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Motivation: Opening up the Black Box

Last time, we saw for non-smooth problems that using the
problem structure could lead to vastly improved performance.

E.g., proximal-gradient work much better than ‘black box’
sub-gradient methods.

This time, we talk about some more ways to take advantage
of problem structure.
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Other Ways of Using Problem Structure

Block Coordinate Descent

Stochastic Gradient

Other Techniques
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Block Coordinate Descent

Key idea:
1 Select some subset of the variables.
2 Exactly or approximately minimize with respect to subset.

Very effective when:
1 Minimization is very cheap.
2 Problem is close to separable, i.e. f (x) =

∑n
i=1 fi (xi ).

Variable-selection strategy:
1 Cyclic (cheap, works the worst).
2 Randomized.
3 Greedy (works the best, often expensive).

Can show convergence if:
1 Differentiable and minimizing subset is unique.
2 Non-differentiable part is separable with respect to subsets.
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Coordinate Descent for `1-Regularized Least Squares

Implement a coordinate-descent strategy for `1-regularized
least squares.

min
x
||Ax − b||2 + λ||x ||1.

You can use the sub-differential to exactly solve the
sub-problem.

This is called the ‘shooting’ algorithm.

Extension: block-coordinate descent with direct solver.
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Stochastic Gradient Descent

For problems where

f (x) =
1

n

n∑
i=1

fi (x).

Key idea:
1 Select some subset of the training examples Bk .
2 Take a gradient step using the approximation

∇f (xk) ≈ g(xk) =
1

|Bk |
∑
i∈Bk

fi (x).

Converges using a step size of αk = O(1/k).

Very effective when:
1 Number of training examples n is very large.
2 Gradient approximation is reasonable.

Randomized selection has faster (expected) convergence rate.
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Second-Order SGD and Polyak-Ruppert Averaging

We can show that
√
k(xk − x∗)

d→N (0,Σ),

where Σ depends on {αk} and the Fisher information matrix.

We can also consider Newton-like steps of the form

xk+1 = xk − αkHkg(xk).

The optimal Σ is given by choosing αk = O(1/k) and
Hk = ∇f (x∗).

In the 1980s, Polyak and Ruppert showed that the average of
the basic stochastic gradient iterations,

x̄k+1 =
1

k + 1

k+1∑
i=1

xi ,with xk+1 = xk − αk∇f (xk),

achieves the optimal Σ if αk = O(1/kβ), with β ∈ (1/2, 1).
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SGD for `2-Regularized Logistic Regression

Implement SGD for `2-regularized least squares,

min
x
||Ax − b||2 +

λ

2
||x ||2.

Compare using a step size of αk = O(1/k) to using
αk = O(1/

√
k) with averaging.

Be careful how you handle the regularizer:
1 You need to re-scale λ in the approximation.
2 For sparse A, you can track the norm of x instead of updating

every element.
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Finite-Differencing and Simultaneous Perturbation

Derivative-free stochastic gradient descent:

(1/n)∇j f (xk) ≈ ∇j fi (xk) ≈
fi (xk + εkej)− fi (xk − εkej)

2εk
.

Requires that εk → 0 slower than αk .

Simultaneous perturbation approximation:

(1/n)∇j f (xk) ≈ ∇j fi (xk) ≈ fi (xk + εkdk)− fi (xk − εkdk)

2εkdj
,

where di realizes a {−1, 1} Bernoulli random variable.

These have the same asymptotic convergence rate, but
simultaneous perturbation iterations only require two
evaluations per iteration.
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Non-Asymptotic Convergence for Convex Optimization

Algorithm Assumptions Deterministic Stochastic

Sub-Gradient BSG O(1/
√
k) O(1/

√
k)

Gradient LCG O(1/k) O(1/
√
k)

Nesterov LCG O(1/k2) O(1/
√
k)

Nesterov Smooth to LCG O(1/k) O(1/
√
k)

Sub-Gradient SC O( log kk ) O( log kk )
Average(SGD) SC O(1/k) O(1/k)
Gradient LCG+SC O((1− µ/L)k) O(1/k)

Nesterov LCG+SC O((1−
√
µ/L)k) O(1/k)

Quasi-Newton LCG+SC+LCH O(
∏k

i=1 ρi ), ρi → 0 O(1/k)

Deterministic methods only advantageous with continuity.

Smoothness does not help stochastic methods.

Stochastic methods achieve the deterministic rate up to some
fixed accuracy, and can achieve deterministic rates if noise
decreases appropriately.
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O(1/k) rate for SGD

Consider the stochastic gradient method

xk+1 = xk − αkg(xk),

with αk = 1
µk .

Assume that µI � ∇2f (x) � LI and that

M2 ≥ sup
x

E[||g(x)||2],

for some M.

Show that
E[f (xk)− f (x∗)] = O(1/k).
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Other Ways of Using Problem Structure

Block Coordinate Descent

Stochastic Gradient

Other Techniques
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