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Application

» Block coordinate descent (BCD) methods are used to optimize many machine learning objectives. Graph-based semi-supervised learning problem:
- Easy to implement.
- Low memory requirements.

» Given: a partial labeling of n examples x = (z;, x,,) and pairwise similarities w;;, where [ is

- Cheap iteration costs. the set of indices corresponds to labeled examples, and u = [n| \ [ is for unlabeled.
- Adaptability to distributed settings. » Goal: infer the missing labels.
» Applications: Group Lasso, SVMs, etc.
» Consider the problem: argmin,cpn f(x) where f is convex and twice continuously differentiable. 151 R 151 | 15 . .
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Blockwise-Newton updates

- Possible to obtain superlinear convergence for problems with certain structures
- Use of larger blocks can lead to faster convergence, but iteration cost is O(|b;.|?)
- Step sizes are often chosen with line-search.

V(@) = (Duw — Wi 2 — Wy

Previously: Ve f (Tu) = Luy
» When the chosen block’s sparsity pattern has a tree structure, “message-passing’ algorithms
can be used to solve the system in linear time. where L, is the Laplacian on the graph formed by the unlabeled examples, and the
. . . * _1
» One can also exploit the width of the Hessian's computation graph to speed up the analytical solution can be obtained from x, = L, (W 21).

blockwise-Newton update. » Thus the (sub-)Hessian of f is a Laplacian matrix, and every blockwise-Newton update
therefore involves solving a Laplacian system.

» There could still be a limit to how large the blocks can grow until these structural

constraints are violated. » We can replace h(-) with the huber loss:
Our work: he(2) <(%z2 for |z| <€
. . . z) =
» Newton-Laplace updates: if the sub-Hessian corresponding to the blocks have a ¢ \e( 2| — %e) otherwise

Laplacian/SDD structure, we can use fast Laplacian solvers to compute the
blockwise-Newton update in near-linear time.

and the resulting update will also be a Laplacian system.

» Best of both worlds!

» Empirically demonstrate its fast convergence rate for the graph-based semi-supervised - Cheap iterations using Laplacian solvers.

learning objectives.

- Fast convergence from second order updates.

Laplacian solver

| | | | » (o>-regularized label propagation on the “two-moons” dataset.
> Consider an undirected, possibly weighted graph G = (V, £): - 2000 examples with 100 labeled and n = 1900 unlabeled.
- n = |V| is number of vertices.

- Adjacency matrix W and degree matrix D where D;; = Zj Wi
- The Laplacian matrix is defined as L. = D — /.

» L has many nice properties: 2:5x10° S — (0} o o 4
- Symmetric and diagonally dominant (SDD): L;; > » . ; [Lij
- Positive semi-definite: L1 = L > 0.

Laplacian matrix:

» Pairwise label distances measured in the Huber loss.
» Newton-Laplace updates using the approximate Cholesky Laplacian solver.

- Multiplicity of the eigenvalue 0 indicates the number of connected components. 2.0 % 10° -
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Laplacian systems Lz = b: s T
» These systems arise in many applications: graph-based semi-supervised learning, solutions of 0.1x10°% |
PDEs via finite element, max flows, resistor networks, etc.
» A natural approach to solving symmetric linear systems is via Cholesky factorization.
- But fill-in can create a bottleneck: the triangular factors £ in L = LDL can be dense Lox 106 | . | | | |
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even when L is sparse. lterations
- For Laplacian systems, variable elimination corresponds to vertex eliminiation, and fill-in
corresponds to adding a clique to the vertex's neighbours. » Using exact solvers with fixed-size blocks chosen to satisfy a particular iteration cost:
- For example, choosing |b,.| = n'/3 gives an iteration cost of O(n) with generic, exact solvers.

Fast solvers: - Although we are able to obtain a slightly faster convergence rate with larger blocks, the associated iteration

» Generate a sparse, approximate Cholesky decomposition for Laplacian matrices by: costs have increased from O(n) to O(n?).
- Randomizing the order of elimination, which allows for bound on the sample variance. » Using tree partitioning and compute the update direction using “message-passing” algorithms:
- Simpler procedure to estimate the effective resistances for computing the edge sampling - We can now use larger blocks with O(n) iteration cost, but block size is still limited.
probabilities. » Using Laplacian solvers:

. _ _ _ - We can use full blocks and reach the minimum within 10 iterations.
» Cost is near-linear in the number of non-zeros in L.

» Efficient implementations in Julia for sparse Laplacian/SDD systems: Laplacians.jl Convergence rate comparison of using different fixed-block sizes using different block selection strategies:

» Performance benchmark (with 10% sparsity in L):
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When memory is not an issue, one should take advantage of these solvers when the Hessian
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2 st 0 has or can be closely approximated with a Laplacian/SDD structure.
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