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Motivation: Optimizing with Constraints

Often we have constraints on problem:

Natural bounds on the variables.

Regularization or identifiability.

Domain of function is restricted.

We may introduce constraints to use problem structure.
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Example: `1-Regularized Optimization

`1-regularization problems are of the form

min
w

f (w) + λ||w ||1

The problem is non-smooth because of the `1-norm.

We can convert this to a smooth constrained optimization:

min
−s≤w≤s

f (w) + λ
∑
i

s.

Or write it as a smooth bound-constrained problem:

min
w+≥0,w−≥0

f (w+ − w−) + λ
∑
i

w+ + λ
∑
i

w−.

Mark Schmidt MLSS 2011 Constrained Optimization



Example: `1-Regularized Optimization

`1-regularization problems are of the form

min
w

f (w) + λ||w ||1

The problem is non-smooth because of the `1-norm.

We can convert this to a smooth constrained optimization:

min
−s≤w≤s

f (w) + λ
∑
i

s.

Or write it as a smooth bound-constrained problem:

min
w+≥0,w−≥0

f (w+ − w−) + λ
∑
i

w+ + λ
∑
i

w−.

Mark Schmidt MLSS 2011 Constrained Optimization



Example: `1-Regularized Optimization

`1-regularization problems are of the form

min
w

f (w) + λ||w ||1

The problem is non-smooth because of the `1-norm.

We can convert this to a smooth constrained optimization:

min
−s≤w≤s

f (w) + λ
∑
i

s.

Or write it as a smooth bound-constrained problem:

min
w+≥0,w−≥0

f (w+ − w−) + λ
∑
i

w+ + λ
∑
i

w−.

Mark Schmidt MLSS 2011 Constrained Optimization



Outline: Optimizing with Constraints

Penalty-type methods for constrained optimization.

Projection-type methods for constrained optimization.

Convex Duality
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Penalty-type Methods

Penalty-type methods re-write as an unconstrained problem, e.g.

Penalty method for equality constraints: Re-write

min
c(x)=0

f (x),

as
min
x

f (x) +
µ

2
||c(x)||2.

Penalty method for inequality constraints: Re-write

min
c(x)≥0

f (x),

as
min
x

f (x) +
µ

2
||max{0, c(x)}||2.

These converge to the original problem as µ→∞.
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Exercise: Penalty Methods

Penalty method for non-negative `1-regularized logistic regression:

min
w

λ||w ||1 +
n∑

i=1

log(1 + exp(−yi (wT xi ))).

Use an existing unconstrained optimization code.

Solve for an increasing sequence of µ values.

Note the trade-off associated with penalty methods:

Small µ: easily solved but is a poor approximation.

Large µ good approximation and is hard to solve.

Augmented Lagrangian methods incorporate Lagrange multiplier
estimates to improve the approximation for finite µ.
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Augmented Lagrangian Method

Augmented Lagrangian method for equality constraints:

1 Approximately solve

min
x

f (x) + yTk c(x) +
µ

2
||c(x)||2.

2 Update Lagrange multiplier estimates:

yk+1 = yk + µc(x).

(for increasing sequence of µ values)
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Augmented Lagrangian Method

Augmented Lagrangian method for inequality constraints:

1 Approximately solve

min
x

f (x) + yTk c(x) +
µ

2
||max{0, c(x)}||2.

2 Update Lagrange multiplier estimates:

yk+1 = max{0, yk + µc(x)}.

(for increasing sequence of µ values)

Exercise: Extend the penalty method to an augmented Lagrangian
method.
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Notes on Penalty-Type Methods

Exact penalty methods use a non-smooth penalty,

min
x

f (x) + µ||c(x)||1,

and are equivalent to the original problem for finite µ.

Log-Barrier methods enforce strict feasibility,

min
x

f (x) + µ
∑
i

log ci (x).

Most interior-point software packages implement a
primal-dual log-barrier method.
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Outline: Optimizing with Constraints

Penalty-type methods for constrained optimization.

Projection-type methods for constrained optimization.

Convex Duality

Mark Schmidt MLSS 2011 Constrained Optimization



Projection-type Methods

Projection-type methods address the problem of optimizing over
convex sets.

A convex set C is a set such that

θx + (1− θ)y ∈ C,

for all x , y ∈ C and 0 ≤ θ ≤ 1.

Projection-type methods use the projection operator,

PC(x) = argmin
y∈C

1

2
||x − y ||2.

For non-negative constraints, this operator is simply
x = max{0, x}.
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Projection-type Methods

The most basic projection-type method is gradient projection:

xk+1 = PC(xk − αk∇f (xk)).

We can use a variant of the Armijo condition to choose αk :

f (xk+1) ≤ f (xk)− γ∇f (xk)T (xk+1 − xk).

This algorithm has similar convergence and rate of
convergence properties to the gradient method.

We can use many of the same tricks (polynomial interpolation,
Nesterov extrapolation, Barzilai-Borwein step length).

Modify either the Nesterov code or the gradient code from the first
session to do gradient projection for non-negative `1-regularized
logistic regression.
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Projection-Newton Methods

There also exist projected-Newton methods where

xk+1 = argmin
y

∇f (xk)T (y−xk)+
1

2αk
(y−xk)T∇2f (xk)(y−xk),

and analogous quasi-Newton and Hessian-free Newton
methods.

Unfortunately, this problem is usually hard to solve.

But several heuristics are available:
1 Sequential quadratic programming: Use a linear approximation

to the constraints.
2 Active-Set: Sub-optimize over a manifold of selected

constraints.
3 Two-metric projection: Use a diagonal or other structured

approximation to ∇2f (xk).
4 Inexact projected-Newton: Approximately compute xk+1.
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Outline: Optimizing with Constraints

Penalty-type methods for constrained optimization.

Projection-type methods for constrained optimization.

Convex Duality.
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Lagrangian Dual Function

For the equality-constrained problem

min
c(x)

f (x),

the Lagrangian is defined as

L(x , y) = f (x) + yT c(x).

The Lagrange dual function is defined as

g(y) = inf
x
L(x , y),

and its domain is all values for which the infimum is finite.
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Properties of Lagrange Dual Function

The maximum of the dual lower bounds the primal,

g(y∗) ≤ f (x∗).

If g(y∗) = f (x∗), we say that strong duality holds.

Slater’s condition: for convex problems strong duality holds if
a strictly feasible point exists.
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Exercise: equality constrained norm minimization

Derive the dual function for the least-norm problem

min
Ax=b

xT x .

1 Write out the Lagrange dual function.
2 Solve for x .
3 Plug in the solution.
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Conjugate functions

The convex conjugate f ∗ of function f is defined as

f ∗(y) = sup
x

(yT x − f (x)),

and its domain is all values for which the supremum is finite.

Examples:

1 If f (x) = 1
2x

T x , then f ∗(y) = 1
2y

T y .

2 If f (x) = ax + b, then f ∗(y) = −b and y = a.

3 If f (x) = log
∑

i e
xi ,

then f ∗(y) =
∑

i yi log yi for y ≥ 0 and
∑

i yi = 1.

4 If f (x) = ||x ||p, then f ∗(y) = 0 for ||y ||q ≤ 1.
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Exercise: equality constrained norm minimization 2

Derive the dual function for the least-norm problem

min
Ax=b

||x ||p.
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Introducing Constraints: LASSO

In some cases we introduce constraints to derive a dual.

Derive a dual of the `1-regularization problem

min
x
||Ax − b||2 + ||x ||1,

by re-formulating as

min
x ,r=Ax−b

||r ||2 + ||x ||1.
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Introducing Constraints: graphical LASSO

Similarly, the graphical LASSO problem

min
X

log detX + tr(XΣ) + λ||X ||1,

for X positive-definite can be re-written as

min
λ≤Y≤λ

log detY ,

for Y positive-definite.

Modify the projected-gradient code to solve the graphical
LASSO problem (ignore the positive-definite constraint).
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References

Most of this lecture is based on material from Nocedal and
Wright’s very good “Numerical Optimization” book, and from
Boyd and Vandenberghe’s very good “Convex Optimization” book.
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