Practical Session on Convex Optimization: Constrained Optimization

Mark Schmidt

INRIA/ENS

September 2011
Often we have constraints on problem:

- Natural bounds on the variables.
- Regularization or identifiability.
- Domain of function is restricted.

We may *introduce* constraints to use problem structure.
Example: ℓ_1-Regularized Optimization

- ℓ_1-regularization problems are of the form
 \[
 \min_w f(w) + \lambda \|w\|_1
 \]

- The problem is non-smooth because of the ℓ_1-norm.
Example: ℓ_1-Regularized Optimization

- ℓ_1-regularization problems are of the form
 \[
 \min_w f(w) + \lambda \|w\|_1
 \]

- The problem is non-smooth because of the ℓ_1-norm.
- We can convert this to a smooth constrained optimization:
 \[
 \min_{-s \leq w \leq s} f(w) + \lambda \sum_i s.
 \]
Example: ℓ_1-Regularized Optimization

- ℓ_1-regularization problems are of the form

$$\min_w f(w) + \lambda \|w\|_1$$

- The problem is non-smooth because of the ℓ_1-norm.
- We can convert this to a smooth constrained optimization:

$$\min_{-s \leq w \leq s} f(w) + \lambda \sum_i s.$$

- Or write it as a smooth bound-constrained problem:

$$\min_{w^+ \geq 0, w^- \geq 0} f(w^+ - w^-) + \lambda \sum_i w^+ + \lambda \sum_i w^-.$$
Outline: Optimizing with Constraints

- Penalty-type methods for constrained optimization.
- Projection-type methods for constrained optimization.
- Convex Duality
Penalty-type methods re-write as an unconstrained problem, e.g.

- **Penalty method for equality constraints**: Re-write

\[
\min_{c(x)=0} f(x),
\]

as

\[
\min_x f(x) + \frac{\mu}{2} \|c(x)\|^2.
\]
Penalty-type methods re-write as an unconstrained problem, e.g.

- **Penalty method for equality constraints**: Re-write

\[
\min_{c(x)=0} f(x),
\]

as

\[
\min_x f(x) + \frac{\mu}{2} \|c(x)\|^2.
\]

- **Penalty method for inequality constraints**: Re-write

\[
\min_{c(x)\geq 0} f(x),
\]

as

\[
\min_x f(x) + \frac{\mu}{2} \|\max\{0, c(x)\}\|^2.
\]
Penalty-type methods re-write as an unconstrained problem, e.g.

- **Penalty method for equality constraints**: Re-write

 \[\min_{c(x)=0} f(x), \]
 \[\text{as} \]
 \[\min_x f(x) + \frac{\mu}{2} \| c(x) \|^2. \]

- **Penalty method for inequality constraints**: Re-write

 \[\min_{c(x)\geq 0} f(x), \]
 \[\text{as} \]
 \[\min_x f(x) + \frac{\mu}{2} \| \max\{0, c(x)\} \|^2. \]

 These converge to the original problem as \(\mu \to \infty \).
Penalty method for non-negative ℓ_1-regularized logistic regression:

\[
\min_w \lambda \|w\|_1 + \sum_{i=1}^{n} \log(1 + \exp(-y_i(w^T x_i))).
\]

- Use an existing unconstrained optimization code.
- Solve for an increasing sequence of μ values.
Penalty method for non-negative ℓ_1-regularized logistic regression:

$$\min_w \lambda ||w||_1 + \sum_{i=1}^{n} \log(1 + \exp(-y_i(w^T x_i))).$$

- Use an existing unconstrained optimization code.
- Solve for an increasing sequence of μ values.

Note the trade-off associated with penalty methods:
- Small μ: easily solved but is a poor approximation.
- Large μ good approximation and is hard to solve.
Penalty method for non-negative ℓ_1-regularized logistic regression:

$$\min_w \lambda \|w\|_1 + \sum_{i=1}^n \log(1 + \exp(-y_i(w^T x_i))).$$

- Use an existing unconstrained optimization code.
- Solve for an increasing sequence of μ values.

Note the trade-off associated with penalty methods:
- Small μ: easily solved but is a poor approximation.
- Large μ: good approximation and is hard to solve.

Augmented Lagrangian methods incorporate Lagrange multiplier estimates to improve the approximation for finite μ.

Mark Schmidt
MLSS 2011
Constrained Optimization
Augmented Lagrangian method for equality constraints:

1. Approximately solve

\[
\min_x f(x) + y_k^T c(x) + \frac{\mu}{2} \|c(x)\|^2.
\]

2. Update Lagrange multiplier estimates:

\[
y_{k+1} = y_k + \mu c(x).
\]

(for increasing sequence of \(\mu\) values)
Augmented Lagrangian method for inequality constraints:

1. Approximately solve:

 \[
 \min_x f(x) + y_k^T c(x) + \frac{\mu}{2} \left\| \max\{0, c(x)\} \right\|^2.
 \]

2. Update Lagrange multiplier estimates:

 \[
 y_{k+1} = \max\{0, y_k + \mu c(x)\}.
 \]

 (for increasing sequence of \(\mu\) values)
Augmented Lagrangian Method

Augmented Lagrangian method for inequality constraints:

1. Approximately solve

\[
\min_x f(x) + y_k^T c(x) + \frac{\mu}{2} \| \max\{0, c(x)\} \|^2.
\]

2. Update Lagrange multiplier estimates:

\[
y_{k+1} = \max\{0, y_k + \mu c(x)\}.
\]

(for increasing sequence of \(\mu\) values)

Exercise: Extend the penalty method to an augmented Lagrangian method.

Mark Schmidt MLSS 2011

Constrained Optimization
Exact penalty methods use a non-smooth penalty,

\[\min_x f(x) + \mu \|c(x)\|_1, \]

and are equivalent to the original problem for finite \(\mu \).

Log-Barrier methods enforce strict feasibility,

\[\min_x f(x) + \mu \sum_i \log c_i(x). \]

Most interior-point software packages implement a primal-dual log-barrier method.
Penalty-type methods for constrained optimization.
Projection-type methods for constrained optimization.
Convex Duality
Projection-type methods address the problem of optimizing over convex sets.

- A convex set \mathcal{C} is a set such that

$$\theta x + (1 - \theta) y \in \mathcal{C},$$

for all $x, y \in \mathcal{C}$ and $0 \leq \theta \leq 1$.
Projection-type methods address the problem of optimizing over convex sets.

- A convex set C is a set such that
 \[\theta x + (1 - \theta)y \in C, \]
 for all $x, y \in C$ and $0 \leq \theta \leq 1$.
- Projection-type methods use the projection operator,
 \[P_C(x) = \arg \min_{y \in C} \frac{1}{2} \| x - y \|^2. \]
Projection-type Methods

Projection-type methods address the problem of optimizing over convex sets.

- A convex set C is a set such that
 \[\theta x + (1 - \theta)y \in C, \]
 for all $x, y \in C$ and $0 \leq \theta \leq 1$.

- Projection-type methods use the projection operator,
 \[P_C(x) = \arg \min_{y \in C} \frac{1}{2}||x - y||^2. \]

- For non-negative constraints, this operator is simply
 \[x = \max\{0, x\}. \]
The most basic projection-type method is *gradient projection*:

\[x_{k+1} = P_C(x_k - \alpha_k \nabla f(x_k)). \]
The most basic projection-type method is gradient projection:

\[x_{k+1} = P_C(x_k - \alpha_k \nabla f(x_k)). \]

We can use a variant of the Armijo condition to choose \(\alpha_k \):

\[f(x_{k+1}) \leq f(x_k) - \gamma \nabla f(x_k)^T (x_{k+1} - x_k). \]

This algorithm has similar convergence and rate of convergence properties to the gradient method.

We can use many of the same tricks (polynomial interpolation, Nesterov extrapolation, Barzilai-Borwein step length).
The most basic projection-type method is gradient projection:

\[x_{k+1} = P_C(x_k - \alpha_k \nabla f(x_k)) \].

We can use a variant of the Armijo condition to choose \(\alpha_k \):

\[f(x_{k+1}) \leq f(x_k) - \gamma \nabla f(x_k)^T (x_{k+1} - x_k) \].

This algorithm has similar convergence and rate of convergence properties to the gradient method.

We can use many of the same tricks (polynomial interpolation, Nesterov extrapolation, Barzilai-Borwein step length).

Modify either the Nesterov code or the gradient code from the first session to do gradient projection for non-negative \(\ell_1 \)-regularized logistic regression.
There also exist projected-Newton methods where

\[x_{k+1} = \arg\min_y \nabla f(x_k)^T (y - x_k) + \frac{1}{2\alpha_k} (y - x_k)^T \nabla^2 f(x_k) (y - x_k), \]

and analogous quasi-Newton and Hessian-free Newton methods.

Unfortunately, this problem is usually hard to solve.
There also exist projected-Newton methods where

\[x_{k+1} = \arg \min_y \nabla f(x_k)^T (y-x_k) + \frac{1}{2\alpha_k} (y-x_k)^T \nabla^2 f(x_k) (y-x_k), \]

and analogous quasi-Newton and Hessian-free Newton methods.

Unfortunately, this problem is usually hard to solve.

But several heuristics are available:

1. **Sequential quadratic programming**: Use a linear approximation to the constraints.
2. **Active-Set**: Sub-optimize over a manifold of selected constraints.
3. **Two-metric projection**: Use a diagonal or other structured approximation to \(\nabla^2 f(x_k) \).
4. **Inexact projected-Newton**: Approximately compute \(x_{k+1} \).
Outline: Optimizing with Constraints

- Penalty-type methods for constrained optimization.
- Projection-type methods for constrained optimization.
- Convex Duality.
For the equality-constrained problem
\[
\min_{c(x)} f(x),
\]
the Lagrangian is defined as
\[
L(x, y) = f(x) + y^T c(x).
\]
For the equality-constrained problem

$$\min_{c(x)} f(x),$$

the Lagrangian is defined as

$$L(x, y) = f(x) + y^T c(x).$$

The Lagrange dual function is defined as

$$g(y) = \inf_x L(x, y),$$

and its domain is all values for which the infimum is finite.
The maximum of the dual lower bounds the primal,

\[g(y^*) \leq f(x^*). \]
The maximum of the dual lower bounds the primal,

$$g(y^*) \leq f(x^*).$$

If \(g(y^*) = f(x^*) \), we say that strong duality holds.

Slater’s condition: for convex problems strong duality holds if a strictly feasible point exists.
Exercise: equality constrained norm minimization

Derive the dual function for the least-norm problem

\[
\min_{x} x^T x. \\
\text{subject to } Ax = b
\]
Derive the dual function for the least-norm problem

\[\min_{x} x^T x \]

subject to \(Ax = b \)

1. Write out the Lagrange dual function.
2. Solve for \(x \).
3. Plug in the solution.
The **convex conjugate** \(f^* \) of function \(f \) is defined as

\[
f^*(y) = \sup_x (y^T x - f(x)),
\]

and its domain is all values for which the supremum is finite.

Examples:

1. If \(f(x) = \frac{1}{2} x^T x \), then \(f^*(y) = \frac{1}{2} y^T y \).
The convex conjugate f^* of function f is defined as

$$f^*(y) = \sup_x (y^T x - f(x)),$$

and its domain is all values for which the supremum is finite.

Examples:

1. If $f(x) = \frac{1}{2} x^T x$, then $f^*(y) = \frac{1}{2} y^T y$.
2. If $f(x) = ax + b$, then $f^*(y) = -b$ and $y = a$.
The convex conjugate f^* of function f is defined as

$$f^*(y) = \sup_x (y^T x - f(x)),$$

and its domain is all values for which the supremum is finite.

Examples:

1. If $f(x) = \frac{1}{2} x^T x$, then $f^*(y) = \frac{1}{2} y^T y$.
2. If $f(x) = ax + b$, then $f^*(y) = -b$ and $y = a$.
3. If $f(x) = \log \sum_i e^{x_i}$, then $f^*(y) = \sum_i y_i \log y_i$ for $y \geq 0$ and $\sum_i y_i = 1$.
Conjugate functions

- The convex conjugate f^* of function f is defined as

$$f^*(y) = \sup_x (y^T x - f(x)),$$

and its domain is all values for which the supremum is finite.

Examples:

1. If $f(x) = \frac{1}{2} x^T x$, then $f^*(y) = \frac{1}{2} y^T y$.
2. If $f(x) = ax + b$, then $f^*(y) = -b$ and $y = a$.
3. If $f(x) = \log \sum_i e^{x_i}$, then $f^*(y) = \sum_i y_i \log y_i$ for $y \geq 0$ and $\sum_i y_i = 1$.
4. If $f(x) = \|x\|_p$, then $f^*(y) = 0$ for $\|y\|_q \leq 1$.
Exercise: equality constrained norm minimization 2

Derive the dual function for the least-norm problem

$$\min_{Ax=b} \|x\|_p.$$
In some cases we *introduce* constraints to derive a dual.

Derive a dual of the ℓ_1-regularization problem

$$\min_x ||Ax - b||^2 + ||x||_1,$$

by re-formulating as

$$\min_{x, r = Ax - b} ||r||^2 + ||x||_1.$$
Similarly, the graphical LASSO problem

$$\min_X \log \det X + tr(X\Sigma) + \lambda\|X\|_1,$$

for X positive-definite can be re-written as

$$\min_{\lambda \leq Y \leq \lambda} \log \det Y,$$

for Y positive-definite.

Modify the projected-gradient code to solve the graphical LASSO problem (ignore the positive-definite constraint).
Most of this lecture is based on material from Nocedal and Wright’s very good “Numerical Optimization” book, and from Boyd and Vandenberghe’s very good “Convex Optimization” book.