Practical Session on Convex Optimization: Exploiting Problem Structure

Mark Schmidt

INRIA/ENS

September 2011

• Last time, we saw for non-smooth problems that using the problem structure could lead to vastly improved performance.

- Last time, we saw for non-smooth problems that using the problem structure could lead to vastly improved performance.
- E.g., proximal-gradient work much better than 'black box' sub-gradient methods.

- Last time, we saw for non-smooth problems that using the problem structure could lead to vastly improved performance.
- E.g., proximal-gradient work much better than 'black box' sub-gradient methods.
- This time, we talk about some more ways to take advantage of problem structure.

Other Ways of Using Problem Structure

- Block Coordinate Descent
- Stochastic Gradient
- Other Techniques

- Key idea:
 - Select some subset of the variables.
 - ② Exactly or approximately minimize with respect to subset.

- Key idea:
 - Select some subset of the variables.
 - 2 Exactly or approximately minimize with respect to subset.
- Very effective when:
 - **1** Minimization is very cheap.
 - 2 Problem is close to separable, i.e. $f(x) = \sum_{i=1}^{n} f_i(x_i)$.

- Key idea:
 - Select some subset of the variables.
 - ② Exactly or approximately minimize with respect to subset.
- Very effective when:
 - Minimization is very cheap.
 - 2 Problem is close to separable, i.e. $f(x) = \sum_{i=1}^{n} f_i(x_i)$.
- Variable-selection strategy:
 - Cyclic (cheap, works the worst).
 - ② Randomized.
 - Greedy (works the best, often expensive).

- Key idea:
 - Select some subset of the variables.
 - ② Exactly or approximately minimize with respect to subset.
- Very effective when:
 - Minimization is very cheap.
 - 2 Problem is close to separable, i.e. $f(x) = \sum_{i=1}^{n} f_i(x_i)$.
- Variable-selection strategy:
 - Cyclic (cheap, works the worst).
 - ② Randomized.
 - Greedy (works the best, often expensive).
- Can show convergence if:
 - Differentiable and minimizing subset is unique.
 - ② Non-differentiable part is separable with respect to subsets.

• Implement a coordinate-descent strategy for ℓ_1 -regularized least squares.

$$\min_{x} ||Ax - b||^2 + \lambda ||x||_1.$$

- You can use the sub-differential to exactly solve the sub-problem.
- This is called the 'shooting' algorithm.

• Implement a coordinate-descent strategy for ℓ_1 -regularized least squares.

$$\min_{x} ||Ax - b||^2 + \lambda ||x||_1.$$

- You can use the sub-differential to exactly solve the sub-problem.
- This is called the 'shooting' algorithm.
- Extension: block-coordinate descent with direct solver.

Other Ways of Using Problem Structure

- Block Coordinate Descent
- Stochastic Gradient
- Other Techniques

• For problems where

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x).$$

• For problems where

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x).$$

- Key idea:
 - **1** Select some subset of the training examples \mathcal{B}_k .
 - 2 Take a gradient step using the approximation

$$abla f(x_k) pprox g(x_k) = rac{1}{|\mathcal{B}_k|} \sum_{i \in \mathcal{B}_k} f_i(x).$$

• For problems where

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x).$$

• Key idea:

1 Select some subset of the training examples \mathcal{B}_k .

2 Take a gradient step using the approximation

$$abla f(x_k) pprox g(x_k) = rac{1}{|\mathcal{B}_k|} \sum_{i \in \mathcal{B}_k} f_i(x).$$

- Converges using a step size of $\alpha_k = O(1/k)$.
- Very effective when:
 - Number of training examples n is very large.
 - ② Gradient approximation is reasonable.

For problems where

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x).$$

• Key idea:

1 Select some subset of the training examples \mathcal{B}_k .

Take a gradient step using the approximation 2

$$abla f(x_k) pprox g(x_k) = rac{1}{|\mathcal{B}_k|} \sum_{i \in \mathcal{B}_k} f_i(x).$$

- Converges using a step size of $\alpha_k = O(1/k)$.
- Very effective when:
 - Number of training examples n is very large.
 - Q Gradient approximation is reasonable.
- Randomized selection has faster (expected) convergence rate.

We can show that

$$\sqrt{k}(x_k - x_*) \xrightarrow{d} \mathcal{N}(0, \Sigma),$$

where Σ depends on $\{\alpha_k\}$ and the Fisher information matrix.

We can show that

$$\sqrt{k}(x_k - x_*) \stackrel{d}{\rightarrow} \mathcal{N}(0, \Sigma),$$

where Σ depends on $\{\alpha_k\}$ and the Fisher information matrix. • We can also consider Newton-like steps of the form

$$x_{k+1} = x_k - \alpha_k H_k g(x_k).$$

We can show that

$$\sqrt{k}(x_k - x_*) \stackrel{d}{\rightarrow} \mathcal{N}(0, \Sigma),$$

where Σ depends on $\{\alpha_k\}$ and the Fisher information matrix. • We can also consider Newton-like steps of the form

$$x_{k+1} = x_k - \alpha_k H_k g(x_k).$$

• The optimal Σ is given by choosing $\alpha_k = O(1/k)$ and $H_k = \nabla f(x_*)$.

We can show that

$$\sqrt{k}(x_k - x_*) \xrightarrow{d} \mathcal{N}(0, \Sigma),$$

where $\pmb{\Sigma}$ depends on $\{\alpha_k\}$ and the Fisher information matrix.

• We can also consider Newton-like steps of the form

$$x_{k+1} = x_k - \alpha_k H_k g(x_k).$$

- The optimal Σ is given by choosing $\alpha_k = O(1/k)$ and $H_k = \nabla f(x_*)$.
- In the 1980s, Polyak and Ruppert showed that the average of the basic stochastic gradient iterations,

$$\bar{x}_{k+1} = \frac{1}{k+1} \sum_{i=1}^{k+1} x_i$$
, with $x_{k+1} = x_k - \alpha_k \nabla f(x_k)$,

achieves the optimal Σ if $\alpha_k = O(1/k^{\beta})$, with $\beta \in (1/2, 1)$.

SGD for ℓ_2 -Regularized Logistic Regression

• Implement SGD for ℓ_2 -regularized least squares,

$$\min_{x} ||Ax - b||^2 + \frac{\lambda}{2} ||x||^2.$$

• Compare using a step size of $\alpha_k = O(1/k)$ to using $\alpha_k = O(1/\sqrt{k})$ with averaging.

SGD for ℓ_2 -Regularized Logistic Regression

• Implement SGD for ℓ_2 -regularized least squares,

$$\min_{x} ||Ax - b||^2 + \frac{\lambda}{2} ||x||^2.$$

- Compare using a step size of $\alpha_k = O(1/k)$ to using $\alpha_k = O(1/\sqrt{k})$ with averaging.
- Be careful how you handle the regularizer:
 - **①** You need to re-scale λ in the approximation.
 - Por sparse A, you can track the norm of x instead of updating every element.

Finite-Differencing and Simultaneous Perturbation

• Derivative-free stochastic gradient descent:

$$(1/n)\nabla_j f(x_k) \approx \nabla_j f_i(x_k) \approx \frac{f_i(x_k + \epsilon_k e_j) - f_i(x_k - \epsilon_k e_j)}{2\epsilon_k}.$$

• Requires that $\epsilon_k \to 0$ slower than α_k .

Finite-Differencing and Simultaneous Perturbation

• Derivative-free stochastic gradient descent:

$$(1/n)\nabla_j f(x_k) \approx \nabla_j f_i(x_k) \approx \frac{f_i(x_k + \epsilon_k e_j) - f_i(x_k - \epsilon_k e_j)}{2\epsilon_k}$$

- Requires that $\epsilon_k \to 0$ slower than α_k .
- Simultaneous perturbation approximation:

$$(1/n)
abla_j f(x_k) pprox
abla_j f_i(x_k) pprox rac{f_i(x_k + \epsilon_k d_k) - f_i(x_k - \epsilon_k d_k)}{2\epsilon_k d_j},$$

where d_i realizes a $\{-1, 1\}$ Bernoulli random variable.

Finite-Differencing and Simultaneous Perturbation

• Derivative-free stochastic gradient descent:

$$(1/n)\nabla_j f(x_k) \approx \nabla_j f_i(x_k) \approx \frac{f_i(x_k + \epsilon_k e_j) - f_i(x_k - \epsilon_k e_j)}{2\epsilon_k}.$$

- Requires that $\epsilon_k \to 0$ slower than α_k .
- Simultaneous perturbation approximation:

$$(1/n)
abla_j f(x_k) pprox
abla_j f_i(x_k) pprox rac{f_i(x_k + \epsilon_k d_k) - f_i(x_k - \epsilon_k d_k)}{2\epsilon_k d_j},$$

where d_i realizes a $\{-1, 1\}$ Bernoulli random variable.

• These have the same asymptotic convergence rate, but simultaneous perturbation iterations only require two evaluations per iteration.

Algorithm	Assumptions	Deterministic	Stochastic
-----------	-------------	---------------	------------

Algorithm	Assumptions	Deterministic	Stochastic
Sub-Gradient	BSG		

Algorithm	Assumptions	Deterministic	Stochastic
Sub-Gradient	BSG	$O(1/\sqrt{k})$	

Algorithm	Assumptions	Deterministic	Stochastic
Sub-Gradient	BSG	$O(1/\sqrt{k})$	$O(1/\sqrt{k})$

Algorithm	Assumptions	Deterministic	Stochastic
Sub-Gradient	BSG	$O(1/\sqrt{k})$	$O(1/\sqrt{k})$
Gradient	LCG		

Algorithm	Assumptions	Deterministic	Stochastic
Sub-Gradient	BSG	$O(1/\sqrt{k})$	$O(1/\sqrt{k})$
Gradient	LCG	O(1/k)	

Algorithm	Assumptions	Deterministic	Stochastic
Sub-Gradient	BSG	$O(1/\sqrt{k})$	$O(1/\sqrt{k})$
Gradient	LCG	O(1/k)	$O(1/\sqrt{k})$

Algorithm	Assumptions	Deterministic	Stochastic
Sub-Gradient	BSG	$O(1/\sqrt{k})$	$O(1/\sqrt{k})$
Gradient	LCG	O(1/k)	$O(1/\sqrt{k})$
Nesterov	LCG		'

Algorithm	Assumptions	Deterministic	Stochastic
Sub-Gradient	BSG	$O(1/\sqrt{k})$	$O(1/\sqrt{k})$
Gradient	LCG	O(1/k)	$O(1/\sqrt{k})$
Nesterov	LCG	$O(1/k^2)$	

Algorithm	Assumptions	Deterministic	Stochastic
Sub-Gradient	BSG	$O(1/\sqrt{k})$	$O(1/\sqrt{k})$
Gradient	LCG	O(1/k)	$O(1/\sqrt{k})$
Nesterov	LCG	$O(1/k^2)$	$O(1/\sqrt{k})$

Algorithm	Assumptions	Deterministic	Stochastic
Sub-Gradient	BSG	$O(1/\sqrt{k})$	$O(1/\sqrt{k})$
Gradient	LCG	O(1/k)	$O(1/\sqrt{k})$
Nesterov	LCG	$O(1/k^2)$	$O(1/\sqrt{k})$
Nesterov	Smooth to LCG		

Algorithm	Assumptions	Deterministic	Stochastic
Sub-Gradient	BSG	$O(1/\sqrt{k})$	$O(1/\sqrt{k})$
Gradient	LCG	O(1/k)	$O(1/\sqrt{k})$
Nesterov	LCG	$O(1/k^2)$	$O(1/\sqrt{k})$
Nesterov	Smooth to LCG	O(1/k)	

Algorithm	Assumptions	Deterministic	Stochastic
Sub-Gradient	BSG	$O(1/\sqrt{k})$	$O(1/\sqrt{k})$
Gradient	LCG	O(1/k)	$O(1/\sqrt{k})$
Nesterov	LCG	$O(1/k^2)$	$O(1/\sqrt{k})$
Nesterov	Smooth to LCG	O(1/k)	$O(1/\sqrt{k})$

Algorithm	Assumptions	Deterministic	Stochastic
Sub-Gradient	BSG	$O(1/\sqrt{k})$	$O(1/\sqrt{k})$
Gradient	LCG	O(1/k)	$O(1/\sqrt{k})$
Nesterov	LCG	$O(1/k^2)$	$O(1/\sqrt{k})$
Nesterov	Smooth to LCG	O(1/k)	$O(1/\sqrt{k})$
Sub-Gradient	SC		

Algorithm	Assumptions	Deterministic	Stochastic
Sub-Gradient	BSG	$O(1/\sqrt{k})$	$O(1/\sqrt{k})$
Gradient	LCG	O(1/k)	$O(1/\sqrt{k})$
Nesterov	LCG	$O(1/k^2)$	$O(1/\sqrt{k})$
Nesterov	Smooth to LCG	O(1/k)	$O(1/\sqrt{k})$
Sub-Gradient	SC	$O(\frac{\log k}{k})$	

Algorithm	Assumptions	Deterministic	Stochastic
Sub-Gradient	BSG	$O(1/\sqrt{k})$	$O(1/\sqrt{k})$
Gradient	LCG	O(1/k)	$O(1/\sqrt{k})$
Nesterov	LCG	$O(1/k^2)$	$O(1/\sqrt{k})$
Nesterov	Smooth to LCG	O(1/k)	$O(1/\sqrt{k})$
Sub-Gradient	SC	$O(\frac{\log k}{k})$	$O(\frac{\log k}{k})$

Algorithm	Assumptions	Deterministic	Stochastic
Sub-Gradient	BSG	$O(1/\sqrt{k})$	$O(1/\sqrt{k})$
Gradient	LCG	O(1/k)	$O(1/\sqrt{k})$
Nesterov	LCG	$O(1/k^2)$	$O(1/\sqrt{k})$
Nesterov	Smooth to LCG	O(1/k)	$O(1/\sqrt{k})$
Sub-Gradient	SC	$O(\frac{\log k}{k})$	$O(\frac{\log k}{k})$
Average(SGD)	SC		

Algorithm	Assumptions	Deterministic	Stochastic
Sub-Gradient	BSG	$O(1/\sqrt{k})$	$O(1/\sqrt{k})$
Gradient	LCG	O(1/k)	$O(1/\sqrt{k})$
Nesterov	LCG	$O(1/k^2)$	$O(1/\sqrt{k})$
Nesterov	Smooth to LCG	O(1/k)	$O(1/\sqrt{k})$
Sub-Gradient	SC	$O(\frac{\log k}{k})$	$O(\frac{\log k}{k})$
Average(SGD)	SC	O(1/k)	

Algorithm	Assumptions	Deterministic	Stochastic
Sub-Gradient	BSG	$O(1/\sqrt{k})$	$O(1/\sqrt{k})$
Gradient	LCG	O(1/k)	$O(1/\sqrt{k})$
Nesterov	LCG	$O(1/k^2)$	$O(1/\sqrt{k})$
Nesterov	Smooth to LCG	O(1/k)	$O(1/\sqrt{k})$
Sub-Gradient	SC	$O(\frac{\log k}{k})$	$O(\frac{\log k}{k})$
Average(SGD)	SC	O(1/k)	O(1/k)

Algorithm	Assumptions	Deterministic	Stochastic
Sub-Gradient	BSG	$O(1/\sqrt{k})$	$O(1/\sqrt{k})$
Gradient	LCG	O(1/k)	$O(1/\sqrt{k})$
Nesterov	LCG	$O(1/k^2)$	$O(1/\sqrt{k})$
Nesterov	Smooth to LCG	O(1/k)	$O(1/\sqrt{k})$
Sub-Gradient	SC	$O(\frac{\log k}{k})$	$O(\frac{\log k}{k})$
Average(SGD)	SC	O(1/k)	O(1/k)
Gradient	LCG+SC		

Algorithm	Assumptions	Deterministic	Stochastic
Sub-Gradient	BSG	$O(1/\sqrt{k})$	$O(1/\sqrt{k})$
Gradient	LCG	O(1/k)	$O(1/\sqrt{k})$
Nesterov	LCG	$O(1/k^2)$	$O(1/\sqrt{k})$
Nesterov	Smooth to LCG	O(1/k)	$O(1/\sqrt{k})$
Sub-Gradient	SC	$O(\frac{\log k}{k})$	$O(\frac{\log k}{k})$
Average(SGD)	SC	O(1/k)	O(1/k)
Gradient	LCG+SC	$O((1-\mu/L)^k)$	

Algorithm	Assumptions	Deterministic	Stochastic
Sub-Gradient	BSG	$O(1/\sqrt{k})$	$O(1/\sqrt{k})$
Gradient	LCG	O(1/k)	$O(1/\sqrt{k})$
Nesterov	LCG	$O(1/k^2)$	$O(1/\sqrt{k})$
Nesterov	Smooth to LCG	O(1/k)	$O(1/\sqrt{k})$
Sub-Gradient	SC	$O(\frac{\log k}{k})$	$O(\frac{\log k}{k})$
Average(SGD)	SC	O(1/k)	O(1/k)
Gradient	LCG+SC	$O((1-\mu/L)^k)$	O(1/k)

Algorithm	Assumptions	Deterministic	Stochastic
Sub-Gradient	BSG	$O(1/\sqrt{k})$	$O(1/\sqrt{k})$
Gradient	LCG	O(1/k)	$O(1/\sqrt{k})$
Nesterov	LCG	$O(1/k^2)$	$O(1/\sqrt{k})$
Nesterov	Smooth to LCG	O(1/k)	$O(1/\sqrt{k})$
Sub-Gradient	SC	$O(\frac{\log k}{k})$	$O(\frac{\log k}{k})$
Average(SGD)	SC	O(1/k)	O(1/k)
Gradient	LCG+SC	$O((1-\mu/L)^k)$	O(1/k)
Nesterov	LCG+SC		

Algorithm	Assumptions	Deterministic	Stochastic
Sub-Gradient	BSG	$O(1/\sqrt{k})$	$O(1/\sqrt{k})$
Gradient	LCG	O(1/k)	$O(1/\sqrt{k})$
Nesterov	LCG	$O(1/k^2)$	$O(1/\sqrt{k})$
Nesterov	Smooth to LCG	O(1/k)	$O(1/\sqrt{k})$
Sub-Gradient	SC	$O(\frac{\log k}{k})$	$O(\frac{\log k}{k})$
Average(SGD)	SC	O(1/k)	O(1/k)
Gradient	LCG+SC	$O((1-\mu/L)^k)$	O(1/k)
Nesterov	LCG+SC	$O((1-\sqrt{\mu/L})^k)$	

Algorithm	Assumptions	Deterministic	Stochastic
Sub-Gradient	BSG	$O(1/\sqrt{k})$	$O(1/\sqrt{k})$
Gradient	LCG	O(1/k)	$O(1/\sqrt{k})$
Nesterov	LCG	$O(1/k^2)$	$O(1/\sqrt{k})$
Nesterov	Smooth to LCG	O(1/k)	$O(1/\sqrt{k})$
Sub-Gradient	SC	$O(\frac{\log k}{k})$	$O(\frac{\log k}{k})$
Average(SGD)	SC	O(1/k)	O(1/k)
Gradient	LCG+SC	$O((1-\mu/L)^k)$	O(1/k)
Nesterov	LCG+SC	$O((1-\sqrt{\mu/L})^k)$	O(1/k)

Algorithm	Assumptions	Deterministic	Stochastic
Sub-Gradient	BSG	$O(1/\sqrt{k})$	$O(1/\sqrt{k})$
Gradient	LCG	O(1/k)	$O(1/\sqrt{k})$
Nesterov	LCG	$O(1/k^2)$	$O(1/\sqrt{k})$
Nesterov	Smooth to LCG	O(1/k)	$O(1/\sqrt{k})$
Sub-Gradient	SC	$O(\frac{\log k}{k})$	$O(\frac{\log k}{k})$
Average(SGD)	SC	O(1/k)	O(1/k)
Gradient	LCG+SC	$O((1-\mu/L)^k)$	O(1/k)
Nesterov	LCG+SC	$O((1-\sqrt{\mu/L})^k)$	O(1/k)
Quasi-Newton	LCG+SC+LCH		'

Algorithm	Assumptions	Deterministic	Stochastic
Sub-Gradient	BSG	$O(1/\sqrt{k})$	$O(1/\sqrt{k})$
Gradient	LCG	O(1/k)	$O(1/\sqrt{k})$
Nesterov	LCG	$O(1/k^2)$	$O(1/\sqrt{k})$
Nesterov	Smooth to LCG	O(1/k)	$O(1/\sqrt{k})$
Sub-Gradient	SC	$O(\frac{\log k}{k})$	$O(\frac{\log k}{k})$
Average(SGD)	SC	O(1/k)	O(1/k)
Gradient	LCG+SC	$O((1-\mu/L)^k)$	O(1/k)
Nesterov	LCG+SC	$O((1-\sqrt{\mu/L})^k)$	O(1/k)
Quasi-Newton	LCG+SC+LCH	$O(\prod_{i=1}^k \rho_i), \rho_i \to 0$	

Algorithm	Assumptions	Deterministic	Stochastic
Sub-Gradient	BSG	$O(1/\sqrt{k})$	$O(1/\sqrt{k})$
Gradient	LCG	O(1/k)	$O(1/\sqrt{k})$
Nesterov	LCG	$O(1/k^2)$	$O(1/\sqrt{k})$
Nesterov	Smooth to LCG	O(1/k)	$O(1/\sqrt{k})$
Sub-Gradient	SC	$O(\frac{\log k}{k})$	$O(\frac{\log k}{k})$
Average(SGD)	SC	O(1/k)	O(1/k)
Gradient	LCG+SC	$O((1-\mu/L)^k)$	O(1/k)
Nesterov	LCG+SC	$O((1-\sqrt{\mu/L})^k)$	O(1/k)
Quasi-Newton	LCG+SC+LCH	$O(\prod_{i=1}^k \rho_i), \rho_i \to 0$	O(1/k)

Algorithm	Assumptions	Deterministic	Stochastic
Sub-Gradient	BSG	$O(1/\sqrt{k})$	$O(1/\sqrt{k})$
Gradient	LCG	O(1/k)	$O(1/\sqrt{k})$
Nesterov	LCG	$O(1/k^2)$	$O(1/\sqrt{k})$
Nesterov	Smooth to LCG	O(1/k)	$O(1/\sqrt{k})$
Sub-Gradient	SC	$O(\frac{\log k}{k})$	$O(\frac{\log k}{k})$
Average(SGD)	SC	O(1/k)	O(1/k)
Gradient	LCG+SC	$O((1-\mu/L)^k)$	O(1/k)
Nesterov	LCG+SC	$O((1-\sqrt{\mu/L})^k)$	O(1/k)
Quasi-Newton	LCG+SC+LCH	$O(\prod_{i=1}^k \rho_i), \rho_i \to 0$	O(1/k)

- Deterministic methods only advantageous with continuity.
- Smoothness does not help stochastic methods.
- Stochastic methods achieve the deterministic rate up to some fixed accuracy, and can achieve deterministic rates if noise decreases appropriately.

O(1/k) rate for SGD

• Consider the stochastic gradient method

$$x_{k+1} = x_k - \alpha_k g(x_k),$$

with $\alpha_k = \frac{1}{\mu k}$. • Assume that $\mu I \preceq \nabla^2 f(x) \preceq LI$ and that

$$M^2 \ge \sup_{x} \mathbb{E}[||g(x)||^2],$$

for some M.

Show that

$$\mathbb{E}[f(x_k) - f(x_*)] = O(1/k).$$

Other Ways of Using Problem Structure

- Block Coordinate Descent
- Stochastic Gradient
- Other Techniques

- For coordinate descent methods, see "Nonlinear Programming" by Dimitri Bertsekas, the papers of Paul Tseng, and the recent report by Yuri Nesterov.
- For stochastic gradient methods, see Dimitri Bertsekas' "Neurodynamic Programming" book for convergence, "Introduction to Stochastic Search and Optimization" by James Spall for asymptotic rates, and for non-asymptotic rates see Arkadi Nemirovki's "Efficient Methods in Convex Programming".