
SVAN 2016 Mini Course: Stochastic Convex
Optimization Methods in Machine Learning

Mark Schmidt

University of British Columbia, May 2016

www.cs.ubc.ca/~schmidtm/SVAN16

Some images from this lecture are taken from Google Image Search.

Last Time: Training vs. Testing

• In supervised learning we are given a training set X and y.
– But what we care about is test error: are prediction accurate on new data?

• In order to say anything about new data, need assumptions:
– IID assumption: training and test data drawn from same distribution.

• Often, we have an explicit test set to approximate test error.

• Golden rule: this test set cannot influence training in any way.
– Otherwise, not valid approximation of test error.

Fundamental Trade-Off and Regularization

• Bias-variance and other learning theory results to trade-off:
1. How small you can make the training error.

vs.

2. How well training error approximates the test error.

• Simple models: high training error but don’t overfit:

• Complex models: low training error but overfit.

• Regularization: reduces overfitting in complex models.
– Common approach is L2-regularization:

– Increases training error, but typically decreases test error.

– Increasing number of training examples ‘n’ has a similar effect on trade-off.

Last Time: Logistic Regression

• We considered binary labels yi, and classifying with sign(wTxi).
– Squared error (wTxi – yi)

2 is not ideal: penalizes model for “too right”.

– Minimizing number of errors is also not ideal: NP-hard.

– Tractable upper bounds are hinge loss and logistic loss.

– We also discussed defining losses with multiple classes (softmax loss).

Course Roadmap

• Part 1: Overview of Machine Learning

• Part 2: Large-scale machine learning.

– How do we fit these models to huge datasets?

– Why are SVMs/logistic easy while minimizing number of errors is hard?

Convex Functions

• We are first going to discuss convex functions:

– Minimizing convex functions is usually easy.

– Minimizing non-convex functions is usually hard.

• The ‘easy’ problems we have discussed are convex:

– Least squares, robust regression, logistic regression, support vector
machines, multi-class logistic, brittle regression, Poisson regression.

– All of the above with L2-regularization.

• The ‘hard’ problems we have discussed are non-convex:

– 0-1 loss, “very robust” regression.

Convex Sets

• First we need to define a convex set:

– A set is convex if the line between any two points stays in the set.

Convex
Convex

Not Convex

Convex Sets

• Examples:

Showing a Set is Convex

Intersection of Convex Sets

• Intersection of convex sets is convex:

Convex Functions

• A function ‘f’ is convex if:

1. The domain of ‘f’ is a convex set.

2. The function is always below ‘chord’ between two points.

Convex Functions

• Examples:

Differentiable Convex Functions

• A differentiable ‘f’ is convex iff ‘f’ is always above tangent:

Twice-Differentiable Convex Functions

• A twice-differentiable ‘f’ is convex iff it’s curved upwards everywhere.

Concave Functions

• The negative of a convex function is a concave function:

Showing Functions are Convex

• Examples:

Showing Functions are Convex

• Examples:

Strictly-Convex Functions

• A function is strictly-convex if these inequalities strictly hold:

• Strict convexity implies at most one global minimum:

• This implies L2-regularized least squares has unique solution:

Operations that Preserve Convexity

• There are a few operations preserve convexity.

– Often lets us avoid calculating Hessian.

– Often lets us prove convexity of non-smooth functions.

• If f1 and f2 are convex, then convexity is preserved under:

1. Weighted sums (non-negative coefficients):

2. Composition with affine function:

3. Pointwise maximum:

(pause)

Current Hot Topics in Machine Learning

• Graph of most common keywords among ICML papers last year:

• Why is there so much focus on deep learning and optimization?

Why Study Optimization in CPSC 540?

• In machine learning, training is typically written as optimization:

– Numerically optimize parameters of model, given data.

• There are some exceptions:

1. Counting- and distance-based methods (random forests, KNN).

• See my undergraduate course

2. Integration-based methods (Bayesian learning).

• Covered after large-scale optimization in my grad course.

Although you still need to tune parameters in those models.

• But why study optimization? Can’t I just use Matlab functions?

– ‘\’, linprog, quadprog, fmincon, CVX,…

The Effect of Big Data and Big Models

• Datasets are getting huge, we might want to train on:
– Entire medical image databases.
– Every webpage on the internet.
– Every product on Amazon.
– Every rating on Netflix.
– All flight data in history.

• With bigger datasets, we can build bigger models:
– This is where deep learning comes in.
– Complicated models can address complicated problems.

• Now optimization becomes a problem because of time/memory:
– We can’ afford O(d2) memory, or an O(d2) operation.
– Going through huge datasets 100s of times is too slow.
– Evaluating huge models too many times is too slow.

Fitting Logistic Regression Models

• Recall the L2-regularized logistic regression objective function:

• This objective function is strictly-convex and differentiable.

• But we can’t formulate as linear system or linear program.

• Nevertheless, we can efficiently solve this problem.

• There are many ways to do this, but we focus on gradient descent:

– Iteration cost is linear in ‘d’ (not true of IRLS/Newton’s method).

– We can prove that we don’t need too many iterations:

• Number of iterations does not directly depend on ‘d’.

Gradient Descent

• Gradient descent is based on a simple observation:

– Given parameters ‘w0’, direction of largest decrease is -𝛻f(w0)).

Gradient Descent

• Gradient descent is based on a simple observation:

– Given parameters ‘w0’, direction of largest decrease is -𝛻f(w0)).

Gradient Descent

• Gradient descent is based on a simple observation:

– Given parameters ‘w0’, direction of largest decrease is -𝛻f(w0)).

Gradient Descent

• Gradient descent is an iterative algorithm:

– We start with some initial guess, w0.

– Generate new guess by moving in the negative gradient direction:

(The scalar α0 is the `step size’.)

– Repeat to successively refine the guess:

– Stop if not making progress or

Gradient Descent in 2D

Gradient Descent

• If αt is small enough and 𝛻𝑓 𝑤𝑡 ≠ 0, guaranteed to decrease ‘f’:

• Under weak conditions, procedure converges to a stationary point.

• Least squares via linear system vs. gradient descent:

– Solving linear system cost O(nd2 + d3).

– Gradient descent costs O(ndt) to run for ‘t’ iterations.

• Will be faster if t < d.

Convergence Rate of Gradient Descent

• How many iterations do we need?

– Let x* be the optimal solution and ε be the accuracy we want.

– What is the smallest number of iterations ‘t’ such that:

• To answer this question, need assumptions:

– Let’s assume

Bonus Slide: Constants for Least Squares

• Consider least squares:

Convergence Rate of Gradient Descent

• The gradient descent iteration:

• Assumptions:

– Function ‘f’ is L-strongly smooth and µ-strongly convex.

– We set the step-size to αt = 1/L.

• Then gradient descent has a linear convergence rate:

– It follows that we need t = O(log(1/ε)) iterations.

• This is good! We want ‘t’ to grow slowly in accuracy 1/ε.

– Also called ‘exponential’ convergence rate.

Convergence Rate of Gradient Descent

• One version of Taylor expansion:

Using Strong-Smoothness

• One version of Taylor expansion:

Using Strong-Smoothness

• One version of Taylor expansion:

Using Strong-Smoothness

• We’ve derived a bound on guaranteed progress at iteration ‘t’:

– If gradient is non-zero, guaranteed to decrease objective.

– Amount we decrease grows with the size of the gradient.

– Note: bound applies for any strongly-smooth function (e.g., non-convex)

Using Strong-Convexity

• One version of Taylor expansion:

Using Strong-Convexity

• One version of Taylor expansion:

Combining Strong-Smoothness and Convexity

• Our bound on guaranteed progress:

• Our bound on ‘distance to go’:

• Use ‘distance to go’ bound in guaranteed progress bound:

• Subtract f(x*) from both sides and simplify:

Combining Strong-Smoothness and Convexity

• We’ve shown that:

• Applying this recursively:

• Since µ ≤ L, we’ve shown linear convergence rate.

Discussion of Linear Convergence Rate

• We’ve shown that gradient descent under certain settings has:

• The number L/µ is called the ‘condition number’ of ‘f’.

• Connection to matrix condition number:
– For least squares, condition number of ‘f’ is condition number of XTX.

• This rate is dimension-independent:
– It does not directly depend on dimensions ‘d’.

– In principle, applies to infinite-dimensional problems.

– But, L may be larger (and µ smaller) in high-dimensional spaces.

• In practice, typically you don’t have ‘L’.
– We’ll get to practical issues later…

Weaker Assumptions for Linear Convergence

• We can get a linear convergence rate under weaker assumptions:

– Proof works for any α < 2/L.

• Don’t need ‘L’, just need step-size α small enough.

• But optimal step-size in proof is α = 1/L.

– Proof works if you take the optimal step-size.

• You can compute this for quadratics: just minimizing a 1D quadratic.

– Proof can be modified to work with approximation of ‘L’ or line-search.

• What you typically do in practice.

Weaker Assumptions for Linear Convergence

• We can get a linear convergence rate under weaker assumptions:

– Proof works for once-differentiable ‘f’ with L-Lipschitz continuous gradient:

Since this implies:

(see Nesterov’s “Introductory Lectures on Convex Optimization”)

– This doesn’t need to hold globally, proof works if we can show:

– Basically, for differentiable functions this is a very weak assumption.

Weaker Assumptions for Linear Convergence

• We can get a linear convergence rate under weaker assumptions:

– Strong-convexity is defined even for non-differentiable functions:

– For differentiable functions this is equivalent to:

– This is still a strong assumption:

• But note if ‘f’ is convex then ‘f(x) + (λ/2)||x||2 is λ-strongly convex.

– What about non-convex functions?

• Proof works if gradient grows faster than quadratic as you move away from solution.

• Two phase analysis: prove that algorithm gets near minimum, then analyze local rate.
– Convergence rate only applies for ‘t’ large enough.

(pause)

Gradient Method: Practical Issues

• In practice, you should never use α = 1/L.
– Often you don’t know L.

– Even if did, “local” L may be much smaller than “global” L: use bigger steps.

• Practical options:
– Adaptive step-size:

• Start with small ‘L’ (e.g., L = 1).

• Double ‘L’ it if the guaranteed progress inequality from proof is not satisfied:

• Use αt = 1/L.

• Usually, end it up with much smaller ‘L’: bigger steps and faster progress.

• With this strategy, step-size never increases.

Gradient Method: Practical Issues

• In practice, you should never use α = 1/L.

– Often you don’t know L.

– Even if did, “local” L may be much smaller than “global” L: use bigger steps.

• Practical options:

– Armijo backtracking line-search:

• On each iteration, start with large step-size α.

• Decreasing α if Armijo condition is not satisfied:

• Works very well, particularly if you cleverly initialize/decrease α.
– Fit linear regression to ‘f’ as α changes under (quadratic or cubic) basis, set α to minimum.

• Even more fancy line-search: Wolfe conditions (makes sure α is not too small).

• Gradient descent codes requires you to write objective/gradient:

• Make sure to check your derivative code:

– Numerical approximation to partial derivative:

– Numerical approximation to direction derivative:

Gradient Method: Practical Issues

Nesterov’s Method

Nesterov’s Method

• Nesterov’s accelerated gradient method (starting with y0 = x0):

• Similar to heavy-ball/momentum method:

– Conjugate gradient: optimal α and β for strictly-convex quadratics.

Newton’s Method

• Can be motivated as a quadratic approximation:

• Newton’s method is a second-order strategy (uses 2nd derivatives):

– In stats, Newton’s method applied to functions of form f(Ax) called “IRLS”.

• Generalization of Armijo rule:

• Step-size αt goes to 1 as we approach minimizer.

Newton’s Method

Convergence Rate of Newton’s Method

• Local superlinear convergence: very fast, use it if you can.

• “Cubic regularization” of Newton’s method gives global rates.

• But Newton’s method is expensive if dimension ‘d’ is large:

Practical Approximations to Newton’s Method

• Practical Newton-like methods:

– Diagonal approximation:

– Limited-memory quasi-Newton:
(L-BFGS)

– Barzilai-Borwein approximation:

– Hessian-free Newton:

– Non-linear conjugate gradient.

Practical Exercise and Homework?

• For practical experience with gradient/Nesterov/Newton methods:
– http://www.cs.ubc.ca/~schmidtm/MLSS/differentiable.pdf

• Corresponding code is available here:
– http://www.cs.ubc.ca/~schmidtm/MLSS

• Works through a Matlab implementation of:
– Gradient descent (fixed step size)

– Armijo line-search.

– Hermite polynomial

– Nesterov and Newton method.

– Practical approximations of Newton’s method.

• At the end, you will have a useful large-scale code.

http://www.cs.ubc.ca/~schmidtm/MLSS/differentiable.pdf
http://www.cs.ubc.ca/~schmidtm/MLSS

Summary

• Convex functions: all stationary points are global minima.

• Showing functions are convex.

• Gradient descent finds stationary point of differentiable function.

• Rate of convergence of gradient descent is linear.

• Weaker assumptions for gradient descent:
– L-Lipschitz gradient, weakening convexity, practical step sizes.

• Faster first-order methods like Nesterov’s and Newton’s method.

• Next time:
– What if we don’t know which features are relevant or which basis to use?

