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Motivation: Properties of Convex Functions

Two key properties of convex functions:

All local minima are global minima.

Global rate of convergence analysis.
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Convexity: Zero-order condition

A real-valued function is convex if

f (θx + (1− θ)y) ≤ θf (x) + (1− θ)f (y),

for all x, y ∈ Rn and all 0 ≤ θ ≤ 1.

Function is below the chord from x to y .

Show that all local minima are global minima.
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Exercise: Convexity of Norms

A real-valued function f is a norm if:

1 f (x) ≥ 0, f (0) = 0.

2 f (θx) = |θ|f (x).

3 f (x + y) ≤ f (x) + f (y).

Show that norms are convex.

1 Use triangle inequality then homogeneity.
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Strict Convexity

A real-valued function is strictly convex if

f (θx + (1− θ)y) < θf (x) + (1− θ)f (y),

for all x, y ∈ Rn and all 0 < θ < 1.

Function is strictly below the chord between x to y .

Show that global minimum of strictly convex function is
unique.
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Convexity: First-order condition

A real-valued differentiable function is convex iff

f (x) ≥ f (y) +∇f (y)T (x − y),

for all x, y ∈ Rn.

The function is globally above the tangent at y .

Show that any stationary point is a global minimum.
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Exercise: Zero- to First-Order Condition

Show that zero-order condition,

f (θx + (1− θ)y) ≤ θf (x) + (1− θ)f (y),

implies first-order condition,

f (x) ≥ f (y) +∇f (y)T (x − y).

1 Use: θx + (1− θ)y = y + θ(x − y).

2 Use:

∇f (y)Td = lim
θ→0

f (y + θd)− f (y)

θ
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Convexity: Second-order condition

A real-valued twice-differentiable function is convex iff

∇2f (x) � 0

for all x ∈ Rn.

The function is flat or curved upwards in every direction.

A real-valued function f is a quadratic if it can be written in the
form:

f (x) = xTAx + bT x + c .

Show sufficient conditions for a quadratic function to be convex.

Mark Schmidt MLSS 2011 Convex Analysis



Convexity: Second-order condition

A real-valued twice-differentiable function is convex iff

∇2f (x) � 0

for all x ∈ Rn.

The function is flat or curved upwards in every direction.

A real-valued function f is a quadratic if it can be written in the
form:

f (x) = xTAx + bT x + c .

Show sufficient conditions for a quadratic function to be convex.

Mark Schmidt MLSS 2011 Convex Analysis



Exercise: Convexity of Basic Functions

Show that the following are convex:

1 f (x) = exp(ax)

2 f (x) = x log x (for x > 0)

3 f (x) = aT x

4 f (x) = ||x ||2

5 f (x) = maxi{xi}
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Other Examples of Convex Functions

Some other notable convex functions:

1 f (x , y) = log(ex + ey )

2 f (X ) = log det X (for X positive-definite).

3 f (x ,Y ) = xTY−1x (for Y positive-definite)
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Operations that Preserve Convexity

1 Non-negative weighted sum:

f (x) = θ1f1(x) + θ2f2(x) + · · ·+ θnfn(x).

2 Composition with affine mapping:

g(x) = f (Ax + b).

3 Pointwise maximum:

f (x) = max{fi (x)}.

Show that least-residual problems are convex for any `p-norm:

f (x) = ||Ax − b||p

Show that SVMs are convex:

f (x) = ||x ||2 + C
n∑

i=1

max{0, 1− bia
T
i x}.
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Motivation: Properties of Convex Functions

Two key properties of convex functions:

All local minima are global minima.

Global rate of convergence analysis.
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Convergence Rate: Strongly-Convex Functions

Assume that f is a twice-differentiable, where for all x we have

µI � ∇f (x) � LI ,

for some µ > 0 and L <∞.

By Taylor’s theorem, for any x and y we have

f (y) = f (x) +∇f (x)T (y − x) +
1

2
(y − x)T∇2f (z)(y − x),

for some z .
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Convergence Rate: Strongly-Convex Functions

From the previous slide, we get for all x and y that

f (y) ≤ f (x) +∇f (x)T (y − x) +
L

2
||y − x ||2,

f (y) ≥ f (x) +∇f (x)T (y − x) +
µ

2
||y − x ||2.

Use these to show that the gradient iteration

xk+1 = xk − (1/L)∇f (xk),

has the linear convergence rate

f (xk)− f (x∗) ≤ (1− µ/L)k [f (x0)− f (x∗)].

Use this result to get a convergence rate on ||xk − x∗||.
Show that if µ = 0 we get the sublinear rate O(1/k).
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Most of this lecture is based on material from Boyd and
Vandenberghe’s very good ”Convex Optimization” book, as well as
their online notes.
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