
SVAN 2016 Mini Course: Stochastic Convex 
Optimization Methods in Machine Learning

Mark Schmidt

University of British Columbia, May 2016

www.cs.ubc.ca/~schmidtm/SVAN16

Some images from this lecture are taken from Google Image Search.



Last Time: Supervised Learning

• We discussed supervised learning:

– We have a set of inputs xi and a corresponding output yi.

– Food allergy example:

• xi is the quantities of food we ate on day ‘i’.

• yi is the level of IgE we measure on day ‘i’.

– The goal is to learn a function ‘f’ such that (f(xi) – yi) is small.

• We introduced standard notation for supervised learning:



Last Time: Linear Regression and Least Squares

• We considered the special case of linear regression:

• To fit this model, a classic approach is least squares:

• Which we can write in matrix notation as:



Last Time: Nonlinear Basis

• Change of basis allows nonlinear functions with linear regression:



Fundamental Trade-Off of Machine Learning

• Same trade-off exists as we add more features:
– More features means lower training error.

– More features means training error is worse approximation of test error.



Controlling Complexity

• We know that complex models can overfit.

• But usually the “true” mapping from xi to yi is complex.

• So what do we do???

• There are many possible answers:

– Model averaging: average over multiple models to decrease variance.

– Regularization: add a penalty on the complexity of the model.



L2-Regularization

• Our standard least squares formulation:

• Standard regularization strategy is to add a penalty on the L2-norm:

• Regularization parameter λ controls ‘strength’ of regularization:
– If λ is large then it forces ‘w’ to be very small: low complexity.

– If λ is tiny then ‘w’ can be get huge: high complexity.

• Has been re-invented several times:
– Tikhonov regularization, ridge regression, etc.



L2-Regularization

• In terms of fundamental trade-off:

– Regularization increases training error.

– Regularization makes training error a better approximation of test error.

• How should you choose λ?

– Theory: as ‘n’ grows λ should be in the range O(1) to O(n-1/2).

– Practice: optimize validation set or cross-validation error.

• This almost always decreases the test error.

• How do you compute ‘w’?



Ridge Regression Calculation



Why use L2-Regularization?

• Mark says: “You should always use regularization.”

• “Almost always improves test error” should already convince you.

• But here are more reasons:

1. Solution ‘w’ is unique.

2. Does not require X’X to be invertible.

3. Solution ‘w’ is less sensitive to changes in X or y.

4. You can use Cholesky factorization instead of LU factorization.

5. Makes large-scale methods for computing ‘w’ run faster.

6. Stein’s paradox: if d ≥ 3, regularization moves us closer to ‘true’ w.

7. In the worst case you just set λ small and get the same performance.



(pause)



Parametric vs. Non-Parametric

• Polynomials are not the only possible bases:
– Common to use exponentials, logarithms, trigonometric functions, etc.

– The right basis will vastly improve performance.

– But when you have a lot of features, the right basis may not be obvious.

• The above bases are parametric model:
– The size of the model does not depend on the number of training examples ‘n’.

– As ‘n’ increases, you can estimate the model more accurately.

– But at some point, more data doesn’t help because model is too simple.

• Alternative is non-parametric models:
– Size of the model grows with the number of training examples.

– Model gets more complicated as you get more data.

– You can model very complicated functions where you don’t know the right basis.



Non-Parametric Basis: RBFs

• Radial basis functions (RBFs):

– Non-parametric bases that depend on distances to training points.

• Most common example is Gaussian or squared exponential:



Non-Parametric Basis: RBFs

• Radial basis functions (RBFs):
– Non-parametric bases that depend on distances to training points.

• Most common example is Gaussian or squared exponential:

• Gaussian RBFs are universal approximators (compact subets of ℝd)
– Can approximate any continuous function to arbitrary precision.



Non-Parametric Basis: RBFs

• RBF basis for different values of σ:



RBFs, Regularization, and Validation

• Very effective model:

– RBF basis with L2-regularization and cross-validation to choose 𝜎 and λ.

– Expensive at test time: need distance to all training examples.



• RBF basis with L2-regularization for different values of σ and λ.

• At least one of these models is often a good fit.

RBFs, Regularization, and Validation



(pause)



Alternatives to Squared Error

• Squared error is computationally convenient choice:

– Solution involves solving a linear system.

• But it’s usually not the right choice:

– Corresponds to assuming error are normally distributed (later in lecture).

– Makes it sensitive to outliers or large errors.

– Makes it inappropriate with restrictions on y (like binary or censored).

• There are many alternatives to squared error.

– But these have computational implications.



Least Squares with Outliers

• Consider fitting least squares with an outlier in the labels:

– Observation that is unusually different from the others.

• Some sources of outliers:

– Errors, contamination of data from different distribution, rare events.

Egg Milk Fish Wheat Shellfish Peanuts …

0 0.7 0 0.3 0 0

0.3 0.7 0 0.6 0 0.01

0 0 0 0.8 0 0

0.3 0.7 1.2 0 0.10 0.01

IgE

700

740

50

40000



Least Squares with Outliers

• Consider fitting least squares with an outlier in the labels:



Least Squares with Outliers

• Consider fitting least squares with an outlier in the labels:

• Least squares is very sensitive to outliers.



Least Squares with Outliers

• Squaring error shrinks small errors, and magnifies large errors:

• Outliers (large error) influence ‘w’ much more than other points.



Least Squares with Outliers

• Squaring error shrinks small errors, and magnifies large errors:

• Outliers (large error) influence ‘w’ much more than other points.

– Good if outlier means ‘plane crashes’, bad if it means ‘data entry error’.



Robust Regression

• Robust regression objectives put less focus on far-away points.

• For example, just use absolute error:

• Now decreasing ‘small’ and ‘large’ errors is equally important.

• In matrix notation, we can write this as minimizing L1-norm:



Squared Error vs. Absolute Error

• Comparing squared error absolute error:



Squared Error vs. Absolute Error

• Comparing squared error absolute error:



Regression with the L1-Norm

• Unfortunately, minimizing the absolute error is harder:

– Gradient doesn’t always exist.

– Generally, harder to minimize non-smooth than smooth functions.

– But we can formulate minimize absolute error as a linear program.



Converting into Constrained Problems 

• Key observation:

– Absolute value is maximum of smooth functions:

• We can convert to minimizing smooth function with constraints:

1. Replace maximum with new variable, constrained to upper-bound max.

2. Replace individual constraint with constraint for each element of max.



Minimizing Absolute Error as Linear Program

• We can apply the same steps to a sum of max functions:

• This is a linear program:

– Minimizing a linear function subject to linear constraints.

– We can efficiently solve ‘medium-sized’ linear programs: Matlab’s ‘linprog’.

– There are other linear program formulations of this problems.



‘Brittle’ Regression

• What if you really care about getting the outliers right?

– You want best performance on worst training example.

– For example, if in worst case the plane can crash.

• In this case you can use something like the infinity-norm:

• Very sensitive to outliers (brittle), but worst case will be better.



Robust vs. Brittle Regression
• We said that squared error is sensitive to outliers:

– Absolute error is less sensitive: can be solved as a linear program.

– Maximum error is more sensitive: can also be solved as linear program.



Very Robust Regression?

• Can we be more robust?

• Very robust: eventually “gives up” on large errors.

• But finding optimal ‘w’ is NP-hard.
– Absolute value is the most robust that is not NP-hard.



The ‘Best’ Machine Learning Model

• What is the ‘best’ machine learning model?
– SVMs? Random forests? Deep learning?

• No free lunch theorem:
– There is no ‘best’ model that achieves the best test error for every problem.

– If model A works better than model B on one dataset, 
there is another dataset where model B works better.

• Asking what is the ‘best’ machine learning model is like asking which is 
‘best’ among “rock”, “paper”, and “scissors”.

• Caveat of no free lunch (NFL) theorem:
– The world is very structured, some datasets are more likely than others.

– Model A could be better than model B on a huge variety of practical applications. 

• Machine learning emphasizes models useful across applications.



Last Time: Robust Regression
• We said that squared error is sensitive to outliers:

– Absolute error is less sensitive: can be solved as a linear program.



Motivation: Identifying Important E-mails

• We have a big collection of e-mails:

– Marked as ‘important’ if user took some action based on them.

• We want to write a program that identifies ‘important’ e-mails?

• Can we formulate as supervised learning?



Supervised Learning Representation for E-mails

• For e-mail ‘i’, the target label yi is binary:
– +1: “e-mail is important”.

– -1: “e-mail is not important”.

– Classification: supervised learning with discrete labels.

• What are the right features xi (basis) for e-mails?
– Use bag of words:

• “CPSC”, “Expedia”, “vicodin”.

• Binary “Expedia” feature is 1 if phrase “Expedia” is in the message, and 0 otherwise.

– Could add phrases:
• “you’re a winner”, “CPSC 540”.

– Could add regular expressions:
• <recipient name>, <sender domain == “mail.com”>



Supervised Learning Representation for E-mails

• Can we make personalized predictions?

– Some messages ‘universally’ important:

• “This is your mother, something terrible happened, give me a call ASAP.”

– Some messages may be important to one user but not others.



The Big Global/Local Feature Table



Predicting Importance of E-mail For New User

• Consider a new user:

– Start out with no information about them.

– Use global features to predict what is important to generic user.

• With more data, update global features and user’s local features:

– Local features make prediction personalized.

• G-mails system: classification with logistic regression.



Classification Using Regression?

• Usual approach to do binary classification with regression:

– Code yi as ‘+1’ for one class and ‘-1’ for the other class.

• Fit a linear regression model:

• Classify by take the sign (i.e., closer ‘-1’ or ‘+1’?):



Classification using Regression



Classification using Regression

• Can use our tricks (e.g., RBF basis, regularization) for classification.

• But, usual error functions do weird things:



Classification Using Regression

• What went wrong?

– “Good” errors vs. “bad” errors.



Classification Using Regression

• What went wrong?

– “Good” errors vs. “bad” errors.



Comparing Loss Functions



Comparing Loss Functions



Comparing Loss Functions



0-1 Loss Function and Tractable Approximations

• The 0-1 loss function is the number of errors after taking the sign.

– If a perfect classifier exists, you can find one as a linear program.

– Otherwise, it’s NP-hard to minimize 0-1 loss:

• We do not expect that efficient algorithms exist.

• Tractable alternatives to 0-1 loss:

– Hinge loss: upper-bound on 0-1 loss that can be written as linear program.

– Logistic loss: differentiable function similar to hinge loss.



0-1 Loss Function and Tractable Approximations



0-1 Loss Function and Tractable Approximations



Hinge Loss and Support Vector Machines

• Hinge loss is given by:

– Can be written as a linear program using our max trick.

– Solution will be a perfect classifier, if one exists.

• Support vector machine (SVM) is hinge loss with L2-regularization.

– Can be written as a quadratic program using our max trick
• Quadratic objective with linear constraints.

– Solution will be perfect classifier, if one exists and λ is small enough.

– Maximizes margin: maximizes distance of data to decision boundary.



Logistic Regression

• Logistic regression minimizes logistic loss:

• You can/should also add regularization:

• These can’t be written as linear/quadratic programs:

– But they’re differentiable: we’ll discuss how to solve them next time.



Logistic Regression and SVMs

• SVMs and logistic regression are used EVERYWHERE!

• Why?

– Training and testing are both fast, even for “large-scale” problems.

– It is easy to understand what the weights ‘wj’ mean.

– With high-dimensional features and regularization, often good test error.

– Otherwise, often good test error with RBF basis and regularization.

– For logistic regression, predictions have probabilistic interpretation.



Discussion: Probabilistic Interpretation

• Why is probabilistic interpretation important?

– We can return a probabilistic prediction:

– For complicated yi, it may be easier to define probability than loss.

– We can talk about maximizing utility:

Predict / True True ‘spam’ True ‘not spam’

Predict ‘spam’ TP: 0 FP: 100

Predict ‘not spam’ FN: 10 TN: 0



Maximum Likelihood and MAP Estimation

• Unregularized logistic regression is maximum likelihood solution:

– Maximize likelihood of data given model parameters.

– Problem with maximum likelihood:

• data could be very likely in some very unlikely model from family.

• E.g., complex model overfits by memorizing the data.

• Regularized logistic regression is MAP (maximum a posteriori):

– Model is a random variable, and we need to find most likely model.

– Can take into account that complex models are likely to overfit.



Multi-Class Logistic Regression

• Supposed yi takes values from an unordered discrete set of classes.

• Standard model: 

– Use a ‘d’-dimensional weight vector ‘wc’ for each class ‘c’.

– Try to make inner-product wc
Txi big when ‘c’ is the true label ‘yi’.

– Classify by finding largest inner-product:

(Also exist models for ordered classes or count data)
http://simpsons.wikia.com/wiki/Simpsons_Wiki



Multi-Class Logistic Regression



Course Roadmap

• Part 1: Overview of Machine Learning

– Linear models: change of basis, regularization, loss functions.

– Basics of learning theory: Training vs. test error, bias-variance, 
fundamental trade-off, no free lunch.

– Probabilistic learning principles: Maximum likelihood, MAP estimation, 
loss functions.

• Part 2: Large-scale machine learning.

– Why are SVMs/logistic easy while minimizing number of errors is hard?

– How do we fit these models to huge datasets?



Summary

• Regularization: allows complicated models by penalizing complexity.

• Radial basis functions: non-parametric universal basis.

• Robust regression models: more suitable when we have outliers.

• Converting non-smooth problems to constrained smooth problems.

• No free lunch: there is no ‘best’ machine learning model.

• SVMs and logistic regression: more suitable losses for classification.

• MLE and MAP: probabilistic interpretation to losses/regularizers.

• Softmax loss to model discrete yi, other losses can be derived.

– Next time: Why is logistic easy while minimizing number of errors is hard?


