

Are we there yet? Manifold ID of gradient-related proximal methods

Yifan Sun, Halyun Jeong, Julie Nutini, Mark Schmidt University of British Columbia, Vancouver

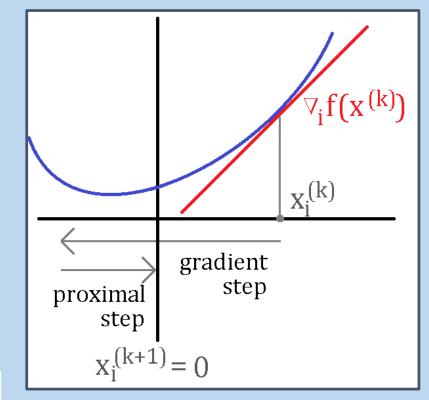
Observation

Proximal methods often snap to the solution manifold quickly.

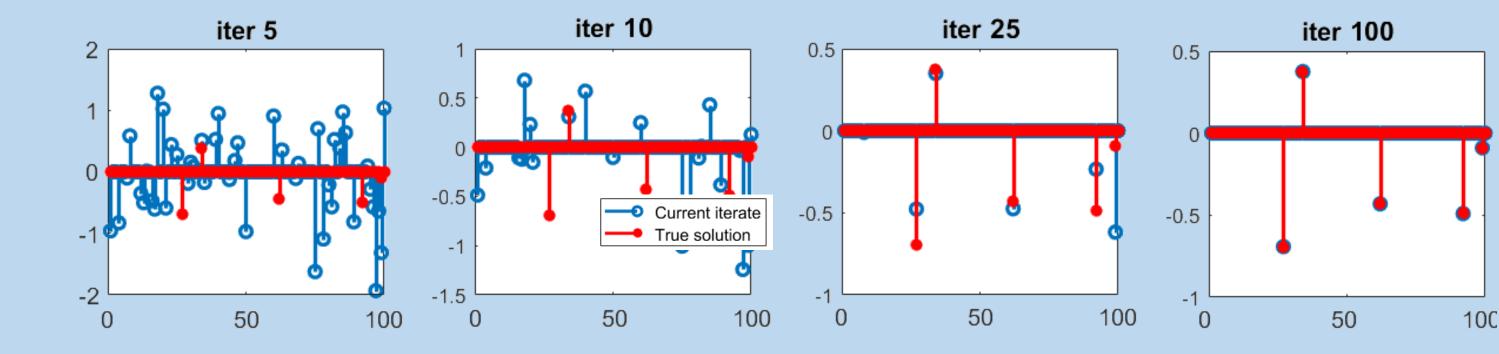
Can we **predict** when this happens?

Motivation

Reason 1: Learning sparsity pattern often enough • Feature selection

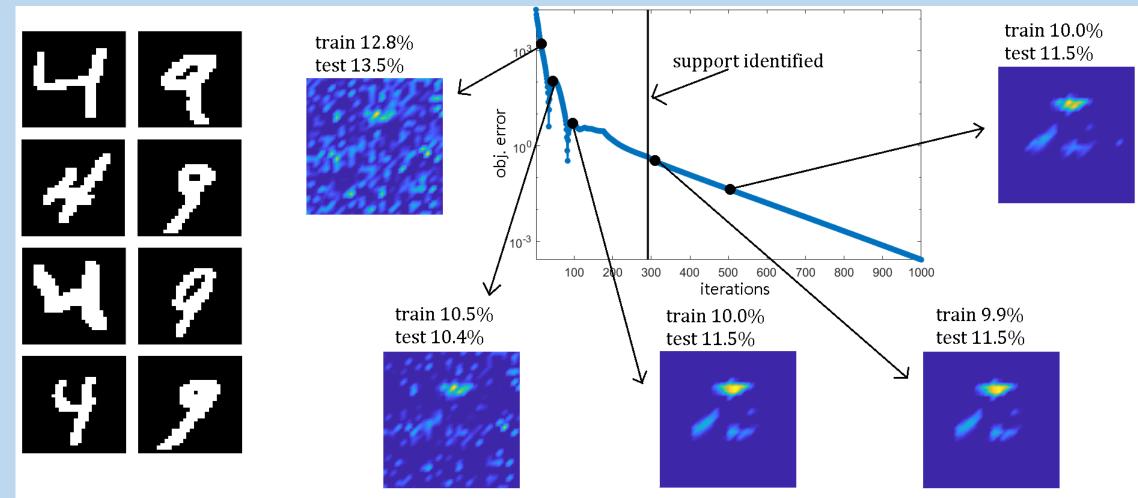


One-step "snapping" action of the prox. grad method. Sparse Log. Reg. for 4/9 disambiguation Sparsity, train, and test error converges in very few iterations, but objective error keeps decreasing.



Sparse LASSO

In 25 iterations, true support identified. However, the iterate values are still converging.



- Identifying correlations between variables
- Identifying support vectors

Reason 2: Solving over reduced support may be easy

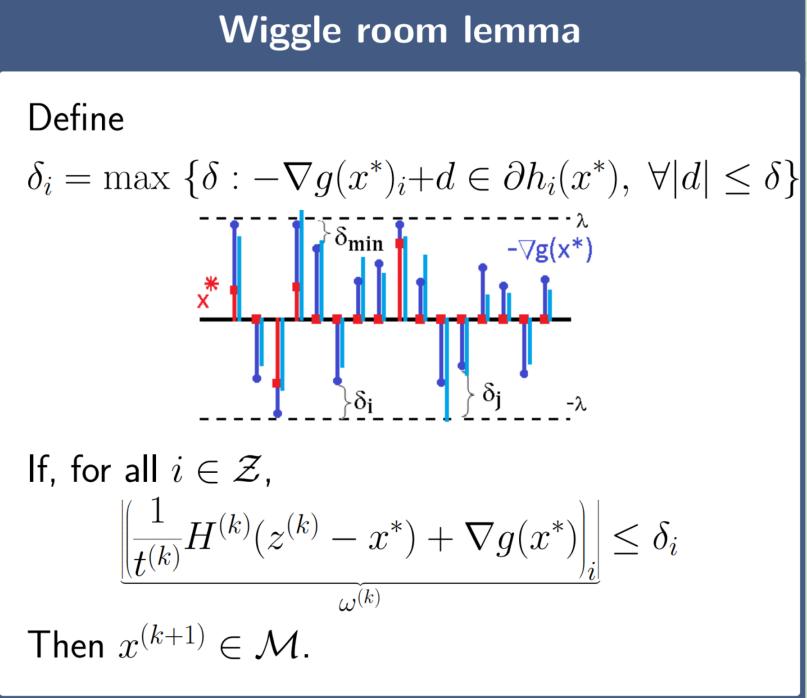
- Smaller problem \rightarrow can use more powerful solver (e.g. Newton's)
- Better conditioned Hessian \rightarrow faster convergence

Contribution

We provide a **simple** and **geometrically** intuitive framework to easily compute the manifold ID rates for proximal methods.

Mathematical Setup

Problem class



The optimality condition for a nonsmooth problem has "built in" wiggle room.

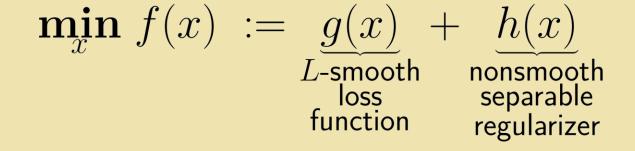
Proximal methods ensure that, near optimality, the error snaps within this wiggle room.

This gives a **framework** to quickly compute many manifold ID rates.

How to derive rates

 $\max_{i} |\omega_{i}^{(k)}| \leq \frac{1}{t} \underbrace{\|x^{(k)} - x^{*}\|_{2}}_{\text{error in var} \to 0} + \underbrace{\|\nabla g(x^{*}) - \nabla g(x^{(k)})\|_{2}}_{\text{error in grad} \to 0}$

• Prox gradient descent



• x^* is a unique minimizer

• h(x): $||x||_1$, elementwise constraints, hinge loss

Manifolds and active sets

Active set

 $\mathcal{Z} = \{i : \partial h(x_i^*) \text{ is not a singleton } \}$ • $h(x) = ||x||_1 \to \mathcal{Z} = \{i : x_i^* = 0\}$ • $l \leq x \leq u \rightarrow \mathcal{Z} = \{i : x_i = u_i \text{ or } x_i = l_i\}$

Solution manifold

 $\mathcal{M} = \{ x : x_i = x_i^*, \forall i \in \mathcal{Z} \}$ A method $x^{(k)} \rightarrow x^*$ identifies the manifold at \bar{k} if $\forall k > \bar{k}, \ x^{(k)} \in \mathcal{M}.$

Proximal methods

method	rate	rate if strongly convex
Prox grad	$(1/t+L)\epsilon_x \le \delta_{\min}$	$O(\log(1/\delta_{\min}))$
Acc prox grad	$(1/t + L)\epsilon_x \le \delta_{\min}$	$O(\log(1/\delta_{\min}))$
Prox DRS/ADMM	$(2/t + 2L)\epsilon_x \le \delta_{\min}$	$O(1/\delta_{ m min}^2)$
Prox Newton	$2L\epsilon_x \le \delta_{\min}$	$O(\log\log(\delta_{\min}))$
Prox Quasi Newton	$(L+L_H)\epsilon_x \le \delta_{\min}$	$O(\log(1/\delta_{\min}))$
Prox SGD	None	None
Prox SAGA / SVRG*	$\epsilon_x/t + \epsilon_g \le \delta_{\min}$	$O(\log(1/\delta_{\min}))$
Prox RDA*	$\epsilon_g + B/(kt) \le \delta_{\min}$	$O(1/\delta_{ m min}^4)$

 $\epsilon_x = \|x - x^*\|_2, \ \epsilon_g = \|\nabla g(x) - \nabla g(x^*)\|_2, \ \delta_{\min} = \min_{i \in \mathcal{Z}} \delta_i.$

Rate if g(x) is strongly convex: • Prox stochastic gradient descent

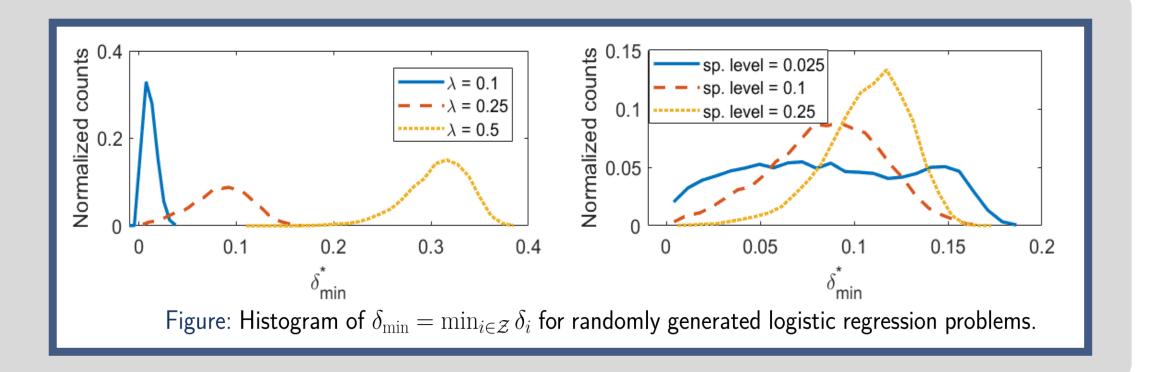
 $\omega^{(k)} = \frac{1}{\underbrace{t^{(k)}}} (x^{(k)} - x^*) + \underbrace{\nabla g(x^*) - \nabla g(x^{(k)})}_{\text{error in grad} \neq 0}$

 $\bar{k} = O\left[\log\left(\frac{1/t+L}{\delta_{\min}}\right)\right]$ [NSH '17]

Does not identify manifold!

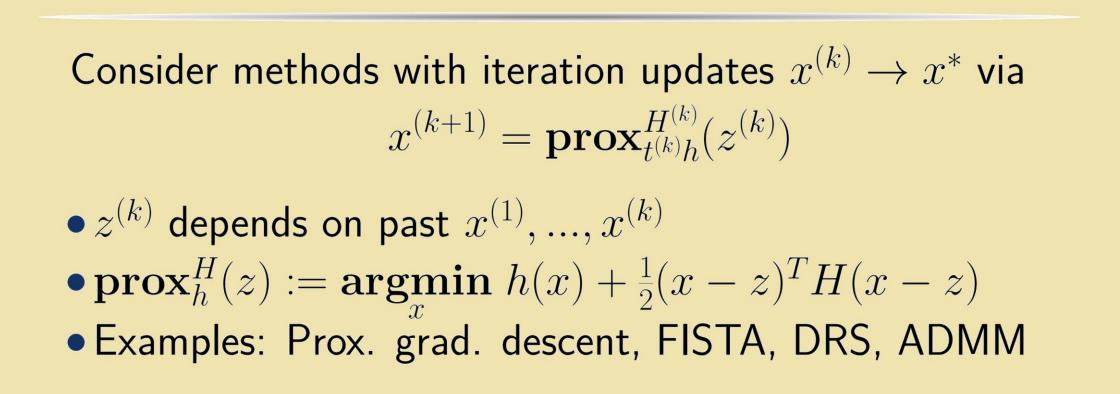
How much wiggle room

- Manifold ID rates depend on δ_{min} .
 - \rightarrow but need x^* to compute $\delta_{\min}!$
- We can empirically connect it to problem parameters
 - \rightarrow e.g. regularization weight,



References

• Manifold ID: Bertsekas (1974), Dennis and Moré (1974), Gafni and Bertsekas (1984), Dunn (1987), Burke and Moré (1988), Wright (1993), Ko et al. (1994), Hare and Lewis (2004), Daniilidis, Sagastizábal, and Solodov (2009) • Prox grad: Johnstone and Moulin (2015), Liang, Fadili, and Peyré (2017), Nutini, Schmidt, and Hare, (2017) • Prox DRS / ADMM: Liang, Fadili, and Peyré (2016) • Prox SAGA / SVRG: Poon, Liang, and Schönlieb (2018) • **Prox RDA:** Lee and Wright (2012), Duchi and Ruan (2016)



• Open question: Can we infer it from knowledge of the data

ground truth sparsity

distribution of our problem?