then $f'(x) = 2x$
and $f''(x) = 2$.
Since $2 \ge 0$ we've
shown x^2 is convex.

If $f(x) = \frac{1}{2} x^T A x + b^T x + c$ with $A \gtrsim 0$ then $\nabla f(x) = Ax + b$ and $\nabla^2 F(x) = A$ Since $\nabla^2 f(x) \gtrsim 0$ we've shown f(x)is convex.

Showing Functions are Convex

• Examples:

$$f(w) = \frac{1}{2} |(Xw - y)|^2$$

$$\nabla f(w) = X^T (Xw - y)$$

$$\nabla^2 f(w) = X^T X$$

Want to show that $\nabla^2 f(w) \xi_0$, or equivalently $y^T \nabla^2 f(w) y \neq 0$.

We have $y^T \nabla^2 f(w)_y = y^T \chi^T \chi_y$ $= (\chi_y)'(\chi_y)$ $= \|\chi_{\chi}\|^2 \geq 0$ So least squares is Convex and setting Nf(w)=0 gives global minimum

Strictly-Convex Functions

• A function is strictly-convex if these inequalities strictly hold:

 $\begin{aligned} f(\Theta x + (I - \Theta)y) &\leq \Theta f(x) + (I - \Theta) f(y) & \text{for } G \leq \Theta \leq I. \\ f(y) &\geq f(x) + \nabla f(x)^{\top} (y - x) \\ \nabla^2 f(x) &\geq O \quad (y^{\top} \nabla^2 f(x)y) \geq O \text{ for all } y \neq 0) \end{aligned}$

• Strict convexity implies at most one global minimum: Points 'x' and 'y' can't both be global minima if $x \neq y_7$ since this would imply $f(\theta x + (1 - \theta)_7)$ is below global min.

• This implies L2-regularized least squares has unique solution: $\int_{1}^{\sqrt{\gamma}} \nabla^2 f(w)_{\gamma} = \sqrt{\gamma} (\chi^{\gamma} \chi + \lambda I)_{\gamma} = \sqrt{\gamma} \chi^{\gamma} \chi_{\gamma} + \gamma^{\gamma} (\lambda I)_{\gamma} = (\chi_{\gamma})^{\gamma} (\chi_{\gamma}) + \lambda_{\gamma}^{\gamma} y = ||\chi_{\gamma}||^2 + \lambda ||y||^2 > O.$

Operations that Preserve Convexity

- There are a few operations preserve convexity.
 - Often lets us avoid calculating Hessian.
 - Often lets us prove convexity of non-smooth functions.
- If f₁ and f₂ are convex, then convexity is preserved under:
 - 1. Weighted sums (non-negative coefficients):

 $f(x) = zf_1(x) + z_2f_2(x)$ is convex if $z_1 > 0$ and $z_2 > 0$

- 2. Composition with affine function: $f(x) = f_1(Ax+b)$ is convex.
- 3. Pointwise maximum:

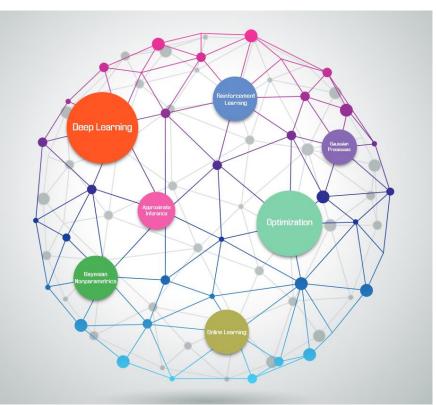
 $f(x) = \max \{f_1(x), f_2(x)\}$ is convex.

 $\nabla^{2} \frac{2}{2} ||h||^{2}$ $=\lambda I > 0$ SO CONVEX $E_{x_{ample:}} SVMs$ $f(x) = \sum_{i=1}^{n} \max_{j=1}^{20} \sum_{i=1}^{n-1} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^$ (ONVEX.

(pause)

Current Hot Topics in Machine Learning

• Graph of most common keywords among ICML papers last year:



• Why is there so much focus on deep learning and optimization?

Why Study Optimization in CPSC 540?

- In machine learning, training is typically written as optimization:
 Numerically optimize parameters of model, given data.
- There are some exceptions:
 - 1. Counting- and distance-based methods (random forests, KNN).
 - See my undergraduate course
 - 2. Integration-based methods (Bayesian learning).
 - Covered after large-scale optimization in my grad course.

Although you still need to tune parameters in those models.

- But why study optimization? Can't I just use Matlab functions?
 - '\', linprog, quadprog, fmincon, CVX,...

The Effect of Big Data and Big Models

- Datasets are getting huge, we might want to train on:
 - Entire medical image databases.
 - Every webpage on the internet.
 - Every product on Amazon.
 - Every rating on Netflix.
 - All flight data in history.
- With bigger datasets, we can build bigger models:
 - This is where deep learning comes in.
 - Complicated models can address complicated problems.
- Now optimization becomes a problem because of time/memory:
 - We can' afford $O(d^2)$ memory, or an $O(d^2)$ operation.
 - Going through huge datasets 100s of times is too slow.
 - Evaluating huge models too many times is too slow.

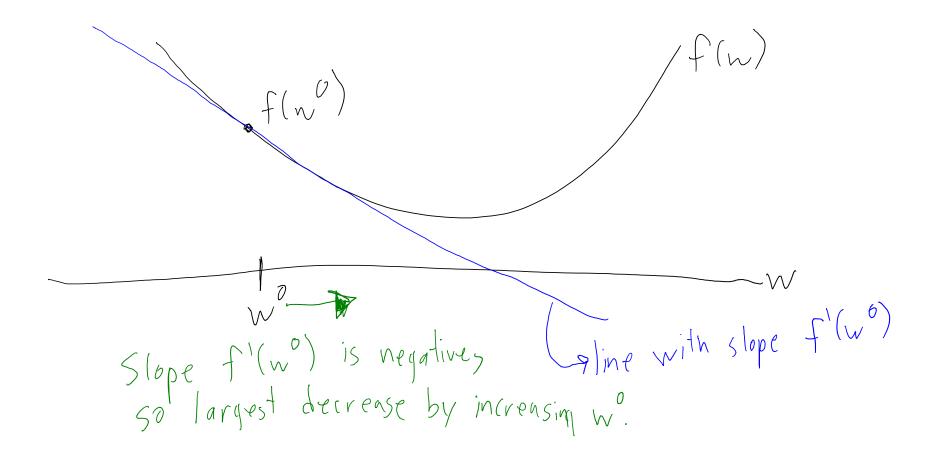
Fitting Logistic Regression Models

• Recall the L2-regularized logistic regression objective function:

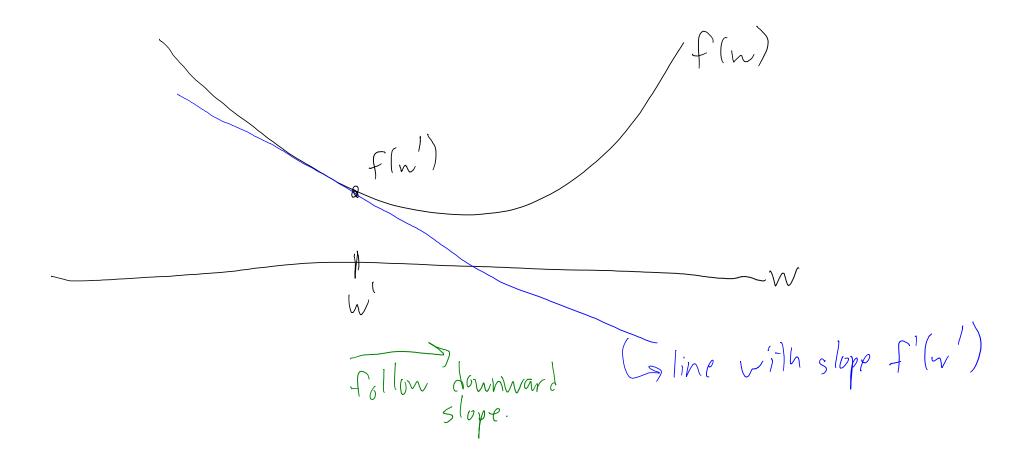
$$\frac{drqmin}{w \in \mathbb{R}^{d}} \sum_{i=1}^{d} \log(1 + \exp(-\gamma_{i}w^{T}x_{i})) + \frac{\lambda}{2} ||w||^{2}$$

- This objective function is strictly-convex and differentiable.
- But we can't formulate as linear system or linear program.
- Nevertheless, we can efficiently solve this problem.
- There are many ways to do this, but we focus on gradient descent:
 - Iteration cost is linear in 'd' (not true of IRLS/Newton's method).
 - We can prove that we don't need too many iterations:
 - Number of iterations does not directly depend on 'd'.

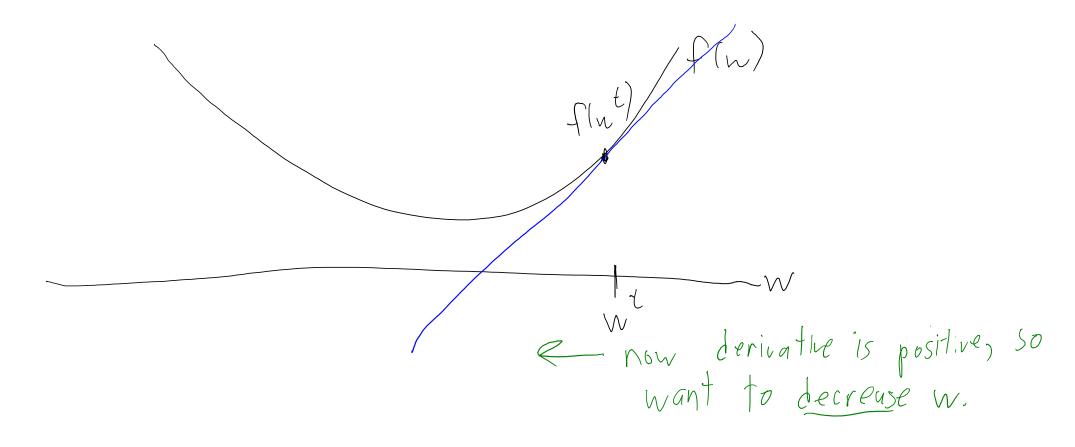
- Gradient descent is based on a simple observation:
 - Given parameters ' w^{0} ', direction of largest decrease is - $\nabla f(w^{0})$).



- Gradient descent is based on a simple observation:
 - Given parameters ' w^{0} ', direction of largest decrease is - $\nabla f(w^{0})$).



- Gradient descent is based on a simple observation:
 - Given parameters ' w^{0} ', direction of largest decrease is - $\nabla f(w^{0})$).



- Gradient descent is an iterative algorithm:
 - We start with some initial guess, w^0 .
 - Generate new guess by moving in the negative gradient direction:

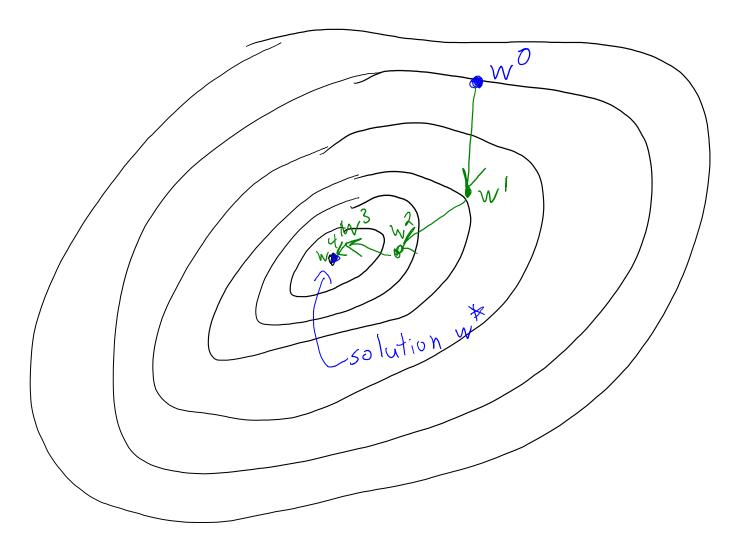
$$W' = W' - X_0 \nabla f(w').$$

(The scalar α_0 is the `step size'.)

- Repeat to successively refine the guess: $w^{t+1} = w^t - \varkappa_t \nabla f(w^t)$

Generate $w_{j}w_{j}w_{j}r_{an}$ - Stop if not making progress or $||\nabla f(v^{E})|| \leq 5$ (some small number)

Gradient Descent in 2D



- If α_t is small enough and $\nabla f(w^t) \neq 0$, guaranteed to decrease 'f': $f(w^{t+i}) < f(w^t)$
- Under weak conditions, procedure converges to a stationary point.

- Least squares via linear system vs. gradient descent:
 - Solving linear system cost O(nd² + d³).
 - Gradient descent costs O(ndt) to run for 't' iterations.
 - Will be faster if t < d.

Convergence Rate of Gradient Descent

- How many iterations do we need?
 - Let x^* be the optimal solution and ε be the accuracy we want.
 - What is the smallest number of iterations 't' such that: Notation:

 $f(\mathbf{x}^{t}) - f(\mathbf{x}^{*}) \leq \varepsilon$

To answer this question, need assumptions:

- Let's assume
$$MI \leq \nabla^2 f(x) \leq LI$$
 for all x and some $L \leq \infty$
strongly - convex
=> strictly - convex
=> convex.
 $T = Convex.$
 $T = T = f(w) = \frac{1}{2} ||Xw - y||^2 + \frac{3}{2} ||w||^2$, then $M = \min \operatorname{eig}(X^T X) + \lambda \gg \lambda$ and $L = \max \operatorname{eig}(X^T X) + \lambda$

- In optimization, we usually talk about optimizing X.

Bonus Slide: Constants for Least Squares

• Consider least squares: $f(x) = \frac{1}{2} ||A \times -b||^2$

What are 'L' and 'n' such that
$$mI \leq \nabla^2 f(x) \leq LI$$
?

Note that
$$\nabla^2 f(x) = A^T A_3$$
 and since it's symmetric we can spectral decomposition:
 $A^T A = \stackrel{d}{\underset{j=1}{\overset{d}{\Rightarrow}}} \lambda_j q_j q_j^T$ where $q_j^T q_j = 1$ and $q_i q_j = 0$ for $i \neq j$. (Assume $\lambda_1 \neq \lambda_2 \neq \dots \neq \lambda_d$)

We can write any as linear combination of orthogonal basis,
$$y = x_1q_1 + x_2q_2 + \cdots + x_4q_4$$
.
So we have $y^T \nabla^2 f(x)y = y^T A^T A y = y^T (\sum_{j=1}^d \lambda_j q_j q_j^T) = \sum_{j=1}^d \lambda_j y^T q_j q_j^T y = \sum_{j=1}^d \lambda_j x_j^2$
Note that we can assume $\|y\|=1$ So $y^T \nabla^2 f(x)y$ is maximized when $x_1^2 = 1$ and minimized when $x_2^2 = 1$,
 $y^T y = \sum_{j=1}^d x_j^2 = 1$.

Convergence Rate of Gradient Descent

• The gradient descent iteration:

$$x^{t+1} = x^{t} - \alpha_t \nabla f(x^{t})$$

- Assumptions:
 - Function 'f' is L-strongly smooth and μ -strongly convex.
 - We set the step-size to $\alpha_t = 1/L$.
- Then gradient descent has a linear convergence rate:

$$f(x^t) - f(x^*) \leq O(p^t) \text{ for } p \leq$$

- It follows that we need $t = O(log(1/\epsilon))$ iterations.
 - This is good! We want 't' to grow slowly in accuracy $1/\epsilon$.
- Also called 'exponential' convergence rate.

 $F(x^{t}) - f(x^{*}) = E \leq O(p^{t})$ means $E \leq c p^{t}$ for $t |_{ange}$ or $log(E) \leq log(cp^{t})$ $= log(c) + t |_{og(p)}$ or $t \geq log(E) - const$ log(p)or $t \geq O(log(l'E))$ (since $p \leq l$)

 $l_{\alpha}(f(x^{t})-f(x))$

Convergence Rate of Gradient Descent

• One version of Taylor expansion:

$$f(y) = f(x) + \nabla f(x)^{T}(y-x) + \frac{1}{2}(y-x)^{T} \nabla^{2} f(z)(y-x) \quad \text{for some } z \text{ for all } x \text{ and } y.$$

$$(\text{Incarization of 'f'at 'x'}) \quad (1) \quad (1)$$

Using Strong-Smoothness

• One version of Taylor expansion:

$$f(y) = f(x) + \nabla f(x)^{T}(y-x) + \frac{1}{2}(y-x)^{T} \nabla^{2} f(z)(y-x) \quad \text{for some } z \quad \text{for all } x \text{ and } y.$$
From strong-smoothness we have: $\nabla^{T} \nabla^{2} f(z) \vee \leq L \|v\|^{2}$ for any z and $v.$

$$f(y) \leq f(x) + \nabla f(x)^{T}(y-x) + \frac{1}{2} \|y-x\|^{2} \quad \text{for all } x \text{ and } y.$$
If we set $x^{t+1} \in \int_{0}^{1} \frac{q_{\text{nadratic upper}}}{p_{\text{nadratic on } f'}} \quad f \quad \text{Let's find min of quadratic upper bound:}$

$$f(x) = f(x) + \nabla f(x)^{T}(y-x) + \frac{1}{2} \|y-x\|^{2} \quad \text{for all } x \text{ and } y.$$
If we set $x^{t+1} \in \int_{0}^{1} \frac{q_{\text{nadratic upper}}}{p_{\text{nadratic on } f'}} \quad f \quad \text{Let's find min of quadratic upper bound:}$

$$f(x) = 0 + \nabla f(x) - 0 + L(y-x)$$

$$\text{we get } x^{t+1} = xt - \frac{1}{2} \nabla f(x)$$

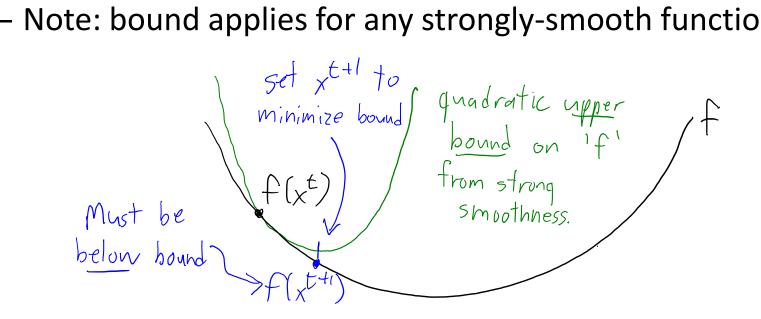
Using Strong-Smoothness

• One version of Taylor expansion:

 $f(y) = f(x) + \nabla f(x)^{T}(y-x) + \frac{1}{2}(y-x)^{T} \nabla^{2} f(z)(y-x) \quad \text{for some } z \\ \text{for all } x \text{ and } y.$ From strong smoothness we have: $\sqrt{T} \nabla^{2} f(z) v \leq L \|v\|^{2}$ for any z and v. $f(y) \leq f(x) + \nabla f(x)^{T}(y-x) + \frac{1}{2} ||y-x||^2 \text{ for all } x \text{ and } y.$ Set $x = x^t$ and $y = x^{t+1}$: $f(x^{t+i}) \leq f(x^{t}) + \nabla f(x^{t})^{\mathsf{T}}(x^{t+i} - x^{t}) + \frac{1}{2} ||x^{t+i} - x^{t}||^{2} x^{t+i} = x^{t} - \frac{1}{2} \nabla f(x^{t})$ $= f(x^{t}) + \nabla f(x^{t})^{\mathsf{T}}(-\frac{1}{2} \nabla f(x^{t})) + \frac{1}{2} ||-\frac{1}{2} \nabla f(x^{t})||^{2} \qquad (\text{minimum of upper bound})$ $= f(x^{t}) - \frac{1}{2} \nabla f(x^{t})^{\mathsf{T}} \nabla f(x^{t}) + \frac{1}{2} ||\nabla f(x^{t})||^{2} \qquad \nabla f(x) = ||\nabla f(x)||^{2}$ $= f(x^{t}) - \frac{1}{2!} ||\nabla f(x^{t})||^{2}$

Using Strong-Smoothness

- We've derived a bound on guaranteed progress at iteration 't': $f(x^{t+1}) \leq f(x^t) - \frac{1}{2t} ||\nabla f(x^t)||^2$
 - If gradient is non-zero, guaranteed to decrease objective.
 - Amount we decrease grows with the size of the gradient.
 - Note: bound applies for any strongly-smooth function (e.g., non-convex)



Using Strong-Convexity

• One version of Taylor expansion:

$$f(y) = f(x) + \nabla f(x)^{T}(y-x) + \frac{1}{2}(y-x)^{T} \nabla^{2} f(z)(y-x) \quad \text{for some } z \quad \text{for all } x \text{ and } y.$$
By strong-convexity we have $\sqrt{T} \nabla^{2} f(z) \sqrt{2} M$ for all y and z .
$$f(y) \ge f(x) + \nabla f(x)^{T}(y-x) + \frac{1}{2} ||y-x||^{2}$$
quadratic lower bound on 'f'
$$f(x^{\pm})$$
bound on
$$f(x^{\pm}) \quad \text{We know that} \quad f(x^{\pm}) \quad \text{We know that} \quad f(x^{\pm}) \quad \text{we for all } y \text{ can be below minimum of bound}$$

Using Strong-Convexity

• One version of Taylor expansion:

$$\begin{split} f(y) &= f(x) + \nabla f(x)^{T}(y-x) + \frac{1}{2}(y-x)^{T} \nabla^{2} f(z)(y-x) & \text{for some } z \\ & \text{for all } x \text{ and } y. \\ By strong-convexity we have \ v^{T} \nabla^{2} f(z)v \geqslant u & \text{for all } y \text{ and } z. \\ f(y) \geqslant f(x) + \nabla f(x)^{T}(y-x) + \frac{u}{2} ||y-x||^{2} \\ & \text{Minimize both sides with respect to } y. \\ & f(x^{*}) \geqslant f(x) - \frac{1}{2u} ||\nabla f(x)||^{2} \end{split}$$

Combining Strong-Smoothness and Convexity

• Our bound on guaranteed progress:

 $f(x^{t+i}) \leq f(x^t) - \frac{1}{2L} ||\nabla f(x^t)||^2$

- Our bound on 'distance to go': $f(x^{\dagger}) \geq f(x^{t}) - \frac{1}{2u} ||\nabla f(x^{t})||^{2} \leq -\frac{1}{2} ||\nabla f(x^{t})||^{2} \leq -u(f(x^{t}) - f(x^{t}))$
- Use 'distance to go' bound in guaranteed progress bound: $f(x^{t+i}) \leq f(x^t) - \frac{1}{i} \left(-u(f(x^t) - f(x^t)) \right)$
- Subtract f(x*) from both sides and simplify: $f(x^{t+1}) - f(x^{*}) \leq f(x^{t}) - f(x^{*}) - \frac{u}{t}(f(x^{t}) - f(x^{*}))$

$$= \left(\left| -\frac{m}{L} \right) \left[f(x^{t}) - f(x^{*}) \right] \right]$$

Combining Strong-Smoothness and Convexity

• We've shown that:

$$f(x^{t}) - f(x^{*}) \leq (1 - \frac{1}{L}) [f(x^{t-1}) - f(x^{*})]$$

• Applying this recursively:

$$f(x^{t}) - f(x^{*}) \leq (1 - \frac{m}{L}) \Big[(1 - \frac{m}{L}) \Big[f(x^{t-2}) - f(x^{*}) \Big] \\= (1 - \frac{m}{L})^{2} \Big[f(x^{t-1}) - f(x^{*}) \Big] \\= (1 - \frac{m}{L})^{3} \Big[F(x^{t-2}) - f(x^{*}) \Big] \\\vdots \\= (1 - \frac{m}{L})^{t} \Big[f(x^{0}) - f(x^{*}) \Big] \\= (0 - \frac{m}{L})^{t} \Big[f(x^{0}) - f(x^{*}) \Big]$$

• Since $\mu \leq L$, we've shown linear convergence rate.

Discussion of Linear Convergence Rate

• We've shown that gradient descent under certain settings has:

$$f(x^{t}) - f(x^{*}) \leq (1 - \frac{m}{t})^{t} f(x^{0}) - f(x^{*})]$$

- The number L/ μ is called the 'condition number' of 'f'.
- Connection to matrix condition number:
 - For least squares, condition number of 'f' is condition number of X^TX.
- This rate is dimension-independent:
 - It does not directly depend on dimensions 'd'.
 - In principle, applies to infinite-dimensional problems.
 - But, L may be larger (and μ smaller) in high-dimensional spaces.
- In practice, typically you don't have 'L'.
 - We'll get to practical issues later...

Weaker Assumptions for Linear Convergence

- We can get a linear convergence rate under weaker assumptions:
 - Proof works for any $\alpha < 2/L$.
 - Don't need 'L', just need step-size α small enough.
 - But optimal step-size in proof is $\alpha = 1/L$.
 - Proof works if you take the optimal step-size.

$$\chi^{*} = \underset{x \geq 0}{\operatorname{argmin}} \left\{ f(x^{t} + x \nabla f(x^{t})) \right\} \Longrightarrow f(x^{t} + x^{*} \nabla f(x^{t})) \leq f(x^{t} + \frac{1}{2} \nabla f(x^{t})) \right\}$$

- You can compute this for quadratics: just minimizing a 1D quadratic.
- Proof can be modified to work with approximation of 'L' or line-search.
 - What you typically do in practice.

Weaker Assumptions for Linear Convergence

• We can get a linear convergence rate under weaker assumptions:

- Proof works for once-differentiable 'f' with L-Lipschitz continuous gradient: Gradient does not change too quickly: $\|\nabla f(x) - \nabla f(y)\| \leq L\|x - y\|$ for all x and y. Since this implies: $f(y) \leq f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} \|y - x\|^2$ for all y and x.

(see Nesterov's "Introductory Lectures on Convex Optimization")
This doesn't need to hold globally, proof works if we can show:

$$f(x^{t+i}) \leq f(x^{t}) + \nabla f(x^{t})^{T}(x^{t+i}-x^{t}) - \frac{1}{2}||x^{t+i}-x^{t}||^{2} \text{ for some } L \text{ and } x^{t+i}$$

all x^{t} and x^{t+i} .

- Basically, for differentiable functions this is a very weak assumption.

Weaker Assumptions for Linear Convergence

- We can get a linear convergence rate under weaker assumptions:
 - Strong-convexity is defined even for non-differentiable functions:

We say 'f' is u strongly convex if $f(x) - \frac{4}{2} ||x||^2$ is a convex function of x. - For differentiable functions this is equivalent to:

$$f(y) \ge f(x) + \nabla f(x)(y - x) + \frac{M}{2} ||y - x||^2$$
 for x and y

- This is still a strong assumption:
 - But note if 'f' is convex then 'f(x) + $(\lambda/2)||x||^2$ is λ -strongly convex.
- What about non-convex functions?
 - Proof works if gradient grows faster than quadratic as you move away from solution.
 - Two phase analysis: prove that algorithm gets near minimum, then analyze local rate.
 - Convergence rate only applies for 't' large enough.

(pause)

Gradient Method: Practical Issues

- In practice, you should never use $\alpha = 1/L$.
 - Often you don't know L.
 - Even if did, "local" L may be much smaller than "global" L: use bigger steps.
- Practical options:
 - Adaptive step-size:
 - Start with small 'L' (e.g., L = 1).
 - Double 'L' it if the guaranteed progress inequality from proof is not satisfied:

 $f(x^{t} - \frac{1}{2}\nabla f(x^{t})) \leq f(x^{t}) + \nabla f(x^{t})((x^{t} - \frac{1}{2}\nabla f(x^{t})) - x^{t}) + \frac{1}{2}||(x^{t} - \frac{1}{2}\nabla f(x^{t})) - x^{t}||^{2}$ $= f(x^{t}) - \frac{1}{2L} ||\nabla f(x^{t})||^{2}$

- Use $\alpha_t = 1/L$.
- Usually, end it up with much smaller 'L': bigger steps and faster progress.
- With this strategy, step-size never increases.

Gradient Method: Practical Issues

- In practice, you should never use $\alpha = 1/L$.
 - Often you don't know L.
 - Even if did, "local" L may be much smaller than "global" L: use bigger steps.
- Practical options:
 - Armijo backtracking line-search:
 - On *each* iteration, start with large step-size α .
 - Decreasing α if Armijo condition is not satisfied:

 $f(x^{t-n}) \leq f(x_t) - \alpha \mathcal{Y} \|\nabla f(x^t)\|^2 \text{ for some } \mathcal{F}((0, 1/2), \text{usually})$

- Works very well, particularly if you cleverly initialize/decrease α .
 - Fit linear regression to 'f' as α changes under (quadratic or cubic) basis, set α to minimum.

makes sure step

• Even more fancy line-search: Wolfe conditions (makes sure α is not too small).

Gradient Method: Practical Issues

• Gradient descent codes requires you to write objective/gradient:

```
function [nll,g] = logisticGrad(w,X,y)
vXw = v.*(X*w);
```

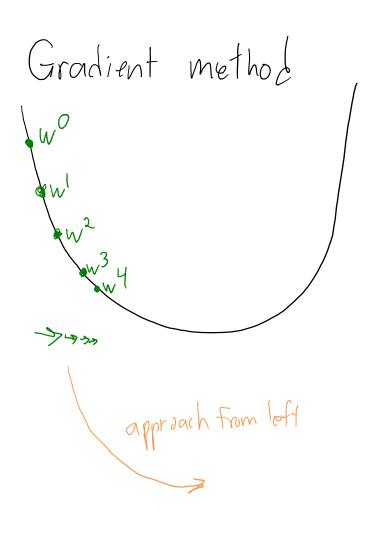
```
% Function value
nll = sum(log(1+exp(-yXw)));
% Gradient
g = -X'*(y./(1+exp(yXw)));
end
```

$$f(w) = \sum_{i=1}^{n} \log \left(\left[+ \exp(-y_i w^T x_i) \right] \right)$$

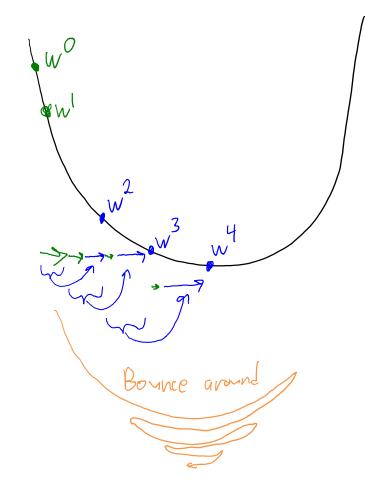
$$\nabla f(w) = \sum_{i=1}^{n} - \frac{y_i}{|\text{Texp}(y_i w^T x_i)|} X_i$$

- Make sure to check your derivative code:
 - Numerical approximation to partial derivative: $\nabla_i f(x) \approx \frac{f(x + \delta e_i) f(x)}{\zeta}$
 - Numerical approximation to direction derivative: $\nabla f(x)^{T} \downarrow \approx f(x + \delta J) f(y)$

Nesterov's Method



Nesteror/momentan/heavy-ball/conjugate gradiant



Nesterov's Method

• Nesterov's accelerated gradient method (starting with $y^0 = x^0$):

$$x^{t+1} = y^{t} - \alpha_{t} \nabla f(y^{t})$$

$$y^{t+1} = x^{t} + \beta_{t}(x^{t+1} - x^{t})$$

 $\alpha_t = \frac{1}{L}$

If 'f' is strongly convex and ∇f is L-Lipschitz, improves from $O(\frac{L}{m}\log(\frac{L}{e}))$ to $O(\frac{L}{m}\log(\frac{L}{e}))/(close to optimal)$ • Similar to heavy-ball/momentum method: $\gamma B_t = \frac{1 - \sqrt{\frac{L}{m}}}{1 + \sqrt{\frac{L}{m}}}$

$$x^{t+1} = x^{t} - \alpha_{t} \nabla F(x^{t}) + \beta_{t} (x^{t} - x^{t+1})$$

- Conjugate gradient: optimal α and β for strictly-convex quadratics.

Newton's Method

- Can be motivated as a quadratic approximation: $f(y) = f(x^{t}) + \nabla f(x^{t})^{\mathsf{T}}(y - x^{t}) + \frac{1}{2}(y - x^{t}) \nabla^{2} f(z)(y - x^{t}) \quad \text{for some } z \text{ between} \\ y \text{ and } x^{t} \\ (assuming \nabla^{2} f(x^{t})^{\mathsf{T}}(y - x^{t}) + \frac{1}{2\alpha}(y - x^{t}) \nabla^{2} f(x^{t})(y - x^{t}) \\ (assuming \nabla^{2} f(x^{t}) > 0) \end{cases}$ • Newton's method is a second-order strategy (uses 2nd derivatives):

$$\chi^{t+1} = \chi^t - \alpha_t d^t$$
 where d_t is the solution of $\nabla^2 f(x^t) d^t = \nabla f(x^t)$

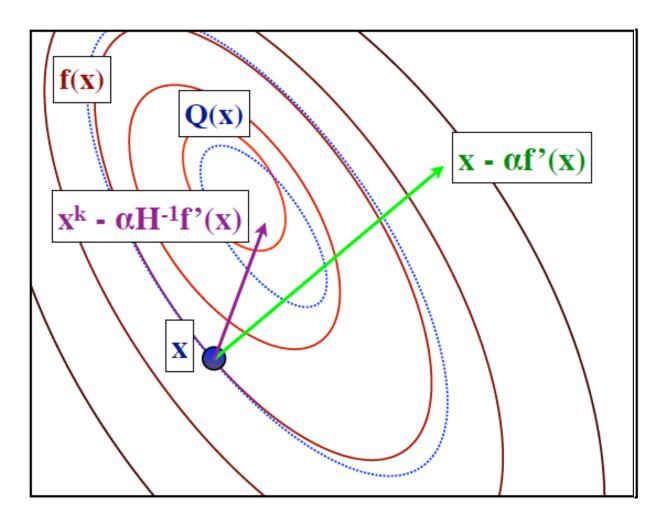
In stats, Newton's method applied to functions of form f(Ax) called "IRLS".

• Generalization of Armijo rule:

$$f(x^{t+1}) \leq f(x^{t}) - \alpha_t \mathcal{P} \nabla f(x^{t})^{\mathsf{T}} d^t$$

• Step-size α_{+} goes to 1 as we approach minimizer.

Newton's Method



Convergence Rate of Newton's Method

If $\nabla^2 f(x)$ is Lipschitz-continuous and $\nabla^2 f(x^*) \not\models uI$ then for t' large enough: $f(x^{t+1}) - f(x^*) \leq p_t [f(x^t) - f(x^*)]$ with $\lim_{t \to 0} p_t = 0$. $f(x^{t+1}) - f(x^*) \leq p_t [f(x^t) - f(x^*)]$ with $\lim_{t \to 0} p_t = 0$.

- Local superlinear convergence: very fast, use it if you can.
- "Cubic regularization" of Newton's method gives global rates.
- But Newton's method is expensive if dimension 'd' is large:

Requires solution of
$$\nabla^2 f(x^t) d^t = \nabla f(x^t)$$

 $d' by 'd'$

Practical Approximations to Newton's Method

- Practical Newton-like methods:
 - Diagonal approximation: Approximate $\nabla^2 f(x)$ by diagonal H^t with elements $\nabla_{ii}^2 f(x^t)$
 - Limited-memory quasi-Newton: Diagonal plus low rank Hessian approximation, (L-BFGS) chosen to satisfy "quasi-Newton" equations.
 - Barzilai-Borwein approximation: Approximate $\nabla^2 f(x^t)$ by identity matrix I, choose stop-size x_t as least squares solution to quasi-Nowton equations.
 - Hessian-free Newton: Apply gradient or conjugate gradient to <u>Approximately minimize quadratic approximation</u>. Gradient requires $\nabla f(x^t)v$ but this can be cheaply approximated: $\nabla^2 f(x) d = \lim_{s \to 0} \frac{f(x^t Sd)}{S}$
 - Non-linear conjugate gradient.

Practical Exercise and Homework?

- For practical experience with gradient/Nesterov/Newton methods:
 <u>http://www.cs.ubc.ca/~schmidtm/MLSS/differentiable.pdf</u>
- Corresponding code is available here:
 - <u>http://www.cs.ubc.ca/~schmidtm/MLSS</u>
- Works through a Matlab implementation of:
 - Gradient descent (fixed step size)
 - Armijo line-search.
 - Hermite polynomial
 - Nesterov and Newton method.
 - Practical approximations of Newton's method.
- At the end, you will have a useful large-scale code.

Summary

- Convex functions: all stationary points are global minima.
- Showing functions are convex.
- Gradient descent finds stationary point of differentiable function.
- Rate of convergence of gradient descent is linear.
- Weaker assumptions for gradient descent:
 - L-Lipschitz gradient, weakening convexity, practical step sizes.
- Faster first-order methods like Nesterov's and Newton's method.
- Next time:

– What if we don't know which features are relevant or which basis to use?