Newton-Laplace Updates for Block Coordinate Descent

Si Yi Meng Mark Schmidt
University of British Columbia

Application

» Block coordinate descent (BCD) methods are used to optimize many machine learning objectives. Graph-based semi-supervised learning problem:
- Easy to implement.
- Low memory requirements.

» Given: a partial labeling of n examples x = (z;, x,,) and pairwise similarities w;;, where [is

- Cheap iteration costs. the set of indices corresponds to labeled examples, and u = [n| \ [is for unlabeled.
- Adaptability to distributed settings. » Goal: infer the missing labels.
» Applications: Group Lasso, SVMs, etc.
» Consider the problem: argmin,cpn f(x) where f is convex and twice continuously differentiable. 151 R 151 | 15 . .
o :':':{:.l-:' 8.:'°."'" ..’E;-:g. ° y ° ; . ..) o ® ®
0.5 - K :'.!‘!'?::. .:-.- ':.'-'{;'.:' " . "] ‘0. * % Qoo .2. % o
> 2%?-;2;:'- TSR WX AN 0> 037 Aot 4 vt N AL,
~E ;\Eh '..‘;:"?;'..- wFi, SEwt. '..:§:‘:° e 2D
w e ;:3...:-:...3.. . g‘.:“".-'m:‘:..:.. ol é,’;‘f.\' 0.0 \':. : . *@ee .o. ..:o
» First order updates use a gradient descent direction: Pl FoEe e s > oo . ,ﬁ; .;'1.: o :’g
k k k- - BN Htric ek B R k. i
d" = —ozkvbkf(x) where o is the step size. 05 AR 05 051 ~ed .'&a-.,
AR : © ot She Vs
» Speed up convergence using “104 I 0l S N S

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Blockwise-Newton updates

- Possible to obtain superlinear convergence for problems with certain structures
- Use of larger blocks can lead to faster convergence, but iteration cost is O(|b;.|?)
- Step sizes are often chosen with line-search.

V(@) = (Duw — Wi 2 — Wy

Previously: Ve f (Tu) = Luy
» When the chosen block’s sparsity pattern has a tree structure, “message-passing’ algorithms
can be used to solve the system in linear time. where L, is the Laplacian on the graph formed by the unlabeled examples, and the
. . . * _1
» One can also exploit the width of the Hessian's computation graph to speed up the analytical solution can be obtained from x, = L, (W 21).

blockwise-Newton update. » Thus the (sub-)Hessian of f is a Laplacian matrix, and every blockwise-Newton update
therefore involves solving a Laplacian system.

» There could still be a limit to how large the blocks can grow until these structural

constraints are violated. » We can replace h(-) with the huber loss:
Our work: he(2) <(%z2 for |z| <€
. . . z) =
» Newton-Laplace updates: if the sub-Hessian corresponding to the blocks have a ¢ \e(2| — %e) otherwise

Laplacian/SDD structure, we can use fast Laplacian solvers to compute the
blockwise-Newton update in near-linear time.

and the resulting update will also be a Laplacian system.

» Best of both worlds!

» Empirically demonstrate its fast convergence rate for the graph-based semi-supervised - Cheap iterations using Laplacian solvers.

learning objectives.

- Fast convergence from second order updates.

Laplacian solver

| | | | » (o>-regularized label propagation on the “two-moons” dataset.
> Consider an undirected, possibly weighted graph G = (V, £): - 2000 examples with 100 labeled and n = 1900 unlabeled.
- n = |V| is number of vertices.

- Adjacency matrix W and degree matrix D where D;; = Zj Wi
- The Laplacian matrix is defined as L. = D — /.

» L has many nice properties: 2:5x10° S — (0} o o 4
- Symmetric and diagonally dominant (SDD): L;; > » . ; [Lij
- Positive semi-definite: L1 = L > 0.

Laplacian matrix:

» Pairwise label distances measured in the Huber loss.
» Newton-Laplace updates using the approximate Cholesky Laplacian solver.

- Multiplicity of the eigenvalue 0 indicates the number of connected components. 2.0 % 10° -
_ . 0
(H—() 2 —1 0 -1 E
3 I
a —1 3 —1 —_— 5 5
(—() 0 —1 2 —1 5 02x10]3
—1-1-1 3 | “T S
Laplacian systems Lz = b: s T
» These systems arise in many applications: graph-based semi-supervised learning, solutions of 0.1x10°% |
PDEs via finite element, max flows, resistor networks, etc.
» A natural approach to solving symmetric linear systems is via Cholesky factorization.
- But fill-in can create a bottleneck: the triangular factors £ in L = LDL can be dense Lox 106 | . | | | |
. 0 100 200 300 400 500
even when L is sparse. lterations
- For Laplacian systems, variable elimination corresponds to vertex eliminiation, and fill-in
corresponds to adding a clique to the vertex's neighbours. » Using exact solvers with fixed-size blocks chosen to satisfy a particular iteration cost:
- For example, choosing |b,.| = n'/3 gives an iteration cost of O(n) with generic, exact solvers.

Fast solvers: - Although we are able to obtain a slightly faster convergence rate with larger blocks, the associated iteration

» Generate a sparse, approximate Cholesky decomposition for Laplacian matrices by: costs have increased from O(n) to O(n?).
- Randomizing the order of elimination, which allows for bound on the sample variance. » Using tree partitioning and compute the update direction using “message-passing” algorithms:
- Simpler procedure to estimate the effective resistances for computing the edge sampling - We can now use larger blocks with O(n) iteration cost, but block size is still limited.
probabilities. » Using Laplacian solvers:

. _ _ _ - We can use full blocks and reach the minimum within 10 iterations.
» Cost is near-linear in the number of non-zeros in L.

» Efficient implementations in Julia for sparse Laplacian/SDD systems: Laplacians.jl Convergence rate comparison of using different fixed-block sizes using different block selection strategies:

» Performance benchmark (with 10% sparsity in L):

build times build allocations . -
6000 | T Eg z z
6 5000 :‘§' 1.6 x 10" - :‘§' 1.6 :g
T T T
) 4000 | = G 3
-8 4 L m Approximate Cholesky 4.0x10° - 4.0x10° -
3 = 3000 F with graph sparsification
3
2000 1.0 x 10° ! ! ! ! ; 1.0x 10° & ' ' ' ' | !
2 — 0 100 200 300 400 500 0 100 200 300 400 500 400
Iterations with 10-sized blocks Iterations with 100-sized blocks Iterations with 950-sized blocks
1000 |
0 L, ! ! ! ! 0 [! ; ! :
0 2500 5000 7500 10000 0 2500 5000 7500 10000
| | PCG with augmented » All of these bear only a O(|b|) iteration cost.
solve times solve allocations spanning tree
preconditioners
5 F 6000
Take home message:
5000
4 . . .
When memory is not an issue, one should take advantage of these solvers when the Hessian
2] 4000 . . .
2 st 0 has or can be closely approximated with a Laplacian/SDD structure.
S S 3000 L KMP solvers
3 oL
2000
Tr 1000 |
0 L i : ! : 0 [* : : -
0 2500 5000 7500 10000 0 2500 5000 7500 10000

n vertices n vertices

