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Coordinate Optimization: Theory vs. Practice

Coordinate optimization updates a small number of variables on each iteration.

Has convergence rates similar to gradient descent.

But for some objective functions the iterations have a much lower cost.



Coordinate Optimization: Theory vs. Practice

A huge literature on the theory of coordinate descent methods.

And most widely-used coordinate optimization code in practice is LIBSVM.

Greedy 2-coordinate method for SVM dual (quadratic w/ bounds and sum-to-zero).

But LIBSVM is not motivated by current theory.

Which largely focuses separable constraints, and random selection instead of greedy.



Selected Related Work and Overview of Contribution

Unconstrained coordinate optimization:
Nesterov [2012]: non-asymptotic linear rates for random selection (strongly-convex).

As fast as previous rates for greedy selection.

Nutini et al. [2015]: faster rates than random with greedy selection.

For many problems greedy and random have similar cost.
Uses that greedy coordinate optimization is steepest descent in 1-norm.

Karimi et al. [2016]: relaxes strong-convexity to Polyak- Lojasiewicz functions.

Allows linear rates in many important problems like least squares.

Bound-constrained coordinate optimization (l ≤ xi ≤ u):

Nesterov [2012]: extends random rates to allow bound constraints.
Richtarik and Takac [2014]: allows general non-smooth but convex separable term.
Karimreddy et al. [2019]: faster rates than random with greedy selection.

Relies on most steps being unconstrained, so taking steepest descent step.



Selected Related Work and Overview of Contribution

Equality-constrained coordinate optimization (
∑

i xi = γ):

In this setting we must update at least two coordinates.
Tseng and Yun [2009]: asymptotic linear rate with greedy selection.

But not faster than radom.

Necoara et al. [2011]: non-asymptotic rates for random selection of 2 coordinates.

Faster rates shown in Fang et al. [2018].

Beck [2014]: sublinear rates for greedy selection (convex and non-convex).

Our contributions:
Equality-constrained coordinate optimization:

Show equivalence of greedy to steepest descent in 1-norm.
Dimension-independent linear convergence rate (faster than random)

Equality-constrained and bound-constrained coordinate optimization:

Previous rules cannot guarantee non-trivial progress or have high cost.
Steepest descent guarantees fast dimension-independent rate with low cost.



Equality-Constrained 2-Coordinate Update with Greedy Selection
Consider minimizing a twice-differentiable function with an equality,

min
x∈Rn

f(x), subject to
n∑

i=1

xi = γ.

2-coordinate method: moves coordinate ik by δk and another jk by −δk.

The coordinate descent variant chooses δk as

δk = −αk

2
(∇ikf(x

k)−∇jkf(x
k)),

for a step size αk (but you could alternately find optimal αk or δk).

A greedy rule is to choose coordinates maximizing difference in partial derivatives,

ik ∈ argmax
i

{
∇if(x

k)
}
, jk ∈ argmin

j

{
∇jf(x

k)
}
,

which is sensible because at solution x∗ all ∇if(x
∗) are equal.



Random Selection vs. Greedy Selection in Practice

Various random/greedy rules exist, but greedy rules tend to converge faster:

For the SVM dual problem, random and greedy have the same asymptotic cost.



Connection between Greedy 2-Coordinate Upate and the 1-Norm

Traditional view of greedy rule is that it is the GS-q rule [Tseng and Yun, 2009],

argmin
i,j

{
min

dij∈R2|di+dj=0
f(xk) +∇ijf(x

k)Tdij +
1

2αk
∥dij∥22

}
,

where the coordinates minimize a quadratic approximation.

Alternate view: we show that greedy rule implements steepest descent in 1-norm,

min
d∈Rn|dT 1=0

{
∇f(x)Td+

1

2(2α)
||d||21

}
= min

i,j
min

dij∈R2|di+dj=0

{
∇ijf(x)

Tdij +
1

2α
||dij ||22

}
up to a factor of 2 in the step size.

Proof idea: steepest descent in 1-norm always admits 2-coordinate solution.

Can measure progress of 2-coordinate update in terms of a full-coordinate update.



Convergence Rate of Greedy 2-Coordinate Updates under Proximal-PL

Theorem

Let f be a twice-differentiable function whose gradient is 2-coordinate-wise Lipschitz
with constant L2 when restricted to the set where xT 1 = γ. If this function satisfies
the proximal-PL inequality in the 1-norm for some positive µ1, then the iterations of
the 2-coordinate descent update with αk = 1/L2 and the greedy rule satisfy:

f(xk)− f(x∗) ≤
(
1− 2µ1

L2

)k

(f(x0)− f∗).

Rate for random under same assumptions is dimension-dependent
(
1− µ2

n2L2

)k
.

We have µ2/n ≤ µ1 ≤ µ2, so speedup is between n and n2.
Though faster random rates possible for separable f or coordinate-wise Lipschitz.

Only previous dimension-independent rate for greedy rule is due to Beck [2014].

General non-convex problems but sublinear rate.



Equality- and Bound-Constrained 2-Coordinate Updates

Equality constraints often appear algonside bound constraints as in SVMs,

min
x∈Rn

f(x), subject to
n∑

i=1

xi = γ, li ≤ xi ≤ ui.

2-coordinate descent step in this setting is truncated to stay in the bounds,

δk = −min

{
αk

2
(∇ikf(x

k)−∇jkf(x
k)), xkik − lik , ujk − xkjk

}
,

There are several possible greedy rules in this setting.

We will overview the evolution of rules in LIBSVM, then give a new rule.



GS-s Rule: Minimzing Directional Derivative

The GS-s rule chooses coordinates giving most negative directional derivative,

ik ∈ argmax
i | xk

i >li

{
∇if(x

k)
}
, jk ∈ argmin

j | xk
j<ui

{
∇jf(x

k)
}
,

which is the greedy rule but eliminating steps that immediately violate bounds.

First used for SVM by Keerthi et al. [2001], used in LIBSVM up until version 2.7.

Advantages:

Only costs O(n) given gradient.
Faster-than-random dimension-independent rate after active-set identified.
Fast identification of active set when near solution.

Disadvantage:
Before active set is identified, progress can be arbitrarily slow.

Step can be arbitrarily small if you select a coordinate near its boundary.



GS-q Rule: Minimize Quadratic Approximation

The GS-q rule minimizes a constrained quadratic approximation,

argmin
i,j

{
min

dij |di+dj=0
f(xk) +∇ijf(x

k)Tdij +
1

2αk
∥dij∥2 : xk + d ∈ [l, u]

}
.

Advantages:

If we only have lower bounds or upper bounds, only costs O(n).
Faster-than-random dimension-independent rate after active-set identified.
Faster-than-random rate before active-set identified.

Disadvantages:

Non-asymptotic rate is dimension-dependent and slower than asymptotic rate.
Slow identification of active set when near solution (if variables near boundary).
If you have both lower bounds and upper bounds, costs O(n2).

Beginning in version 2.8, LIBSVM uses an approximation of GS-q:

First selects a coordinate according to GS-s, then selects one according to GS-q.
Only costs O(n) but similar to GS-s progress can be arbitrarily slow.



GS-1 Rule: Steepest Descent in the 1-Norm

The GS-1 rule performs constrained steepest descent in the 1-norm,

dk ∈ argmin
li≤xi+di≤ui|dT 1=0

{
∇f(xk)Td+

1

2αk
||d||21

}
,

previously used by Song et al. [2017] for 1-norm regularized optimization.

Advantages:

Faster-than-random dimension-independent rate (matching asymptotic rate).
Fast identification of active set when near solution.
We give an algorithm to compute it in O(n log n).

Disadvantage:

It may require updating more than 2 coordinates in non-asymptotic regime.



Efficient GS-1 Algorithm

Algorithm for constructing solution to GS-1 rule in O(n log n):

Rough outline of how it satisfies optimality conditions:
1 If GS-s step does not violate bounds, take it and break.
2 Move closest variable to boundary and select next largest/smallest ∇if(x

k).
3 Check whether new variable can overcome 1-norm penalty.

If not then “clean up” and break, otherwise go back to 1 with new pair of variables.



Comparing Greedy Rules with Equality and Bounds

GS-1 converges slightly faster than GS-q, and both are faster than GS-s.

Rules were similar in our experiments, but GS-s is much worse on some problems.



Comparing Greedy Rules with Equality and Bounds

GS-1 finds active set slightly faster than GS-s, and both are faster than GS-q.

For SVMs, means identifying support vectors sooner (reducing iteration cost).



Comparing Greedy Rules with Equality and Bounds

GS-1 updated 2 variables on > 80% of iterations.

Rarely updated more than 3, and never more than 4 (out of 1000 variables).



Greedy Updates using Coordinate-Wise Lipschitz Constants

Instead of blockwise-smoothness, many works use coordinate-wise smoothness,

|∇if(x+ αei)−∇if(x)| ≤ Li|α|.

With the summation constraint, the 2-coordinate method with Li values uses

δk = −(∇ikf(x
k)−∇jkf(x

k))/(Lik + Ljk).

We often analyze coordinate descent methods with Li-weighted norms, such as

∥d∥L =

n∑
i=1

√
Li|di|,

which can give faster convergence rates.

First used by Nesterov [2012] for randomized coordinate descent.
First used by Necoara et al. [2011] for 2-coordinate randomized methods.



Different Greedy Rules in Equality-Constrained Case
The GS-q rule under the L-norm is given by

argmax
i,j

{
(∇if(x)−∇jf(x))/

√
Li + Lj

}
.

The GS-1 rule under the L-norm is given by

argmax
i,j

{
(∇if(x)−∇jf(x))/(

√
Li +

√
Lj)

}
.

Thus, the steepest descent equivalence does not hold even without bounds.
Both give dimension-independent rates, perform similarly in experiments, cost O(n2).

We explored an O(n) approximation:

ik ∈ argmax
i

(∇if(x
k)− µ)/

√
Li, jk ∈ argmin

j
(∇jf(x

k)− µ)/
√
Lj ,

where µ is the average of the ∇if(x
k) values.

Guarantees we choose a coordinate that is above and below mean value.
Can also show (slower) dimension-independent rate for this rule.



Experiments: GS-q vs. GS-1 vs. Ratio

We found that the various Li rules performed similarly.

But the new ratio rule is cheaper to compute.



Take-Home Messages

For equality-constrained optimization:

Greedy 2-coordinate rule is steepest descent in the 1-norm.
Fast/simple dimension-independent analysis.

Faster than random by a factor between n and n2.

For equality constrained optimization with bound constraints:

GS-s rule does not guarantee non-trivial progress.
GS-q rule guarantees dimension-dependent progress but is expensive.
GS-1 rule guarantees dimension-independent progress and is cheap.

But needs to update more than 2 coordinates on some iterations.

For equality constraints with known coordinate-wise Lipschitz constants:

Greedy rule and steepest descent are no longer equivalent.
Both guarantee fast dimension-independent rate, but are costly to implement.
Ratio rule is cheap to implement and seems effective in practice.


