Analyzing and Improving Greedy 2-Coordinate Updates for Equality-Constrained Optimization via Steepest Descent in the 1-Norm

Amrutha Varshini Ramesh, Aaron Mishkin, Mark Schmidt, Yihan Zhou, Jonathan Wilder Lavington, Jennifer She

University of British Columbia

June 1, 2023

Coordinate Optimization: Theory vs. Practice

• Coordinate optimization updates a small number of variables on each iteration.

- Has convergence rates similar to gradient descent.
- But for some objective functions the iterations have a much lower cost.

Coordinate Optimization: Theory vs. Practice

• A huge literature on the theory of coordinate descent methods.

[PDF] Convergence of a block coordinate descent method for nondifferentiable minimization	Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function
P Tseng - Journal of optimization theory and applications, 2001 - csie.ntu.edu.tw	P. Richtárik, M. Takáč - Mathematical Programming, 2014 - Springer
We study the convergence properties of a (block) coordinate descent method applied to minimize a nondifferentiable (nonconvex) function f (x1,, xN) with certain separability and ☆ Save 99 Cite Cited by 2191 Related articles All 15 versions 80	In this paper we develop a randomized block-coordinate descent method for minimizing the sum of a smooth and a simple nonsmooth block-separable convex function and prove that it \$\phi \$\sec 90\$ Cite of by 809 Related articles All 18 versions
Efficiency of coordinate descent methods on huge-scale optimization problems <u>Y Mesteroy</u> - SIAM Journal on Optimization, 2012 - SIAM coordinate directional derivatives. The goal of this paper is to provide the random coordinate We show that for functions with cheap coordinate derivatives the new methods are always & Save 30 Cite Clatel by 1451 - Raiketar andices Alf20 versions	pen Stochastic dual coordinate ascent methods for regularized loss minimization. <u>S. Shalev-Shwatz</u> I <u>Zhang</u> - Journal of Machine Learning Research. 2013 - Jmirorg Stochastic Gradient Descent (SGD) has become popular for solving large scale supervised machine learning optimization problems such as SVM, due to their strong theoreteal [™]

- And most widely-used coordinate optimization code in practice is LIBSVM.
 - Greedy 2-coordinate method for SVM dual (quadratic w/ bounds and sum-to-zero).

- But LIBSVM is not motivated by current theory.
 - Which largely focuses separable constraints, and random selection instead of greedy.

Selected Related Work and Overview of Contribution

- Unconstrained coordinate optimization:
 - Nesterov [2012]: non-asymptotic linear rates for random selection (strongly-convex).
 - As fast as previous rates for greedy selection.
 - Nutini et al. [2015]: faster rates than random with greedy selection.
 - For many problems greedy and random have similar cost.
 - Uses that greedy coordinate optimization is steepest descent in 1-norm.
 - Karimi et al. [2016]: relaxes strong-convexity to Polyak-Łojasiewicz functions.
 - Allows linear rates in many important problems like least squares.
- Bound-constrained coordinate optimization $(l \le x_i \le u)$:
 - Nesterov [2012]: extends random rates to allow bound constraints.
 - Richtarik and Takac [2014]: allows general non-smooth but convex separable term.
 - Karimreddy et al. [2019]: faster rates than random with greedy selection.
 - Relies on most steps being unconstrained, so taking steepest descent step.

Selected Related Work and Overview of Contribution

- Equality-constrained coordinate optimization $(\sum_i x_i = \gamma)$:
 - In this setting we must update at least two coordinates.
 - Tseng and Yun [2009]: asymptotic linear rate with greedy selection.
 - But not faster than radom.
 - Necoara et al. [2011]: non-asymptotic rates for random selection of 2 coordinates.
 - Faster rates shown in Fang et al. [2018].
 - Beck [2014]: sublinear rates for greedy selection (convex and non-convex).
- Our contributions:
 - Equality-constrained coordinate optimization:
 - Show equivalence of greedy to steepest descent in 1-norm.
 - Dimension-independent linear convergence rate (faster than random)
 - Equality-constrained and bound-constrained coordinate optimization:
 - Previous rules cannot guarantee non-trivial progress or have high cost.
 - Steepest descent guarantees fast dimension-independent rate with low cost.

Equality-Constrained 2-Coordinate Update with Greedy Selection

• Consider minimizing a twice-differentiable function with an equality,

$$\min_{x \in \mathbb{R}^n} f(x), \text{ subject to } \sum_{i=1}^n x_i = \gamma.$$

- 2-coordinate method: moves coordinate i_k by δ^k and another j_k by $-\delta^k$.
- \bullet The coordinate descent variant chooses δ^k as

$$\delta^k = -\frac{\alpha^k}{2} (\nabla_{i_k} f(x^k) - \nabla_{j_k} f(x^k)),$$

for a step size α^k (but you could alternately find optimal α^k or δ^k).

• A greedy rule is to choose coordinates maximizing difference in partial derivatives,

$$i_k \in \operatorname*{argmax}_i \left\{ \nabla_i f(x^k) \right\}, \quad j_k \in \operatorname*{argmin}_j \left\{ \nabla_j f(x^k) \right\},$$

which is sensible because at solution x^* all $\nabla_i f(x^*)$ are equal.

Random Selection vs. Greedy Selection in Practice

• Various random/greedy rules exist, but greedy rules tend to converge faster:

• For the SVM dual problem, random and greedy have the same asymptotic cost.

Connection between Greedy 2-Coordinate Upate and the 1-Norm

• Traditional view of greedy rule is that it is the GS-q rule [Tseng and Yun, 2009],

$$\underset{i,j}{\operatorname{argmin}} \left\{ \min_{d_{ij} \in \mathbb{R}^2 | d_i + d_j = 0} f(x^k) + \nabla_{ij} f(x^k)^T d_{ij} + \frac{1}{2\alpha^k} \| d_{ij} \|_2^2 \right\},$$

where the coordinates minimize a quadratic approximation.

• Alternate view: we show that greedy rule implements steepest descent in 1-norm,

$$\min_{\boldsymbol{d} \in \mathbb{R}^{n} | d^{T} 1 = 0} \left\{ \nabla f(x)^{T} d + \frac{1}{2(2\alpha)} ||\boldsymbol{d}||_{1}^{2} \right\} = \min_{i,j} \min_{\boldsymbol{d}_{ij} \in \mathbb{R}^{2} | d_{i} + d_{j} = 0} \left\{ \nabla_{ij} f(x)^{T} d_{ij} + \frac{1}{2\alpha} ||\boldsymbol{d}_{ij}||_{2}^{2} \right\}$$

up to a factor of 2 in the step size.

- Proof idea: steepest descent in 1-norm always admits 2-coordinate solution.
 - Can measure progress of 2-coordinate update in terms of a full-coordinate update.

Convergence Rate of Greedy 2-Coordinate Updates under Proximal-PL

Theorem

Let f be a twice-differentiable function whose gradient is 2-coordinate-wise Lipschitz with constant L_2 when restricted to the set where $x^T 1 = \gamma$. If this function satisfies the proximal-PL inequality in the 1-norm for some positive μ_1 , then the iterations of the 2-coordinate descent update with $\alpha^k = 1/L_2$ and the greedy rule satisfy:

$$f(x^k) - f(x^*) \le \left(1 - \frac{2\mu_1}{L_2}\right)^k (f(x^0) - f^*).$$

• Rate for random under same assumptions is dimension-dependent $\left(1 - \frac{\mu_2}{n^2 L_2}\right)^k$.

• We have $\mu_2/n \le \mu_1 \le \mu_2$, so speedup is between n and n^2 .

- Though faster random rates possible for separable f or coordinate-wise Lipschitz.
- Only previous dimension-independent rate for greedy rule is due to Beck [2014].
 - General non-convex problems but sublinear rate.

Equality- and Bound-Constrained 2-Coordinate Updates

• Equality constraints often appear algonside bound constraints as in SVMs,

$$\min_{x \in \mathbb{R}^n} f(x)$$
, subject to $\sum_{i=1}^n x_i = \gamma$, $l_i \le x_i \le u_i$.

• 2-coordinate descent step in this setting is truncated to stay in the bounds,

$$\delta^{k} = -\min\left\{\frac{\alpha^{k}}{2}(\nabla_{i_{k}}f(x^{k}) - \nabla_{j_{k}}f(x^{k})), x_{i_{k}}^{k} - l_{i_{k}}, u_{j_{k}} - x_{j_{k}}^{k}\right\},\$$

- There are several possible greedy rules in this setting.
 - We will overview the evolution of rules in LIBSVM, then give a new rule.

GS-s Rule: Minimzing Directional Derivative

• The GS-s rule chooses coordinates giving most negative directional derivative,

$$i_k \in \operatorname*{argmax}_{i \; | \; x_i^k > l_i} \left\{ \nabla_i f(x^k) \right\}, \quad j_k \in \operatorname*{argmin}_{j \; | \; x_j^k < u_i} \left\{ \nabla_j f(x^k) \right\},$$

which is the greedy rule but eliminating steps that immediately violate bounds.

- First used for SVM by Keerthi et al. [2001], used in LIBSVM up until version 2.7.
- Advantages:
 - Only costs O(n) given gradient.
 - Faster-than-random dimension-independent rate after active-set identified.
 - Fast identification of active set when near solution.
- Disadvantage:
 - Before active set is identified, progress can be arbitrarily slow.
 - Step can be arbitrarily small if you select a coordinate near its boundary.

GS-q Rule: Minimize Quadratic Approximation

• The GS-q rule minimizes a constrained quadratic approximation,

$$\underset{i,j}{\operatorname{argmin}} \left\{ \min_{d_{ij}|d_i+d_j=0} f(x^k) + \nabla_{ij} f(x^k)^T d_{ij} + \frac{1}{2\alpha^k} \|d_{ij}\|^2 : x^k + d \in [l, u] \right\}.$$

- Advantages:
 - If we only have lower bounds or upper bounds, only costs O(n).
 - Faster-than-random dimension-independent rate after active-set identified.
 - Faster-than-random rate before active-set identified.
- Disadvantages:
 - Non-asymptotic rate is dimension-dependent and slower than asymptotic rate.
 - Slow identification of active set when near solution (if variables near boundary).
 - If you have both lower bounds and upper bounds, costs $O(n^2)$.
- Beginning in version 2.8, LIBSVM uses an approximation of GS-q:
 - First selects a coordinate according to GS-s, then selects one according to GS-q.
 - Only costs ${\cal O}(n)$ but similar to GS-s progress can be arbitrarily slow.

GS-1 Rule: Steepest Descent in the 1-Norm

• The GS-1 rule performs constrained steepest descent in the 1-norm,

$$d^k \in \operatorname*{argmin}_{l_i \leq x_i + d_i \leq u_i | d^T 1 = 0} \left\{ \nabla f(x^k)^T d + \frac{1}{2\alpha^k} ||d||_1^2 \right\},$$

previously used by Song et al. [2017] for 1-norm regularized optimization.

- Advantages:
 - Faster-than-random dimension-independent rate (matching asymptotic rate).
 - Fast identification of active set when near solution.
 - We give an algorithm to compute it in $O(n \log n)$.
- Disadvantage:
 - It may require updating more than 2 coordinates in non-asymptotic regime.

Efficient GS-1 Algorithm

• Algorithm for constructing solution to GS-1 rule in $O(n \log n)$:

```
Algorithm I The GS-1 algorithm (with variables sorted in descending order according to \nabla f(x)).
      function GS-1(z, \nabla f(z), \alpha, l, u)
          x_0 = 0; x_1 = 0; i = 1; i = n; d = 0;
           while 1 do
               ω = \sum_{p=0}^{4} x_p - l_p; κ = \sum_{q=r+1}^{n+1} u - x_q
                     -\omega < 0 \ k \ \delta - \kappa < 0 then
                   if \omega < \kappa then d_i = \omega - \kappa ; break:
                   else d_i = \omega - \kappa; break;
                   end if
10:
               else if \delta - \omega < 0 then d_1 = \omega - \kappa; break:
111
               else if \delta - \kappa < 0 then d_i = \omega - \kappa; break:
12
               end if
15
              if x_i + \omega - \delta \ge l_i - \delta_i - \kappa + \delta \le u_i then
141
                 d_i = \omega - \delta; d_i = \delta - \kappa; break:
15
               and if
16
               if x_i + \omega - \delta < l_i \delta_i x_i - \kappa + \delta > u_i then
12.
                   if l_i - (x_1 + \omega - \delta) > x_1 - \kappa + \delta - u_1 then
18:
                        d_i = l - x_i; i \leftarrow i + 1
19
                    of the second
20
                    d_i = u - x_i; j \leftarrow j - 1
                    and if
22:
               else if x_i + \omega - \delta < l_i then d_i = l - x_i; i \leftarrow i + 1
231
              else d_i = u - x_i; j \leftarrow j - 1
24
              end if
36.
         and while
361
          return d
32. and function
```

- Rough outline of how it satisfies optimality conditions:
 - If GS-s step does not violate bounds, take it and break.
 - 2 Move closest variable to boundary and select next largest/smallest $\nabla_i f(x^k)$.
 - Oheck whether new variable can overcome 1-norm penalty.

• If not then "clean up" and break, otherwise go back to 1 with new pair of variables.

Comparing Greedy Rules with Equality and Bounds

• GS-1 converges slightly faster than GS-q, and both are faster than GS-s.

• Rules were similar in our experiments, but GS-s is much worse on some problems.

Comparing Greedy Rules with Equality and Bounds

• GS-1 finds active set slightly faster than GS-s, and both are faster than GS-q.

For SVMs, means identifying support vectors sooner (reducing iteration cost).

Comparing Greedy Rules with Equality and Bounds

• GS-1 updated 2 variables on > 80% of iterations.

• Rarely updated more than 3, and never more than 4 (out of 1000 variables).

Greedy Updates using Coordinate-Wise Lipschitz Constants

Instead of blockwise-smoothness, many works use coordinate-wise smoothness,

$$|\nabla_i f(x + \alpha e_i) - \nabla_i f(x)| \le L_i |\alpha|.$$

• With the summation constraint, the 2-coordinate method with L_i values uses

$$\delta^{k} = -(\nabla_{i_{k}} f(x^{k}) - \nabla_{j_{k}} f(x^{k})) / (L_{i_{k}} + L_{j_{k}}).$$

• We often analyze coordinate descent methods with L_i -weighted norms, such as

$$||d||_L = \sum_{i=1}^n \sqrt{L_i} |d_i|,$$

which can give faster convergence rates.

- First used by Nesterov [2012] for randomized coordinate descent.
- First used by Necoara et al. [2011] for 2-coordinate randomized methods.

Different Greedy Rules in Equality-Constrained Case

• The GS-q rule under the L-norm is given by

$$\operatorname*{argmax}_{i,j}\left\{ (
abla_i f(x) -
abla_j f(x)) / \sqrt{L_i + L_j} \right\}$$

• The GS-1 rule under the L-norm is given by

$$rgmax_{i,j} \left\{ (
abla_i f(x) -
abla_j f(x)) / (\sqrt{L_i} + \sqrt{L_j})
ight\}.$$

- Thus, the steepest descent equivalence does not hold even without bounds.
 - Both give dimension-independent rates, perform similarly in experiments, cost $O(n^2)$.
- We explored an O(n) approximation:

$$i_k \in \operatorname*{argmax}_i (\nabla_i f(x^k) - \mu) / \sqrt{L_i}, \quad j_k \in \operatorname*{argmin}_j (\nabla_j f(x^k) - \mu) / \sqrt{L_j},$$

where μ is the average of the $\nabla_i f(x^k)$ values.

- Guarantees we choose a coordinate that is above and below mean value.
- Can also show (slower) dimension-independent rate for this rule.

Experiments: GS-q vs. GS-1 vs. Ratio

• We found that the various L_i rules performed similarly.

• But the new ratio rule is cheaper to compute.

Take-Home Messages

- For equality-constrained optimization:
 - Greedy 2-coordinate rule is steepest descent in the 1-norm.
 - Fast/simple dimension-independent analysis.
 - Faster than random by a factor between n and n^2 .
- For equality constrained optimization with bound constraints:
 - GS-s rule does not guarantee non-trivial progress.
 - GS-q rule guarantees dimension-dependent progress but is expensive.
 - GS-1 rule guarantees dimension-independent progress and is cheap.
 - But needs to update more than 2 coordinates on some iterations.
- For equality constraints with known coordinate-wise Lipschitz constants:
 - Greedy rule and steepest descent are no longer equivalent.
 - Both guarantee fast dimension-independent rate, but are costly to implement.
 - Ratio rule is cheap to implement and seems effective in practice.