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Motivation: Opening up the Black Box

@ Last time, we saw for non-smooth problems that using the
problem structure could lead to vastly improved performance.
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Motivation: Opening up the Black Box

@ Last time, we saw for non-smooth problems that using the
problem structure could lead to vastly improved performance.

o E.g., proximal-gradient work much better than ‘black box’
sub-gradient methods.

@ This time, we talk about some more ways to take advantage
of problem structure.

Mark Schmidt MLSS 2011 Exploiting Problem Structure



Other Ways of Using Problem Structure

@ Block Coordinate Descent
@ Stochastic Gradient
@ Other Techniques
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Block Coordinate Descent

o Key idea:
@ Select some subset of the variables.
@ Exactly or approximately minimize with respect to subset.

Mark Schmidt MLSS 2011 Exploiting Problem Structure



Block Coordinate Descent

o Key idea:
@ Select some subset of the variables.
@ Exactly or approximately minimize with respect to subset.

@ Very effective when:
© Minimization is very cheap.
@ Problem is close to separable, i.e. f(x) =1, fi(x).
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Block Coordinate Descent

o Key idea:
@ Select some subset of the variables.
@ Exactly or approximately minimize with respect to subset.

@ Very effective when:

© Minimization is very cheap.

@ Problem is close to separable, i.e. f(x) =1, fi(x).
@ Variable-selection strategy:

@ Cyclic (cheap, works the worst).
@ Randomized.
© Greedy (works the best, often expensive).
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Block Coordinate Descent

o Key idea:
@ Select some subset of the variables.
@ Exactly or approximately minimize with respect to subset.

@ Very effective when:

© Minimization is very cheap.

@ Problem is close to separable, i.e. f(x) =1, fi(x).
@ Variable-selection strategy:

@ Cyclic (cheap, works the worst).
@ Randomized.
© Greedy (works the best, often expensive).

o Can show convergence if:

© Differentiable and minimizing subset is unique.
@ Non-differentiable part is separable with respect to subsets.
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Coordinate Descent for /1-Regularized Least Squares

@ Implement a coordinate-descent strategy for ¢1-regularized

least squares.
min || Ax — b||* + A||x]]1.

@ You can use the sub-differential to exactly solve the
sub-problem.

@ This is called the ‘shooting’ algorithm.
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Coordinate Descent for /1-Regularized Least Squares

@ Implement a coordinate-descent strategy for ¢1-regularized
least squares.
min [|Ax — b||* + \||x||1.
X

@ You can use the sub-differential to exactly solve the
sub-problem.
@ This is called the ‘shooting’ algorithm.

@ Extension: block-coordinate descent with direct solver.
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Other Ways of Using Problem Structure

@ Block Coordinate Descent
@ Stochastic Gradient
@ Other Techniques
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Stochastic Gradient Descent

@ For problems where
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Stochastic Gradient Descent

@ For problems where

=23
i=1

o Key idea:
@ Select some subset of the training examples By.
@ Take a gradient step using the approximation

Vf(Xk) Xk |B | Zf

i€EBk
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Stochastic Gradient Descent

@ For problems where

=23
i=1

o Key idea:
@ Select some subset of the training examples By.
@ Take a gradient step using the approximation

Vf(Xk) Xk Z f
‘B | i€EBk
e Converges using a step size of ay = O(1/k).
@ Very effective when:

© Number of training examples n is very large.
@ Gradient approximation is reasonable.
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Stochastic Gradient Descent

@ For problems where

=23
i=1

o Key idea:
@ Select some subset of the training examples By.
@ Take a gradient step using the approximation

Vf(Xk) Xk Z f
‘B | i€EBk
e Converges using a step size of ay = O(1/k).
@ Very effective when:

© Number of training examples n is very large.
@ Gradient approximation is reasonable.

e Randomized selection has faster (expected) convergence rate.
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Second-Order SGD and Polyak-Ruppert Averaging

@ We can show that
Vk(x — x)3N(0, ),

where ¥ depends on {ay} and the Fisher information matrix.
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Second-Order SGD and Polyak-Ruppert Averaging

@ We can show that
Vk(x — x)3N(0, ),

where ¥ depends on {ay} and the Fisher information matrix.
@ We can also consider Newton-like steps of the form

Xk+1 = Xk — akag(xk).
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Second-Order SGD and Polyak-Ruppert Averaging

@ We can show that
Vk(x — x)3N(0, ),

where ¥ depends on {ay} and the Fisher information matrix.
@ We can also consider Newton-like steps of the form

Xk+1 = Xk — akag(xk).

@ The optimal X is given by choosing oy = O(1/k) and
Hk = Vf(X*)
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Second-Order SGD and Polyak-Ruppert Averaging

@ We can show that
Vk(x — x)3N(0, ),

where ¥ depends on {ay} and the Fisher information matrix.
@ We can also consider Newton-like steps of the form

Xk+1 = Xk — akag(Xk).
@ The optimal X is given by choosing oy = O(1/k) and
Hk = Vf(X*)
@ In the 1980s, Polyak and Ruppert showed that the average of
the basic stochastic gradient iterations,
k+1

Zx;,with Xk+1 = Xk — o, VF(xk),
i=1

1

Xk+1 = 7/(—1—1

achieves the optimal  if a, = O(1/k?), with 3 € (1/2,1).
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SGD for /,-Regularized Logistic Regression

@ Implement SGD for />-regularized least squares,
: A
min ||Ax — b||? + Z||x||2.
x 2

o Compare using a step size of oy = O(1/k) to using
ax = O(1/Vk) with averaging.
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SGD for /,-Regularized Logistic Regression

@ Implement SGD for />-regularized least squares,
: A
min ||Ax — b||? + Z||x||2.
x 2

o Compare using a step size of ay = O(1/k) to using
ax = O(1/Vk) with averaging.
@ Be careful how you handle the regularizer:

© You need to re-scale X in the approximation.
@ For sparse A, you can track the norm of x instead of updating
every element.
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Finite-Differencing and Simultaneous Perturbation

@ Derivative-free stochastic gradient descent:

fi(xk + exej) — fi(xk — exey)
26y '

(1/n)ij(Xk) ~ ij,'(xk) ~

@ Requires that €, — 0 slower than ay.

Mark Schmidt MLSS 2011 Exploiting Problem Structure



Finite-Differencing and Simultaneous Perturbation

@ Derivative-free stochastic gradient descent:

(/) V() = Vi) = 0% Ekef)z b = ekey).
€k

@ Requires that €, — 0 slower than ay.

@ Simultaneous perturbation approximation:

(1/n)V () = V() o 0% k) — Filo = cxdl)
2¢d;

where d; realizes a {—1,1} Bernoulli random variable.
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Finite-Differencing and Simultaneous Perturbation

@ Derivative-free stochastic gradient descent:

(/) V() = Vi) = 0% Ekef)z b = ekey).
€k

@ Requires that €, — 0 slower than ay.

@ Simultaneous perturbation approximation:

(1/m) V5 () = i) m 0000 = B = )
2¢d;

where d; realizes a {—1,1} Bernoulli random variable.

@ These have the same asymptotic convergence rate, but
simultaneous perturbation iterations only require two
evaluations per iteration.
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Non-Asymptotic Convergence for Convex Optimization

Algorithm ‘ Assumptions ‘ Deterministic ‘Stochastic

Mark Schmidt MLSS 2011 Exploiting Problem Structure



Non-Asymptotic Convergence for Convex Optimization

Algorithm ‘ Assumptions ‘ Deterministic ‘Stochastic
Sub-Gradient ‘ BSG ‘
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Non-Asymptotic Convergence for Convex Optimization

Algorithm ‘ Assumptions ‘ Deterministic ‘Stochastic

Sub-Gradient ‘ BSG ‘ O(1/Vk) ‘
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Non-Asymptotic Convergence for Convex Optimization

Algorithm ‘ Assumptions ‘ Deterministic ‘Stochastic

Sub-Gradient | BSG | 0(1/Vk) | 0(1/Vk)
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Non-Asymptotic Convergence for Convex Optimization

Algorithm ‘ Assumptions ‘ Deterministic ‘ Stochastic
Sub-Gradient BSG 0(1/Vk) | 0(1/Vk)
Gradient LCG
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Non-Asymptotic Convergence for Convex Optimization

Algorithm ‘ Assumptions ‘ Deterministic ‘ Stochastic
Sub-Gradient BSG O(1/Vk) O(1/Vk)
Gradient LCG O(1/k)
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Non-Asymptotic Convergence for Convex Optimization

Algorithm ‘ Assumptions ‘ Deterministic ‘ Stochastic
Sub-Gradient BSG O(1/Vk) O(1/Vk)
Gradient LCG O(1/k) 0(1/Vk)
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Non-Asymptotic Convergence for Convex Optimization

Algorithm ‘ Assumptions Deterministic
Sub-Gradient BSG 0(1/Vk)
Gradient LCG O(1/k)
Nesterov LCG
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Non-Asymptotic Convergence for Convex Optimization

Algorithm ‘ Assumptions Deterministic
Sub-Gradient BSG 0(1/Vk)
Gradient LCG O(1/k)
Nesterov LCG O(1/k?)
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Non-Asymptotic Convergence for Convex Optimization

Algorithm ‘ Assumptions Deterministic
Sub-Gradient BSG 0(1/Vk)
Gradient LCG O(1/k)
Nesterov LCG O(1/k?)
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Non-Asymptotic Convergence for Convex Optimization

Algorithm ‘ Assumptions Deterministic
Sub-Gradient BSG 0(1/Vk)
Gradient LCG O(1/k)
Nesterov LCG O(1/k?)
Nesterov Smooth to LCG
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Non-Asymptotic Convergence for Convex Optimization

Algorithm ‘ Assumptions ‘ Deterministic ‘ Stochastic
Sub-Gradient BSG O(1/Vk) 0(1/Vk)
Gradient LCG O(1/k) 0(1/Vk)
Nesterov LCG O(1/k?) O(1/Vk)
Nesterov Smooth to LCG O(1/k)
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Non-Asymptotic Convergence for Convex Optimization

Algorithm ‘ Assumptions Deterministic

Sub-Gradient BSG 0(1/Vk)

Gradient LCG O(1/k)

Nesterov LCG O(1/k?)

Nesterov Smooth to LCG O(1/k)
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Non-Asymptotic Convergence for Convex Optimization

Algorithm Assumptions Deterministic ‘ Stochastic
Sub-Gradient BSG O(1/Vk) 0(1/Vk)
Gradient LCG O(1/k) 0(1/Vk)
Nesterov LCG O(1/k?) O(1/Vk)
Nesterov Smooth to LCG O(1/k) 0(1/Vk)
Sub-Gradient SC
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Non-Asymptotic Convergence for Convex Optimization

Algorithm Assumptions Deterministic Stochastic
Sub-Gradient BSG O(1/Vk) 0(1/Vk)
Gradient LCG O(1/k) 0(1/Vk)
Nesterov LCG O(1/k?) O(1/Vk)
Nesterov Smooth to LCG O(1/k) 0(1/Vk)
Sub-Gradient SC O( '8k
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Non-Asymptotic Convergence for Convex Optimization

Algorithm Assumptions Deterministic Stochastic
Sub-Gradient BSG O(1/Vk) 0(1/Vk)
Gradient LCG O(1/k) 0(1/Vk)
Nesterov LCG O(1/k?) O(1/Vk)
Nesterov Smooth to LCG O(1/k) 0(1/Vk)
Sub-Gradient SC O( '8k O('ek)
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Non-Asymptotic Convergence for Convex Optimization

Algorithm Assumptions Deterministic Stochastic
Sub-Gradient BSG O(1/Vk) 0(1/Vk)
Gradient LCG O(1/k) 0(1/Vk)
Nesterov LCG O(1/k?) O(1/Vk)
Nesterov Smooth to LCG O(1/k) 0(1/Vk)
Sub-Gradient SC O( '8k O('ek)
Average(SGD) SC
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Non-Asymptotic Convergence for Convex Optimization

Algorithm Assumptions Deterministic Stochastic
Sub-Gradient BSG O(1/Vk) 0(1/Vk)
Gradient LCG O(1/k) 0(1/Vk)
Nesterov LCG O(1/k?) O(1/Vk)
Nesterov Smooth to LCG O(1/k) 0(1/Vk)
Sub-Gradient SC O( '8k O('ek)
Average(SGD) SC O(1/k)
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Non-Asymptotic Convergence for Convex Optimization

Algorithm Assumptions Deterministic Stochastic
Sub-Gradient BSG O(1/Vk) 0(1/Vk)
Gradient LCG O(1/k) 0(1/Vk)
Nesterov LCG O(1/k?) O(1/Vk)
Nesterov Smooth to LCG O(1/k) 0(1/Vk)
Sub-Gradient SC O( '8k O('ek)

Average(SGD) SC O(1/k) O(1/k)
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Non-Asymptotic Convergence for Convex Optimization

Algorithm Assumptions Deterministic Stochastic
Sub-Gradient BSG O(1/Vk) 0(1/Vk)
Gradient LCG O(1/k) 0(1/Vk)
Nesterov LCG O(1/k?) O(1/Vk)
Nesterov Smooth to LCG O(1/k) 0(1/Vk)
Sub-Gradient SC O( '8k O('ek)
Average(SGD) SC O(1/k) O(1/k)
Gradient LCG+SC
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Non-Asymptotic Convergence for Convex Optimization

Algorithm Assumptions Deterministic Stochastic
Sub-Gradient BSG O(1/Vk) 0(1/Vk)
Gradient LCG O(1/k) 0(1/Vk)
Nesterov LCG O(1/k?) O(1/Vk)
Nesterov Smooth to LCG O(1/k) 0(1/Vk)
Sub-Gradient SC O( '8k O('ek)
Average(SGD) SC O(1/k) O(1/k)
Gradient LCG+SC O((1 — p/L)%)
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Non-Asymptotic Convergence for Convex Optimization

Algorithm Assumptions Deterministic Stochastic
Sub-Gradient BSG O(1/Vk) 0(1/Vk)
Gradient LCG O(1/k) 0(1/Vk)
Nesterov LCG O(1/k?) O(1/Vk)
Nesterov Smooth to LCG O(1/k) 0(1/Vk)
Sub-Gradient SC O( '8k O('ek)
Average(SGD) SC O(1/k) O(1/k)
Gradient LCG+SC O((1 — p/L)%) O(1/k)
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Non-Asymptotic Convergence for Convex Optimization

Algorithm Assumptions Deterministic Stochastic
Sub-Gradient BSG O(1/Vk) 0(1/Vk)
Gradient LCG O(1/k) 0(1/Vk)
Nesterov LCG O(1/k?) O(1/Vk)
Nesterov Smooth to LCG O(1/k) 0(1/Vk)
Sub-Gradient SC O( '8k O('ek)
Average(SGD) SC O(1/k) O(1/k)
Gradient LCG+SC O((1 — p/L)%) O(1/k)
Nesterov LCG+SC
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Non-Asymptotic Convergence for Convex Optimization

Algorithm Assumptions Deterministic Stochastic
Sub-Gradient BSG O(1/Vk) 0(1/Vk)
Gradient LCG O(1/k) 0(1/Vk)
Nesterov LCG O(1/k?) O(1/Vk)
Nesterov Smooth to LCG O(1/k) 0(1/Vk)
Sub-Gradient SC O( '8k O('ek)
Average(SGD) SC O(1/k) O(1/k)
Gradient LCG+SC O((1 — p/L)%) O(1/k)
Nesterov LCG+SC O((1 — /u/L)k)
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Non-Asymptotic Convergence for Convex Optimization

Algorithm Assumptions Deterministic Stochastic
Sub-Gradient BSG O(1/Vk) 0(1/Vk)
Gradient LCG O(1/k) 0(1/Vk)
Nesterov LCG O(1/k?) O(1/Vk)
Nesterov Smooth to LCG O(1/k) 0(1/Vk)
Sub-Gradient SC O( '8k O('ek)
Average(SGD) SC O(1/k) O(1/k)
Gradient LCG+SC O((1 — p/L)%) O(1/k)
Nesterov LCG+SC O((1 — /u/L)k) O(1/k)

Mark Schmidt

MLSS 2011

Exploiting Problem Structure




Non-Asymptotic Convergence for Convex Optimization

Algorithm Assumptions Deterministic Stochastic
Sub-Gradient BSG O(1/Vk) 0(1/Vk)
Gradient LCG O(1/k) 0(1/Vk)
Nesterov LCG O(1/k?) O(1/Vk)
Nesterov Smooth to LCG O(1/k) 0(1/Vk)
Sub-Gradient SC O( '8k O('ek)
Average(SGD) SC O(1/k) O(1/k)
Gradient LCG+SC O((1 — p/L)%) O(1/k)
Nesterov LCG+SC O((1 — /u/L)k) O(1/k)
Quasi-Newton | LCG+SC+LCH
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Non-Asymptotic Convergence for Convex Optimization

Algorithm Assumptions Deterministic Stochastic
Sub-Gradient BSG O(1/Vk) 0(1/Vk)
Gradient LCG O(1/k) 0(1/Vk)
Nesterov LCG O(1/k?) O(1/Vk)
Nesterov Smooth to LCG O(1/k) 0(1/Vk)
Sub-Gradient SC O( '8k O('ek)
Average(SGD) SC O(1/k) O(1/k)
Gradient LCG+SC O((1 — p/L)%) O(1/k)
Nesterov LCG+SC O((1 — /u/L)k) O(1/k)
Quasi-Newton | LCG4+SC+LCH O(Hfle pi),pi = 0
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Non-Asymptotic Convergence for Convex Optimization

Algorithm Assumptions Deterministic Stochastic
Sub-Gradient BSG O(1/Vk) 0(1/Vk)
Gradient LCG O(1/k) 0(1/Vk)
Nesterov LCG O(1/k?) O(1/Vk)
Nesterov Smooth to LCG O(1/k) 0(1/Vk)
Sub-Gradient SC O( '8k O('ek)
Average(SGD) SC O(1/k) O(1/k)
Gradient LCG+SC O((1 — p/L)%) O(1/k)
Nesterov LCG+SC O((1 — /u/L)k) O(1/k)
Quasi-Newton | LCG+SC+LCH | O(T]<y pi),pi = 0 | O(1/k)
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Non-Asymptotic Convergence for Convex Optimization

Algorithm Assumptions Deterministic Stochastic
Sub-Gradient BSG O(1/Vk) 0(1/Vk)
Gradient LCG O(1/k) 0(1/Vk)
Nesterov LCG O(1/k?) O(1/Vk)
Nesterov Smooth to LCG O(1/k) 0(1/Vk)
Sub-Gradient SC O( '8k O('ek)
Average(SGD) SC O(1/k) O(1/k)
Gradient LCG+SC O((1 — p/L)%) O(1/k)
Nesterov LCG+SC O((1 — /u/L)k) O(1/k)
Quasi-Newton | LCG+SC+LCH | O(T]<y pi),pi = 0 | O(1/k)

@ Deterministic methods only advantageous with continuity.

@ Smoothness does not help stochastic methods.

@ Stochastic methods achieve the deterministic rate up to some
fixed accuracy, and can achieve deterministic rates if noise
decreases appropriately.
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O(1/k) rate for SGD

@ Consider the stochastic gradient method

X1 = Xk — oug(Xk),

with oy = ik
m
o Assume that ul < V2f(x) < LI and that

M? > smipE[llg(X)HQ],

for some M.

@ Show that
E[f(xx) — f(x:)] = O(1/k).
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Other Ways of Using Problem Structure

@ Block Coordinate Descent
@ Stochastic Gradient
@ Other Techniques
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References

@ For coordinate descent methods, see “Nonlinear
Programming” by Dimitri Bertsekas, the papers of Paul
Tseng, and the recent report by Yuri Nesterov.

@ For stochastic gradient methods, see Dimitri Bertsekas'
“Neurodynamic Programming” book for convergence,
"Introduction to Stochastic Search and Optimization” by
James Spall for asymptotic rates, and for non-asymptotic
rates see Arkadi Nemirovki's “Efficient Methods in Convex
Programming”.
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