


Block Coordinate Descent (BCD)

• Block coordinate descent (BCD) is a popular optimization algorithm in ML:
– Each iterations selects and updates a block of variables to decrease objective.

– Can make similar progress to updating all variables.
• But for some problems, updating block is much faster than updating all variables.

• There are many choices related to choosing the block and update.
• This work: ways to make BCD converge faster.

– Gives faster algorithm when these not significantly increase iteration cost.

Update!



Fixed Blocks vs. Variable Blocks

• Fixed blocks:

– Choose among a fixed partition.

• Variable blocks:

– Choose any subset of fixed size.

Update {x7, x8, x9}. Update {x3, x5, x10}.



Fixed Blocks vs. Variable Blocks

• With random selection, fixed blocks seem to converge faster.



Random Rules vs. Greedy Gauss-Southwell Rule

• Random rule:

– Sample among all possible blocks, each with equal probability.

• Greedy Gauss-Southwell (GS) rule:

– Choose the block that has the largest gradient norm.



Random Rules vs. Greedy Gauss-Southwell Rule

• Greedy GS rule converges faster than random rule.



Random Rules vs. Greedy Gauss-Southwell Rule

• With greedy rule, variable blocks converge faster.



Direction of Update and Step Size.

• Gradient update:

– Multiply gradient by a step size of 1/L (Lipshitz smoothness of block).

• Matrix update:

– Multiply gradient by upper bound on Hessian block with step size of 1.

• Newton update:

– Multiply gradient by Hessian and a step size set by backtracking.



Direction of Update and Step Size

• Matrix update outperforms gradient update.



Direction of Update and Step Size

• Matrix update outperforms gradient update.

• But Newton converges faster than both.



Greedy Rules Incorporating Lipschitz Constants

• Gauss-Southwell Lipschitz (GSL) rule:

– Augment single-coordinate greedy with Lipschitz-continuity information.

– We give several generalizations to block setting.



Greedy Rules Incorporating Lipschitz Constants

• All generalizations of GSL improved performance.



Block Size

• Should we use small blocks or big blocks?

Update {x5, x10}. Update {x3, x5, x6, x9, x10, x12}.



Block Size

• Converges faster with bigger blocks.



Linear-Time Newton with Tree-Structured Blocks

• Cost of Newton is cubic in block size.

– But certain dependency structures allow linear-time updates.

Colouring Partition Fixed Tree Partition Variable Tree Partition

(block size of ≈2n/3 above)(block size of n/2 above) (block size of n/2 above)



Linear-Time Newton with Tree-Structured Blocks

• Colouring can be faster than using small blocks.

– But trees converge faster than colouring.



Bound Constraints and Non-Smooth Regularizers

• We often use BCD with bound constraints or L1-regularizers.
– Gradient updates can be replaced with projected-gradient (cheap).

– Newton updates can be replaced with projected-Newton (expensive).
• Two-metric projection allows Newton-like updates without extra cost.

– BCD identifies active variables (    ) after a finite number of iterations.
• Superlinear rate with greedy rules, large-enough variable blocks, PN/TMP updates.



Come see us on Tuesday at Poster #109.


