
Newton-Laplace Updates for Block Coordinate Descent
Si Yi Meng Mark Schmidt

University of British Columbia

Motivation

I Block coordinate descent (BCD) methods are used to optimize many machine learning objectives.
- Easy to implement.
- Low memory requirements.
- Cheap iteration costs.
- Adaptability to distributed settings.

I Applications: Group Lasso, SVMs, etc.

I Consider the problem: argminx∈Rn f (x) where f is convex and twice continuously differentiable.

BCD update rule

xk+1bk
= xkbk

+ dk

I First order updates use a gradient descent direction:

dk = −αk∇bkf (x
k) where αk is the step size.

I Speed up convergence using

Blockwise-Newton updates

dk = −αk
[
∇2
bkbk

f (xk)
]−1
∇bkf (x

k)

- Possible to obtain superlinear convergence for problems with certain structures
- Use of larger blocks can lead to faster convergence, but iteration cost is O(|bk|3)
- Step sizes are often chosen with line-search.

Contributions

Previously:

I When the chosen block’s sparsity pattern has a tree structure, “message-passing” algorithms
can be used to solve the system in linear time.

I One can also exploit the width of the Hessian’s computation graph to speed up the
blockwise-Newton update.

I There could still be a limit to how large the blocks can grow until these structural
constraints are violated.

Our work:

I Newton-Laplace updates: if the sub-Hessian corresponding to the blocks have a
Laplacian/SDD structure, we can use fast Laplacian solvers to compute the
blockwise-Newton update in near-linear time.

I Empirically demonstrate its fast convergence rate for the graph-based semi-supervised
learning objectives.

Laplacian solver

Laplacian matrix:

I Consider an undirected, possibly weighted graph G = (V , E):
- n = |V| is number of vertices.
- Adjacency matrix W and degree matrix D where Dii =

∑
jWij.

- The Laplacian matrix is defined as L = D −W .

I L has many nice properties:
- Symmetric and diagonally dominant (SDD): Lii ≥

∑
j 6=i |Lij|

- Positive semi-definite: LT = L � 0.
- Multiplicity of the eigenvalue 0 indicates the number of connected components.

1

3

2

4


2 −1 0 −1
−1 3 −1 −1
0 −1 2 −1
−1 −1 −1 3


Laplacian systems Lx = b:

I These systems arise in many applications: graph-based semi-supervised learning, solutions of
PDEs via finite element, max flows, resistor networks, etc.

I A natural approach to solving symmetric linear systems is via Cholesky factorization.
- But fill-in can create a bottleneck: the triangular factors L in L = LDLT can be dense
even when L is sparse.
- For Laplacian systems, variable elimination corresponds to vertex eliminiation, and fill-in
corresponds to adding a clique to the vertex’s neighbours.

Fast solvers:

I Generate a sparse, approximate Cholesky decomposition for Laplacian matrices by:
- Randomizing the order of elimination, which allows for bound on the sample variance.
- Simpler procedure to estimate the effective resistances for computing the edge sampling
probabilities.

I Cost is near-linear in the number of non-zeros in L.

I Efficient implementations in Julia for sparse Laplacian/SDD systems: Laplacians.jl

I Performance benchmark (with 10% sparsity in L):

0 2500 5000 7500 10000
0

2

4

6

build times

se
co

nd
s

0 2500 5000 7500 10000
0

1000

2000

3000

4000

5000

6000

build allocations

M
B

0 2500 5000 7500 10000
0

1

2

3

4

5

solve times

n vertices

se
co

nd
s

0 2500 5000 7500 10000
0

1000

2000

3000

4000

5000

6000

solve allocations

n vertices

M
B

Approximate Cholesky
with graph sparsification

PCG with augmented
spanning tree
preconditioners

KMP solvers

Application

Graph-based semi-supervised learning problem:

I Given: a partial labeling of n examples x = (xl, xu) and pairwise similarities wij, where l is
the set of indices corresponds to labeled examples, and u = [n] \ l is for unlabeled.

I Goal: infer the missing labels.

Label propagation objective

f (xu) =
1

2

∑
i∈[n], j∈u

wij h(xi − xj) +
1

2

∑
i, j∈u

wij h(xi − xj).

I When h(z) = z2,

∇f (xu) = (Duu −Wuu)xu −Wul yl
∇2f (xu) = Luu

where Luu is the Laplacian on the graph formed by the unlabeled examples, and the
analytical solution can be obtained from x∗u = L−1uu(Wul xl).

I Thus the (sub-)Hessian of f is a Laplacian matrix, and every blockwise-Newton update
therefore involves solving a Laplacian system.

I We can replace h(·) with the huber loss:

hε(z) =

{
1
2z

2 for |z| ≤ ε

ε(|z| − 1
2ε) otherwise

and the resulting update will also be a Laplacian system.

I Best of both worlds!
- Cheap iterations using Laplacian solvers.
- Fast convergence from second order updates.

Experiments

I `2-regularized label propagation on the “two-moons” dataset.
- 2000 examples with 100 labeled and n = 1900 unlabeled.

I Pairwise label distances measured in the Huber loss.

I Newton-Laplace updates using the approximate Cholesky Laplacian solver.

I Using exact solvers with fixed-size blocks chosen to satisfy a particular iteration cost:
- For example, choosing |bk| = n1/3 gives an iteration cost of O(n) with generic, exact solvers.
- Although we are able to obtain a slightly faster convergence rate with larger blocks, the associated iteration
costs have increased from O(n) to O(n2).

I Using tree partitioning and compute the update direction using “message-passing” algorithms:
- We can now use larger blocks with O(n) iteration cost, but block size is still limited.

I Using Laplacian solvers:
- We can use full blocks and reach the minimum within 10 iterations.

Convergence rate comparison of using different fixed-block sizes using different block selection strategies:

I All of these bear only a O(|b|) iteration cost.

Take home message:
When memory is not an issue, one should take advantage of these solvers when the Hessian
has or can be closely approximated with a Laplacian/SDD structure.

